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Spatial join is an important operation for combining spatial data. Parallelization is essential for improving
spatial join performance. However, load imbalance due to data skew limits the scalability of parallel spatial
join. There are many work sharing techniques to address this problem in a parallel environment. One of the
techniques is to use data and space partitioning and then scheduling the partitions among threads/processes
with the goal of minimizing workload differences across threads/processes. However, load imbalance still
exists due to differences in join costs of different pairs of input geometries in the partitions.

For the load imbalance problem, we have designed a work stealing spatial join system (WSSJ-DM) on a
distributed memory environment. Work stealing is an approach for dynamic load balancing in which an idle
processor steals computational tasks from other processors [5]. This is the first work that uses work stealing
concept (instead of work sharing) to parallelize spatial join computation on a large compute cluster. We have
evaluated the scalability of the system on shared and distributed memory. Our experimental evaluation shows
that work stealing is an effective strategy. We compared WSSJ-DM with work sharing implementations of
spatial join on a high performance computing environment using partitioned and un-partitioned datasets.
Static and dynamic load balancing approaches were used for comparison. We study the effect of memory
affinity in work stealing operations involved in spatial join on a multi-core processor.

WSSJ-DM performed spatial join using ST_Intersection on Lakes (8.4M polygons) and Parks (10M poly-
gons) in 30 seconds using 35 compute nodes on a cluster (1260 CPU cores). A work sharing Master-Worker
implementation took 160 seconds in contrast.
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1 INTRODUCTION
In Geographic Information Systems (GIS) and spatial databases, two datasets are combined based
on some spatial relationship among geometries in the input datasets. For instance, given two sets
of polygons, 𝑅 and 𝑆 , find all of the pairs of overlapping polygons between the two sets, that is, for
each polygon 𝑟 in dataset 𝑅, find overlapping polygons from dataset 𝑆 [22].
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High performance computing (HPC) clusters and supercomputers with GPUs are used to analyze
geospatial data [11, 15–17, 22]. CyberInfrastructure centers like Polar Geospatial Center, CyberGIS
project at National Center for Supercomputing Applications (NCSA), and WiFire project (forest
fire) at San Diego Supercomputer Center are involved in running geospatial computations and
simulations in a large-scale HPC environment. The distributed memory programming model in
these environments is Message Passing Interface (MPI) and the storage layer is a parallel file system
like Lustre. MPI is preferred over MapReduce due to fast communication on high performance
interconnection network and more flexibility in terms of programming. This is different architecture
when compared to MapReduce model and its distributed file system based storage. We have
used an HPC compute cluster in our load balancing design and evaluation. MPI-GIS software
utilizes message passing interface [17], parallel I/O and partitioning capabilities [16, 22] and GPU
acceleration modules [11, 12] for high performance spatial join and map overlay on HPC clusters.
The present work is a dynamic load balancing component in MPI-GIS software stack.

The overall load imbalance in spatial join is determined by two factors - 1) size and distribution
of geometries in the two input maps that need to be joined together by a process (thread) and 2)
number of outputs produced per process (thread). The output-sensitive nature makes load balancing
difficult because the number of outputs is not known a priori and can not be estimated easily for
complex geometries where approximations result in a large number of false hits [19]. Therefore,
input data and intermediate output data partitioning techniques are used to minimize variation of
load across partitions [16, 22].
Load balancing approaches can be classified into two categories: 1) work sharing and 2) work

stealing. In work sharing approach, a busy processor with excess work sends them to idle processor
with less or no work (e.g., master-worker pattern). However, in work stealing approach, an idle
thread initiates task migration from the work queue of a busy thread with pending tasks. When a
processor finishes all the tasks in its queue, it becomes a thief and tries to steal a task from another
processor (victim). This difference can be stated as push (work sharing) vs pull (work stealing)
techniques.

Work stealing technique has some advantages. First, it has been shown to improve data locality [1].
In work sharing, a busy processor incurs context switch overhead while sending work to remote
processor. Second, idle processors are mostly involved in the work distribution (overhead); busy
processors continue spatial join processing. Moreover, when (until) all processors are busy, no load
balancing overhead occurs [5].

Dynamically load balancing on a distributed memory system is challenging because load balanc-
ing requires serialization and communication of complex geometries by a busy sending process, and
deserialization (parsing) of geometries at an idle receiving process. This is a significant computation
and communication overhead for large geometries. In a distributed setting, work stealing can be a
significant overhead if the execution time of the tasks are in second or millisecond range. However,
this overhead is not present in a shared memory queue based implementation [19]. Another chal-
lenge is effective flow control among processes participating in pull-based task sharing in spatial
join.

Our flow control using MPI Remote Memory Access (RMA) guides the granularity and timing of
task sharing to keep the idle processes busy and while minimizing the overheads at busy processes.
Our new design is able to leverage multiple compute nodes efficiently to speedup parallel spatial join,
in the presence of serialization and work coordination overheads. From a performance perspective,
this is an improvement over shared memory spatial join [19] and distributed memory MPI-based
spatial join systems [16, 17, 22]. To the best of our knowledge, this is the first demonstration of
effectiveness of work stealing on a large scale distributed memory machine with thousand processor
cores.
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We present the effect of memory affinity in work stealing operations involved in spatial join on
a NUMA system. Our results complement existing line of work on spatial join [14, 18].

Contributions of our paper are as follows:
• We present a novel NUMA-optimized Work Stealing Spatial Join system (WSSJ) on shared
memory. We extended WSSJ to distributed memory (WSSJ-DM) environment. Source code is
publicly available. 1
• We demonstrate effective mitigation of data skew in a fine-grained manner to avoid strag-
glers (threads taking much longer than others to finish). Both WSSJ and WSSJ-DM are
experimentally shown to be load balanced and efficient.
• Both WSSJ and WSSJ-DM can perform a variety of spatial relationship joins and spatial
overlay joins. Our system can effectively handle data skew in spatially partitioned and
un-partitioned datasets.

This paper is organized as follows. Section 2 introduces background and related work. Section 3
describes WSSJ on shared memory and WSSJ-DM on distributed memory. Section 4 evaluates
the performance of WSSJ and WSSJ-DM. We conclude this paper in Section 5. Appendix section
presents experimental evaluation using un-partitioned datasets.

2 BACKGROUND AND RELATEDWORK
2.1 Spatial Join
Spatial join involves two spatial datasets 𝑅 and 𝑆 . The output contains all pairs of objects satisfying
a given relation between the objects. The spatial relationships 2 such as ST_Within, ST_Intersects, etc
are supported. We have also handled overlay computation3, such as ST_Intersection, and ST_Union.
ST_Intersects is used to answer a query - Is there any overlap between the two geometries?

2.2 Load Balancing in Parallel Spatial Join
An existing approach in partition-based spatial join (PBSM) is to create a certain number of
grid cells and assign the cells to processors [3, 16, 17]. Some approaches use static round-robin
assignment [16, 17] and others use dynamic load balancing [19]. The unit for load balancing in
this approach is a set of geometries in a grid cell. Our technique for load balancing is fine-grained
because our tasks are at individual geometry level compared to existing approaches that work at
grid cell level. Therefore, our task construction enables fine grained load balancing.

Partitioning of map layers into tiles (grid cells) has been used in [22]. The tiles are then assigned
to processors in a round-robin fashion. Declustering is proposed as a load balancing strategy
in [20]. [21] uses bitmaps to determine the number of spatial objects to perform dynamic load
balancing. SPINOJA [19] uses object decomposition based declustering to mitigate data processing
skew on shared memory. MapReduce-based spatial join systems first create data partitions using
various partitioning techniques and then use dynamic load balancing supported by MapReduce
implementations like Hadoop and Spark to join grid partitions [4, 8, 23]. Current message passing
based systems do not support work stealing, for example, MPI-based spatial join systems like
MPI-GIS and ParADP [2, 16, 22].

2.3 Work Stealing
Work stealing is a dynamic load balancing strategy [5–7, 10, 13]. Work stealing has been used in
shared memory and distributed memory [7] load balancing solutions.
1https://github.com/satishphd/WorkStealing-Spatial-Join
2https://postgis.net/docs/reference.html#Spatial_Relationships
3https://postgis.net/docs/reference.html#Overlay_Functions
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Chase-Lev’s lock-free deque [6] is an important data structure in many shared-memory work
stealing designs. The deque uses a dynamic-cyclic-array, which allows: 1) the owner to push and
pop elements from the top of the deque, 2) others to perform concurrent lock-free steal from
the bottom of the deque. Nhat’s Work Stealing Queue [10] implementation in C++11 is based on
Chase-Lev’s lock-free deque and shows a remarkable performance in benchmarks. We use it in
our work stealing implementations. For simplicity, we have referred to Work Stealing Queue as
queue or deque (double-ended). There are very few work stealing libraries that work on shared
nothing architecture - for instance, Charm++. Our implementation WSSJ-DM is geared towards
spatial computing workloads that will be integrated into an MPI-based GIS ecosystem. Charm++ is
a different programming model compared to message passing framework that MPI-GIS is based
upon.

2.4 Non-Uniform Memory Access (NUMA)
In non-uniform memory access, processor cores have access to local memory and remote memory.
Remote memory access is costly compared to local access. There has been some earlier work on
NUMA-aware algorithms. [18] discusses an experimental study on enabling NUMA-aware main
memory spatial join processing. [14] discusses a systematic approach for efficient in-memory query
processing on NUMA systems.

ManyNUMApolicies can be used on current Linux systems.MPOL_DEFAULT,MPOL_INTERLEAVE,
MPOL _PREFERRED, and MPOL_BIND are typically available.4 These policies can be set by calling a
system function 𝑠𝑒𝑡_𝑚𝑒𝑚𝑝𝑜𝑙𝑖𝑐𝑦. Our findings on NUMA policies are novel.

3 IMPLEMENTATION OFWORK STEALING SPATIAL JOIN
3.1 Work StealingQueue
A simple work stealing system for spatial join on shared-memory consists of the following steps:

(1) Create one thread for each processor core and each thread uses a queue to hold tasks to be
scheduled.

(2) Each thread pushes its tasks to its own queue from the bottom. And then pops and executes
tasks from the queue.

(3) A thread can steal tasks from the top of other threads’ queues after all tasks in its own queue
are finished.

Based on these steps, we built a work stealing system for spatial join on shared memory (WSSJ).
In WSSJ, there are multiple worker threads and each worker thread holds its own queue.
A worker thread generates spatial join refinement tasks after the filter phase and pushes these

tasks into its queue. It can pop tasks from its own queue and steal tasks from a victim’s queue. The
victim can be chosen randomly. In WSSJ, each worker performs the filtering phase and refinement
phase independently.

3.2 NUMA Memory Policies
The execution of spatial join computations are impacted by NUMA memory policies. Spatial join
algorithms allocate a temporary buffer to carry out intermediate steps of join algorithm on two
geometries. The spatial objects are copied to the temporary buffer to carry out Quadtree partitioning
of an individual geometry, to order the coordinates, and to populate the intersection matrix.
The default NUMA policy on most Linux systems after boot-up is MPOL_DEFAULT, which is

“local allocation”. Under this policy, Linux will attempt to satisfy memory requests from the nearest
NUMA node of the CPU which submits the memory requests.MPOL_DEFAULT works fine in many
4https://linux.die.net/man/2/mbind
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scenarios. However, in terms of work stealing, a thread on one NUMA node can steal a task from
another NUMA node. A page in memory corresponding to geometry data structure can be accessed
by multiple threads because of many-to-many overlap relationship in spatial join tasks. For spatial
join, in all experiments we have conducted so far, the tasks on a few worker threads (usually 1 to 4)
take much longer to finish than the rest of the threads. When multiple threads allocate and write to
temporary buffers for tasks from remote NUMA nodes, there can be memory requests congestion.

MPOL_BIND and MPOL_PREFERRED can mitigate the memory requests congestion issue. Under
these two policies, the temporary buffers are on the same NUMA node as the pairs of geometries
to be joined. The issue with MPOL_BIND is that it is a strict policy; the OS can only utilize the
memory on specified NUMA node(s). This can be a problem in case there is more memory required
than available on a single NUMA node.
Under MPOL_INTERLEAVE mode, the memory allocations are uniformly distributed among

all NUMA nodes. The temporary buffers are allocated in an interleaved manner as the pairs of
geometries are joined.

The NUMA effects discussed here are due to work stealing inherent in parallel spatial join with
higher number of threads. We compared the impacts of different memory policies in Section 4.1.

3.3 Work Stealing Algorithm
Now we present details on how to apply work stealing idea using filter and refine based spatial
join. Algorithm 1 describes task generation by a worker thread. These tasks are added to work
stealing queue data structure maintained per thread. 𝑅 and 𝑆 stand for two spatial datasets to be
joined. WSSJ uses spatially partitioned datasets in this algorithm based on our earlier work [22].
For instance, spatial partitioning of R and S into 4 partitions will result in grid cells R1 to R4 and S1
to S4. This creates 4 join tasks, (R1, S1), (R2, S2), (R3, S3), and (R4, S4). Each thread is assigned one
or more partition(s) as input. 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ] are instances of work stealing queue, where 𝑇 equals the
number of worker threads.
Task Construction: A spatial join task consists of a subset of geometries from R and S that

spatially overlap using minimum bounding rectangle (MBR) overlap test. We chose one geometry
from R and multiple geometries from S as a unit task in our system. For overlap detection using
MBR approximation of geometries, we use a search tree (index) for MBR query. Filter phase is
done using the standard R-tree index-based nested loop spatial join approach. Assuming, a join
on partition pair (R1, S1), where R1 = {𝑟0, 𝑟1, .., 𝑟𝑚} and S1 = {𝑠0, 𝑠1, .., 𝑠𝑛}, a unit task is a key-value
pair, where key is 𝑟𝑖 , 𝑖 ∈ {0,𝑚} and value is an arbitrary subset from S1.

The Break_Down_Task() function splits a large task into a set of smaller tasks by breaking down
the value part of the task. We set a 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑎𝑠𝑘 as the size limit of a task. This step is necessary
as a huge geometry 𝑟 usually returns a large query result in Line 10 of Algorithm 1, which is one
reason of load imbalance. Assuming 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑎𝑠𝑘 to be 10, if the MBR query result returns 30
geometries from 𝑆 , then this single task will be broken down into 3 sub-tasks. This step makes sure
that individual tasks are relatively of same computational cost.

In WSSJ, each thread occupies one CPU core and Algorithm 1 is executed per thread independent
of other threads. Work stealing queues store pointers to tasks.

As presented in Algorithm 2, a worker thread 𝑡𝑖 first pops tasks from its own queue 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑖], and
performs join operations until its queue becomes empty. Then it finds a victim thread. Get_Victim()
function returns the next available victim’s thread id. Thread ids are checked in cyclic order to get
a thread with enough pending work, beginning with the current thread’s id + 1. This method is
simple and robust. Other methods like choosing random thread as victim or choosing threads based
on NUMA consideration and data locality are also possible. The thief thread will keep stealing and
performing join operations until the victim’s queue becomes empty. The granularity of tasks stolen

5



SIGSPATIAL ’22, November 1–4, 2022, Seattle, WA, USA Jie Yang and Satish Puri and Hui Zhou

Algorithm 1 Algorithm for Pushing Tasks into Queues
1: Input: Subsets of spatial objects from 𝑅 and 𝑆 .
2: T is number of threads.
3: Output: 𝑄𝑢𝑒𝑢𝑒 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ] populated with tasks.
4: Assign NUMA memory policy.
5: Initialize all the queues in 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ].
6: for Thread 𝑡𝑖 in 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
7: Build an index 𝐼𝑛𝑑𝑒𝑥𝑖 using MBRs of 𝑅
8: for Object 𝑠 𝑗 in 𝑆 do
9: Task 𝑡𝑎𝑠𝑘𝑠 ← 𝐼𝑛𝑑𝑒𝑥𝑖 .𝑞𝑢𝑒𝑟𝑦 (𝑠 𝑗 )
10: Task 𝑠𝑢𝑏𝑇𝑎𝑠𝑘𝑠 ← Break_Down_Task(𝑡𝑎𝑠𝑘𝑠)
11: 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑡𝑖 ] .𝑝𝑢𝑠ℎ(𝑠𝑢𝑏_𝑡𝑎𝑠𝑘𝑠)
12: end for
13: end for
14:

Algorithm 2 Algorithm for Work Stealing Spatial Join
1: Input: 𝑄𝑢𝑒𝑢𝑒 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑇 ] populated with tasks.
2: Output: Spatial Join 𝑟𝑒𝑠𝑢𝑙𝑡𝑠 .
3: for Thread 𝑡𝑖 in 𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
4: while 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑡𝑖 ] not empty do
5: Task 𝑡𝑎𝑠𝑘 ← 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑡𝑖 ] .𝑝𝑜𝑝 ()
6: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖 ← Spatial_Join_OP(𝑡𝑎𝑠𝑘)
7: end while
8: while Not all 𝑞𝑢𝑒𝑢𝑒𝑠 empty do
9: int 𝑣𝑖𝑐𝑡𝑖𝑚 ← Get_Victim()
10: while 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑣𝑖𝑐𝑡𝑖𝑚] not empty do
11: Task 𝑡𝑎𝑠𝑘 ← 𝑞𝑢𝑒𝑢𝑒𝑠 [𝑣𝑖𝑐𝑡𝑖𝑚] .𝑠𝑡𝑒𝑎𝑙 ()
12: 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖 ← Spatial_Join_OP(𝑡𝑎𝑠𝑘)
13: end while
14: end while
15: end for

can be configured. All join results generated by 𝑡𝑖 are pushed into 𝑟𝑒𝑠𝑢𝑙𝑡𝑠𝑖 . 𝑂𝑃 stands for type of
spatial join operation.

3.4 Overall Framework on Distributed Memory
In our multi-compute node architecture with distributed memory (WSSJ-DM) design, each compute
node still uses the shared memory work stealing system WSSJ, plus one coordinator thread. The
coordinators are used to communicate with other compute nodes and shuffle tasks, as shown in
Figure 1. The tasks (including coordinates of geometries) are serialized by the sending process and
deserialized by the receiving process. The task contains the geometry coordinates in the message
itself. So, the overall communication of geometries corresponding to the stolen tasks happens
in-memory. When needed, a coordinator spawns multiple threads to speedup the send/receive and
parsing of geometries (from the message buffer) among compute nodes for load balancing purpose.
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Fig. 1. The Work Stealing Spatial Join system on distributed memory (WSSJ-DM). Two multi-core compute
nodes are shown with m threads. “Gen Tasks" represents task generation and OP is join operation. The
solid blue arrows show the directions of the flows of spatial join tasks. The dashed orange arrows show the
directions of the flows of control messages. “NB send/recv" stands for “Non-blocking send or receive message
passing". “Gen buf" stands for "Generate send buffer" and “Parse received buffer".

In Figure 1, each dashed red rectangle stands for a WSSJ-DM node. There are multiple compute
nodes. Each node has multiple worker threads to leverage the multiple CPU cores, and one coordi-
nator. Each worker thread has one work stealing deque. The worker threads and deques are same
as in WSSJ.

In the beginning, each node takes grid cells of 𝑅 and 𝑆 in a Round Robin manner. A worker thread
follows the steps as WSSJ: parsing data files, building indices, and pushing tasks into their own
work stealing queues. Additionally, after all local tasks are finished, the worker threads in WSSJ-DM
wait for tasks from their coordinator, which "steal" tasks from other coordinators. The coordinators
are responsible for termination detection. A coordinator also informs its worker threads that all
tasks across all nodes are done.

To illustrate how the system works, we present a typical scenario with two coordinators running
on two compute nodes. After all the tasks get pushed, a coordinator (say Coord A) thread begins to
monitor its memory window. If A’s all local queues are empty, Coord A begins to seek tasks from
other nodes by writing to the memory window of other coordinators using the remote memory
access (RMA) functions. Another node (say Coord B) notices the change in its memory window
because of A’s recent action. Coord B resets its window as an acknowledgement (to allow new
starving coordinator) and begins to steal tasks from local queues and then sends those tasks to
Coord A. This is accomplished through non-blocking message passing.
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The worker threads mainly focus on performing join operations, and behave similarly to worker
threads in WSSJ. In the next two sub-sections, we will discuss about the core module of WSSJ-DM,
the coordinators.

3.5 Coordinator in Send Status
The coordinators are threads within a WSSJ-DM node meant to facilitate communication with
other nodes. A coordinator can be in two status based on the number of all tasks in local work
stealing queues: 1) send status and 2) receive status.
A coordinator (Coord A) maintains a memory window, initially as waiting for task requests. It

waits until all local spatial join tasks are enqueued. It then steps into the Send Status. Coord A
checks its memory window periodically. If no change is found, it will update the window with its
current remaining tasks and then goes on to sleep until next period to save CPU cycles for the
worker threads. If there is information that other coordinators are looking for tasks, Coord A will
mark those coordinators as starving. It then begins to steal tasks from local queues and send those
tasks to other coordinators.

The vertices of geometries corresponding to a task are converted to basic data type arrays to be
used by message passing functions. Coord A uses non-blocking send function to send those task
arrays. It will keep sending tasks to starving coordinators until all local tasks are done or almost
done. Coord A can fork multiple threads to accelerate the task sending process.

While sending tasks, Coord A still checks and updates its memory window periodically, to signal
its current status to other starving processes. Coord A also uses non-blocking receive function to
gather status signals from other coordinators. If it finds that some coordinators have received too
much work to finish on time, it sends a temporary stop signal to those coordinators and stops
sending tasks to them. When all local tasks are done, Coord A sends a stop signal to all starving
coordinators in its record.

3.6 Coordinator in Receive Status
After all local tasks are done, Coord A enters the Receive Status. Coord A checks the remote
memory windows of other coordinators. If a window indicates that all its owner’s tasks were
finished, Coord A records this information and checks the next available remote memory window.
Among all the other coordinators, it will ask for tasks from the one with the most tasks left (say
Coord B). If a window is written by other starving coordinators, Coord A will skip this window.

In case when its task request is put on Coord B’s window, Coord A will use non-blocking receive
function and wait for tasks to arrive. When the data is received, Coord A parses the received data to
spatial join tasks and pushes those tasks to an empty queue. This task receiving-parsing-pushing
progress can be accelerated by using multiple receive threads. After that, Coord A marks the queue
to allow workers to steal.
Coord A sends the number of its local tasks to Coord B after a few invocations of receiving

function, also using non-blocking send. Coord B uses this number to judge if Coord A needs a
temporary stop, i.e., Coord A has received too many tasks but its worker threads are processing
tasks slowly. If Coord A receives a temporary stop, it will be on sleep until most received tasks are
done by its worker threads. After waiting, it will again seek another coordinator which still has
tasks. If Coord A receives a stop sign, it will mark Coord B as “All Tasks Finished" and seek another
coordinator for more tasks. When Coord A finds that all other coordinators have no remaining task,
it will inform all its worker threads and terminate itself.
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3.7 Inter-node Communication
Our distributed memory system uses non-blocking communication functions and remote memory
access functions supported by Message Passing Interface standard. Appendix section contains some
detail on this topic. The most important feature of non-blocking send and receive in WSSJ-DM is
that it allows overlapping communication and computation.

The coordinators in WSSJ-DM use multiple threads to perform MPI_Isend() to send spatial join
tasks and MPI_Irecv() to receive tasks. These send/receive threads can perform all send and receive
operations concurrently, and then go to sleep. These threads wake up periodically to check if their
send and receive operations have finished. Thus, for the most part, send/receive threads are on
sleep and yield the CPUs to the worker threads to perform compute-intensive join operations.

Remote Memory Access (RMA) allows access to remote memory. By using the feature, a coordi-
nator in WSSJ-DM nodes can show the node’s status in its memory window. It can tell others if
current node: 1) has spatial join tasks and the number of tasks, or 2) has no tasks, or 3) is hand
shaking with another node. A coordinator can also write a request to another coordinator’s window
based on the information on that window, and wait for instructions for moving tasks and associated
geometry data.

3.8 Theoretical Analysis
We analyze the theoretical performance of WSSJ-DM in this subsection. The benefit to be gained
by WSSJ-DM depends on the computational complexity of spatial join operations because there is
a tradeoff between doing work locally vs sending the work to a remote node. For instance, spatial
overlay join is more compute-intensive than overlap-test based join. This difference will impact the
potential speedup made possible by work stealing.
A model is developed here to study the impact of work stealing by remote compute nodes on

overall execution time. Even though multiple processes are active in parallel join processing in
WSSJ-DM (some in stealing mode and others in victimmode), our model considers one such extreme
scenario, to show the scalability bottlenecks because of overheads in work stealing.

Let us assume, among 𝑛 nodes, only 𝑁𝑜𝑑𝑒1 has tasks which require a total computation denoted
by 𝑉 and the other 𝑛 − 1 nodes have no tasks. We denote the local processing rate of 𝑁𝑜𝑑𝑒𝑖 by 𝑓𝑖
which means number of computations executed per second corresponding to local tasks.

WSSJ-DM allows a task originally belonging to a source node S to be executed by a remote node
for load balancing. This leads to the notion of remote processing rate for stolen tasks. We denote
the remote processing rate of 𝑖th node by 𝑓𝑖𝑆 to finish tasks that belongs to source node 𝑁𝑜𝑑𝑒𝑆 .
For instance, 𝑓𝑖1 means remote processing rate of 𝑖th node for tasks belonging to 𝑁𝑜𝑑𝑒1. Remote
processing rate is bounded by local processing rate. This is because of serialization, communication
and coordination overheads over the network.

In WSSJ-DM, multiple compute nodes can be leveraged in parallel, so aggregate processing rate
increases by using more compute nodes upto a limit. For instance, when 𝑁𝑜𝑑𝑒1 sends tasks to a new
node 𝑁𝑜𝑑𝑒𝑖 , the aggregate processing rate of 𝑁𝑜𝑑𝑒1 and 𝑁𝑜𝑑𝑒𝑖 is 𝑓1 + 𝑓𝑖1, minus the processing rate
penalty 𝛾 due to inefficiency of remote processing. 𝛾 is based on the average size of tasks, buffering
of geometries, parsing speed, and the network bandwidth. 𝛾 denotes per node penalty. 𝛾 increases
with more idle nodes requesting 𝑁𝑜𝑑𝑒1 for tasks. Formula 1 models the execution time of WSSJ-DM
on tasks with computational cost denoted by 𝑉 before 𝑁𝑜𝑑𝑒1 reaches its limit of communicating
tasks. Time is computed by dividing number of computations by processing rate.

𝑇 =
𝑉

𝑓1 + (
∑𝑛

2 𝑓𝑖1) − (𝑛 − 1) ∗ 𝛾
(1)
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To explain Formula 1, Figure 2 shows the execution time on compute cluster with multiple CPUs.
We assume 𝛾 is fixed here to 1. We assume: 𝑓1 = 100, all 𝑓𝑖1 = 𝑓1/3. The range of 𝑉 is [1000, 10000].
The range of 𝑛 is [1, 10]. We can see that for spatial join with larger computational cost (increasing
𝑉 ), processing time increases. For a given 𝑉 , the reduction in execution time by using additional
CPUs is more significant for spatial join with higher 𝑉 . For lower 𝑉 , the benefit is less. WSSJ-DM
will be slowed down by using more nodes after reaching its bottleneck.

Fig. 2. Theoretical performance modeling of WSSJ-DM before reaching bottleneck.

Formula 1 considers that all idle processors steal tasks from a single node. Formula 2 generalizes
the formula to include a subset of work stealing nodes to model the performance of WSSJ-DM in
which 𝑁𝑜𝑑𝑒1 reaches its limit of sending tasks to𝑚 nodes, where𝑚 can be fixed and 𝑛 > 𝑚.

𝑇 =
𝑉

𝑓1 + (
∑𝑚

2 𝑓𝑖1) − (𝑛 − 1) ∗ 𝛾
(2)

4 EXPERIMENTAL RESULTS
All of our experiments used five real world datasets: cemetery, sports, lakes, parks, and roads, which
are taken from SpatialHadoop website5. The datasets are stored in Well Known Text (WKT) format
and the characteristics of these datasets are shown in Table 1.

Name Type #Geometries File size

cemetery Polygons 193 K 56 MB
sports Polygons 1.8 M 590 MB
lakes Polygons 8.4 M 9 GB
parks Polygons 10 M 9.3 GB
Roads Polylines 72 M 24 GB

Table 1. Attributes of the datasets

5http://spatialhadoop.cs.umn.edu/datasets.html
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All of the experiments are done on aHPC cluster named Bebop6 at ArgonneNational Laboratory. A
regular node on Bebop has two Intel Xeon E5-2695v4 (36 cores per node), and 128GB DDR4 memory.
We used GCC 8.2.0, C++ 17, Intel MPI 3.1, and GEOS7 3.9.1 in all of the following experiments.

For comparison, we used implementations based on Asynchronous Dynamic Load Balancing
(ADLB) [13], Round Robin scheduling, and shared queue design. Shared queue design was used
in SPINOJA [19]. ADLB is a scheduling strategy for dynamic load balancing. This library uses
message passing interface, so it can use multiple CPUs in an HPC cluster. Using ADLB, tasks are
added to the run-time task data structure using put operation. Using get operations, idle workers
can access tasks. ADLB programming model handles the load balancing under the hood. In our
ADLB implementation, some servers are in charge of generating and populating tasks for future
processing and tasks are shared among the servers.
The idea of using single-master multiple-workers has been widely used in shared memory

solutions, such as SPINOJA and MPI-GIS [2]. SPINOJA is only designed for shared memory. We did
not have access to SPINOJA code, so we implemented a shared queue based spatial join system. We
call this system SQSJ. SQSJ is a parallel spatial join system where candidate tasks are stored in a
shared queue for concurrent access by available threads. Our shared queue design was motivated
by SPINOJA. Compared to SQSJ, WSSJ uses multiple queues per compute node. To provide a fair
comparison, we extended shared queue design to distributed memory using the same distributed
framework of WSSJ-DM. We refer to the distributed memory version of SQSJ as SQSJ-DM.
Round Robin scheduling is a widely used technique where each core/node takes parts of parti-

tioned 𝑅 and 𝑆 in a cyclic manner, and the cores/nodes finish its work independently [16, 17, 22].
Dense areas get distributed among processors due to Round Robin assignment. Because of static
partitioning, the overheads are minimal in this scheduling strategy.

In the following experiments, the value of𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑡𝑎𝑠𝑘 is set to 20. The number of send/receive
threads is set to 5 and the number of tasks per send/receive is set to 100.

4.1 Impact of NUMA Policies on WSSJ
Based on Section 3.2, we designed comparison experiments among different NUMAmemory policies
on WSSJ. The pair of datasets being used is Sports and Cemetery, which was partitioned using
Quadtree into 8192 grid cells. The reason to use Sports and Cemetery is that both datasets are small
and most of the geometries are small in these datasets. ST_Intersects is one of the lightest spatial
join operations.
In the experiments, we controlled the sizes of 𝑅 and 𝑆 by duplicating the original datasets. The

duplication coefficient 𝐷 means that 𝑅 and 𝑆 contain 𝑛 copies of Sports and Cemetery respectively.
The regular nodes on Bebops only have two NUMA nodes, 0 and 1. The policies settings are:

I. MPOL_INTERLEAVE, node 0 and 1; II. MPOL_BIND, node 0; III. MPOL_PREFERRED, node 0; IV.
MPOL_DEFAULT. In all of the tests, threads were evenly distributed on two NUMA nodes. When
multiple threads are launched, the core affinity of threads is managed by the OS.

The results are shown in Figure 3. We can see that different policies do not have much difference
in spatial join execution time with 4 threads in Figure 3a. With more threads, in Figure 3b, it takes
longer using MPOL_DEFAULT than the other three policies. As mentioned earlier, more threads
may lead to higher memory request congestion between the NUMA domains. In our experiments,
this performance difference due to memory policy is noticeable for datasets with small geometries.
For datasets with large geometries, the difference is very small.

6https://www.lcrc.anl.gov/systems/resources/bebop/
7https://trac.osgeo.org/geos
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Local allocation policy is the default memory policy. This policy can not necessarily guarantee
that all accesses will be local to the NUMA node because it is possible that a page is allocated by
one thread, but can be accessed by other work stealing threads. The first thread to touch/write to a
memory page will determine its location in terms of the NUMA node. So, first touch policy may
violate local NUMA node allocation when a geometry is stolen by a thread on remote NUMA node.
In this case, a thread allocated space for a geometry, however, it was accessed (written) by a thread
on a remote NUMA node. The default policy gets negatively impacted by resource contention when
compared to other policies.

Interleave memory placement works well in WSSJ because thread access pattern is irregular and
random due to work stealing among threads. Interleave policy benefits from the load-balancing of
memory access requests across available NUMA nodes, even though memory access time is not
uniform.

Because MPOL_BIND only use one NUMA node, it runs out of memory at D=40 while others run
out of memory at D=80. In most cases, using MPOL_PREFERRED shows a similar performance with
using MPOL_INTERLEAVE.

10 20 30 40 50 60 70

50

100

150

OOM

𝐷

Ti
m
e(
Se
co
nd

s)

MPOL_DEFAULT
MPOL_INTERLEAVE

MPOL_BIND
MPOL_PREFERRED

(a) 4 Threads

10 20 30 40 50 60 70

20

40

60

80

100

OOM

𝐷

Ti
m
e(
Se
co
nd

s)

MPOL_DEFAULT
MPOL_INTERLEAVE

MPOL_BIND
MPOL_PREFERRED

(b) 36 Threads

Fig. 3. Execution time comparison of different NUMA policies in WSSJ for performing ST_Intersects on Sports
and Cemetery. OOM is out of memory for BIND memory policy.

4.2 Tasks Composition of WSSJ
There are two types of tasks for a WSSJ worker thread: owned tasks and stolen tasks. Owned tasks
are tasks being assigned to a worker in the beginning. Stolen tasks are tasks stolen from the other
workers.

We designed experiments to show the tasks composition and execution time breakdown for
owned and stolen tasks using WSSJ in Figure 4. We used 36 WSSJ workers (one worker for each
core) to perform ST_Intersection on Lakes and Parks which were partitioned into 8192 grid cells
using Adaptive (ADP) [22] or Uniform Partitioning. ADP is workload-aware partitioning method
which first finds all candidates from the two input layers and then partitions the candidates using
quadtree partitioning [22]. ADP method was shown to be more effective than standard quadtree
partitioning of individual layers.
From Figure 4, we can see that the tasks compositions vary in all workers. Every worker was

able to finish tasks at approximately the same time. WSSJ is not sensitive to different partitioning
approaches. Using Uniform Partitioning is even slightly faster (172s) than using ADP (174s), as it
has less data duplication (2.38%) than ADP (5.82%).

4.3 Tasks Composition of WSSJ-DM
AWSSJ-DM node can have two types of tasks: local tasks and remote tasks. Local tasks are tasks
being assigned in a Round Robin scheme to each node in the beginning. Remote tasks are tasks
received from other nodes by its coordinator.
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Fig. 4. Execution time breakdown of tasks at different WSSJ workers. Both cases used 36 workers to perform
ST_Intersection on Lakes and Parks.

We designed experiments to show the tasks composition of every WSSJ-DM node in Figure 5. We
used five WSSJ-DM nodes to perform ST_Intersection on Lakes and Parks which were partitioned
into 8192 grid cells using ADP or Uniform Partitioning.
From Figure 5, we can see that the tasks compositions vary in all nodes in both cases. In both

cases, there is one node that only works on local tasks. WSSJ-DM is able to re-balance the tasks
which enabled each node to finish at approximately the same time. We can observe that using
a more statically balanced partitioning (ADP) shows a better performance in WSSJ-DM. This is
because a task takes more time when performed remotely than locally because of overheads in
serialization, communication and coordination. A more balanced initial assignment can reduce the
total number of remote tasks. In this example, there is extreme load imbalance at Node 0 because
it only takes a fraction of second to finish local tasks. Node 4 does not need to steal tasks in this
example.

Fig. 5. Execution time breakdown of tasks at different WSSJ-DM nodes. Both cases used 5 nodes to perform
ST_Intersection on Lakes and Parks.

4.4 Comparison Experiments for WSSJ
We designed experiments to compare the performance of WSSJ, Master-Worker, ADLB, single
shared queue based spatial join (SQSJ) and Round Robin assignment using different join operations
on 𝐿𝑎𝑘𝑒𝑠 and 𝑆𝑝𝑜𝑟𝑡𝑠 which were partitioned into 8192 grid cells using ADP partitioning. Round
Robin assignment has a better load balancing using ADP partitioning compared with Quadtree or
Uniform partitioning [22].

The results are shown in Figure 6. In all cases, a single compute node was used but with different
number of cores.WSSJ shows the best performance among four implementations in all cases. In
these experiments,WSSJ has a parallel efficiency between 80% (at 36 cores) and 107% (at 4 cores)
with respect to sequential spatial join using R-tree index (as shown in Table 2).
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Fig. 6. Execution time comparison among WSSJ, ADLB, Single Queue Spatial Join (SQSJ), and Round Robin
assignment (R-R) performing spatial joins on 𝐿𝑎𝑘𝑒𝑠 and 𝑆𝑝𝑜𝑟𝑡𝑠 , which are partitioned into 8192 grid cells
using ADP partitioning.

4.5 Comparison Experiments for WSSJ-DM
We comparedWSSJ-DMwith Master-Worker, ADLB, single shared queue-based distributed memory
extension (SQSJ-DM), and Round Robin assignment using different join operations on different
pairs of spatial data in Figure 7. The experiments were using 1 to 10 nodes (36 to 360 CPU cores).
As shown in Figure 7, WSSJ-DM performs better than ADLB, SQSJ-DM, and Round Robin

assignment in most tests. WSSJ-DM performs similar with SQSJ-DM in the ST_Union test for
Lakes and Parks. For union, using a single shared queue vs multiple work stealing deques did
not make much difference. However, for intersects and intersection join, work stealing deques
had an advantage. This is because on average ST_Union tasks are more compute-intensive than
ST_Intersection and ST_Intersects using GEOS. So, degree of contention on the single shared queue
per node will be different for various spatial join operations. Execution time of WSSJ-DM and SQSJ-
DM keep decreasing with more CPU cores, while in general WSSJ-DM shows a better performance.
The ADLB and Round-Robin implementations reach their bottlenecks quickly because of load
imbalance. ADLB works very well in cases where tasks have less memory footprint. However, with
geometries, server memory usage was very high leading to performance degradation.
WSSJ-DM shows a more significant decrease in time for compute-intensive spatial join opera-

tions. In general, Union operation is computationally more expensive than Intersection. Intersection
operation is more expensive than Intersects. This is reflected in the experimental results and our
model also predicted the observed performance difference in Section 3.8.

4.6 Strong Scaling for WSSJ-DM
Wedesigned strong scaling experiments forWSSJ-DM.WSSJ-DMwas used to perform ST_Intersection
on Lakes and Parks partitioned by different methods. By using different number of nodes (36
cores/node), we show the results in Figure 8. The corresponding speedups are plotted in Figure 8b.
The results also follow our model that we presented in Section 3.8. Due to variation of load

across different regions of the input, the performance of WSSJ-DM may fluctuate with different
number of nodes. But the general trend is that WSSJ-DM can finish spatial join on Lakes and Parks
faster with more cores before reaching the bottleneck.

WSSJ-DM using ADP partitioning shows the best performance, as ADP is able to provide a better
static load balancing than Quadtree or Uniform partitioning [22], which means WSSJ-DM nodes
can spend more time on local tasks.
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Fig. 7. Execution time comparison among WSSJ-DM, ADLB, SQSJ-DM, and Round Robin assignment (R-R)
performing spatial joins on 𝐿𝑎𝑘𝑒𝑠 and 𝑃𝑎𝑟𝑘𝑠 , which are spatially partitioned into 8192 grid cells using ADP
partitioning.

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

Number of cores

Ti
m
e
(s
ec
on

ds
)

Uniform
Quad-tree
Adaptive

(a) Time (seconds)

0 200 400 600 800 1,000 1,200 1,400
0

50

100

150

200

Number of cores

Sp
ee
du

p

(b) Speedup w.r.t sequential spatial join using R-
tree index

Fig. 8. Execution time and speedup plot ofWSSJ-DMw.r.t sequential join. For comparison, ST_INTERSECTION
was used on Lakes and Parks. Input data was partitioned into 8192 grid cells using different approaches.

5 CONCLUSION
In this paper, we proposed fine-grained dynamic load balancing system. To our knowledge, we
introduced the first Work Stealing system for Spatial Join on distributed memory (WSSJ-DM). We
showed that WSSJ takes advantage of NUMA memory policies for datasets with small geometries.
We have presented experiments on various real-world datasets and evaluated the performance

between WSSJ and other parallel spatial join methods based on dynamic load balancing on shared
and distributed memory. Various experiments were conducted on WSSJ-DM. WSSJ-DM shows
performance improvement and efficient load balancing in an HPC environment with a thousand
CPU cores. The results of WSSJ-DM follow the theoretical model we presented.
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7 APPENDIX
7.1 Spatial Join using un-partitioned data
Generally, parallel spatial join implementations use spatially partitioned datasets. Partitioned
datasets are useful to reduce data skew in tasks and make it possible to process datasets larger than
available memory. On the other hand, spatial dataset partitioning requires extra time and extra
storage space. As WSSJ can share tasks among threads, it is feasible to use spatially un-partitioned
datasets (smaller than memory limit) directly.

Let each worker in WSSJ take a part of 𝑅 and a part of 𝑆 as its input. The subsets of 𝑅 and 𝑆 can be
randomly distributed, as long as the mapping relations of all subsets can be assembled back to the
same relations mapping 𝑅 to 𝑆 , as shown in Formula 3. As there is no need to consider the spatial
localities of geometries in 𝑅, this step can be done at run-time with no additional cost compared
with using partitioned datasets.

In Formula 3, 𝑅 and 𝑆 are randomly distributed into 𝑛 and𝑚 parts respectively. ⊕ stands for a
spatial join operation. We can get the same join results of 𝑅 and 𝑆 by performing join operations
on all pairs of 𝑅𝑖 and 𝑆 𝑗 .

𝑅 = 𝑅0 + 𝑅1 + ...𝑅𝑛
𝑆 = 𝑆0 + 𝑆1 + ...𝑆𝑚

𝑅 ⊕ 𝑆 =

𝑛∑︁
𝑖=0

𝑚∑︁
𝑗=0

𝑅𝑖 ⊕ 𝑆 𝑗
(3)

WSSJ using un-partitioned datasets takes slightly longer to finish when compared to partitioned
datasets. The benefit of using un-partitioned data is that no data pre-processing is required, which
needs extra computing resources and storage space.
To demonstrate that our system performs well with un-partitioned datasets as well, we used

Sequential Spatial Join with Index, WSSJ, and WSSJ-DM to perform ST_Intersects, ST_Intersection,
and ST_Union on several pairs of spatially un-partitioned datasets, and the results are shown in
Table 2. WSSJ was using 1 node (36 cores) and WSSJ-DM was using 25 nodes (900 cores).

We can see that bothWSSJ andWSSJ-DM can be helpful in saving time compared with sequential
cases, especially with large datasets. For instance, performing ST_Union on Roads and Lakes took
sequential join 53.45 hours, while WSSJ finished in 1.89 hours and WSSJ-DM finished in 7.26
minutes. ST_Union and ST_Intersection are slow in GEOS library because these operations do
not internally invoke quadtree indexing for a geometry overlapping with multiple geometries.
ST_Intersects is optimized using PreparedGeometry class provided by GEOS library.

7.2 Duplicate avoidance for spatially partitioned data
Spatial partitioning of geometries in a single map layer leads to duplication of geometry across cell
boundaries. This can result in duplicate (redundant) spatial join output pairs while doing parallel
processing of spatial join across cells. We refer to this method as a single layer partitioning based
spatial join. We do not use single layer partitioning based method. So, the partitioning scheme
used in this work is different. The spatial partitioning method has been described in our prior work
(ParADP [22]) on workload-aware spatial join partitioning. We refer to this as output-sensitive
duplication avoidance method where we partition the intermediate output of filter-and-refine based
spatial join. In short, ParADP only partitions the center points corresponding to output candidate
pairs (overlapping MBRs) generated by R-tree indexing and querying of MBRs of geometries (filter
phase). Our technique is an extension of reference point method for duplicate avoidance. The
duplication avoidance happens before stealing in memory. Please refer to [22] for more details.
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Dataset R⊕S Join OP Sequential WSSJ WSSJ-DM

Sports⊕Cemetery

Intersects

3.39 0.59 0.14
Parks⊕Sports 165.76 10.80 1.78
Lakes⊕Sports 344.71 16.47 2.90
Lakes⊕Parks 2,401.74 119.25 20.95
Roads⊕Lakes 600.60 118.97 20.32
Sports⊕Cemetery

Intersection

3.92 0.61 0.14
Parks⊕Sports 339.32 16.14 2.89
Lakes⊕Sports 389.61 17.546 3.07
Lakes⊕Parks 4,912.32 196.24 29.92
Roads⊕Lakes 14,391.57 520.10 35.29
Sports⊕Cemetery

Union

4.38 0.68 0.13
Parks⊕Sports 1,908.46 71.82 8.60
Lakes⊕Sports 4,550.04 179.66 15.49
Lakes⊕Parks 43,236.40 1,834.39 146.25
Roads⊕Lakes 192,450.86 6,820.24 435.41

Table 2. Execution time (in sec) for Sequential Indexed Spatial Join, WSSJ (36 cores), WSSJ-DM (25 compute
nodes) performing spatial join on different pairs of un-partitioned datasets.

7.3 Handling other spatial join algorithms
In this paper, we showed work stealing based spatial join on partitioned and unpartitioned data
based on filter and refine phases. Filter and refine is implemented using indexed nested-loop spatial
join algorithm. However, the proposed work stealing technique can be used with other spatial join
algorithms as well. For instance, when spatial join is implemented using plane sweep approach,
then the intermediate output produced by plane sweep of MBRs of input geometries can be stored
in the work stealing queue. Once the tasks are stored in queues, the system will start load balancing.
Similarly, when spatial join is implemented by hierarchical traversal (synchronized traversals) of
R-trees, the tree nodes with overlapping ranges will produce intermediate output which can be
stored in work stealing queues for further refinement processing. These alternative spatial join
implementations can be part of future work.

7.4 Fine-grained load balancing
Most of the work on spatial join considers a grid cell generated from spatial partitioning as a unit
task for assignment to a CPU thread and for the purpose of load balancing. A grid cell can have
an arbitrary number of geometries contained in it. This is a coarse-grained task in our view. We
consider a geometry from a dataset 𝑅 overlapping with a small number (like 10) of geometries from
𝑆 as a unit task for assignment to a CPU thread and for the purpose of work stealing. This is a
fine-grained task for the purpose of parallelization and load balancing in our view.
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7.5 Remote Memory Access (RMA) and Non-blocking Communication
We have used one-sided (put/get) Message Passing Interface (MPI) functions for task coordination
between any two processes. One-sided programming model is referred to as Remote Memory
Access (RMA) in MPI. It is suitable for expressing irregular communication patterns that arise
while coordinating tasks among processes in distributed memory [9]. One-side communication is
used for exchanging control messages. However, non-blocking send/receive functions are used for
actual data transfers because of programming simplicity.

RMA uses the concept of memory window which is the memory in a process that can be accessed
by another remote process through the use of RMA put/get functions.
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