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Abstract—Polygonal geometric operations are fundamental in
domains such as Computer Graphics, Computer-Aided Design,
and Geographic Information Systems. Handling degenerate cases
in such operations is important when real-world spatial data
are used. The popular Greiner-Hormann (GH) clipping algo-
rithm does not handle such cases properly without perturb-
ing vertices leading to inaccuracies and ambiguities. In this
work, we parallelize the O(n2)-time general polygon clipping
algorithm by Foster et al., which can handle degenerate cases
without perturbation. Our CREW PRAM algorithm can perform
clipping in O(logn) time using n + k number of processors
with simple polygons, where n is the number of input edges
and k is the number of edge intersections. For efficient GPU
implementation, we employ three effective filters which have
not been used in prior work on polygon clipping: 1) Common-
minimum-bounding-rectangle filter, 2) Count-based filter, and
3) Line-segment-minimum-bounding-rectangle filter. They dras-
tically reduce O(n2) candidate edge pairs comparisons by 80%-
99%, leading to significantly faster parallel execution. In our
experiments, C++ CUDA-based implementation yields up to 40X
speedup over real-world datasets, processing two polygons with
a total of 174K vertices on an Nvidia Quadro RTX 5000 GPU
compared to the sequential Foster’s algorithm running on an
Intel Xeon Silver 4210R CPU.

Index Terms—polygon clipping, degenerate intersections,
Greiner-Hormann algorithm, Foster et al. algorithm, GPU al-
gorithm, PRAM algorithm

I. INTRODUCTION

Polygons are used to represent boundaries of regions or
objects in Geographic Information Systems (GIS) and Com-
puter Graphics domains. Geometric set operations such as
intersection, union, and set difference on very large polygonal
datasets are common and important in both of these domains.
A polygon is a 2-dimensional closed geometric region con-
structed with three or more straight line segments which are
connected at their starting and ending points. Line segments
are referred to as edges. The starting and ending points of those
line segments are referred to as vertices. There are different
types of polygons: 1) simple polygon where its edges do
not self-intersect, 2) self -intersection polygon where some
edges self-intersect, 3) convex polygon where all interior
angles are no more than 180◦, and 4) concave polygon where
some interior angles are greater than 180◦. General polygon
clipping algorithms can handle all these types of polygons.

In general, polygon clipping refers to the calculation of
P∩Q between two polygons P and Q. But clipping algorithms

can be modified to compute other geometric set operations
such as union and set difference [1]. Polygon intersection
involves calculating an output polygon which is a common
region between the input polygons (Fig. 1). The output inter-
section polygon can also be a collection of polygons depending
on the inputs (Fig. 2). A typical approach for this calculation
involves checking the intersection between each edge pair, as
in the Greiner-Hormann (GH) algorithm. This task is compute-
intensive and can take several minutes for a single pair of
polygons. Real-world datasets involve two layers of polygons,
which runs over hours. We limit the scope of this paper to
handling a pair of polygons.

Degenerate Intersections: A degenerate intersection in poly-
gon clipping consists of having at least one vertex which lies
on the edge of the other polygon or sharing a vertex between
input polygons. These intersections can be found with any type
of polygon. Consider Fig. 1a with polygon P and polygon Q.
Vertex P2 of P lies on edge (Q1, Q2) of Q and vertex P4

of P lies on edge (Q3, Q4) of Q. Fig. 1b and 1c show two
possible approximate clipping results for P and Q based on the
perturbing direction. But the correct intersecting area as shown
in Fig. 1a is bounded by [I1, P2, I2, I3, P4, P5, I4] vertices.
The additional region included or missing in the intersection
region with the perturbing technique vastly affects the accuracy
of GIS polygonal applications. Fig. 2 has additional examples
of degenerate cases including overlaps.

Fig. 1. (a): Vertex P2 and P4 lie on edges of Q, hence they are degenerate
vertices. (b), (c): Two possible clipped output regions produced by GH
algorithm depending on the perturbing direction. Gray color denotes clipped
output

Vatti’s algorithm and GH algorithm are two well-known
algorithms for general polygon clipping [2], [3]. They start
the clipping process by discovering the intersection vertices,
inserting them into the input polygons, labeling them, and
finally traversing them to generate the output polygon(s) using
the labels generated previously. Given two polygons with n
number of vertices in total, the GH algorithm has a time
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complexity of O(n2). Vatti’s algorithm is output-sensitive
since the execution time depends on the number of output
edge intersections (k). Vatti’s algorithm uses O(n log n) time
sweep-line algorithm and the GH algorithm uses brute force
O(n2)-time intersection finding by testing all edge pairs from
the input polygons [4], [5]. However, in the case of self-
intersecting polygons, Vatti’s algorithm needs self-intersection
points to be reported from each input polygon apriori. This
overhead is not present in the GH algorithm, which can
build output polygons without computing the self-intersections
explicitly. For this reason, the GH algorithm can outperform
Vatti’s algorithm for self-intersecting polygons [2]. The GH
algorithm is unable to properly handle degenerate cases with-
out using perturbing methods, which can lead to incorrect and
ambiguous results as shown in 1b and 1c. Degenerate cases
are common in real-world polygonal datasets and especially
GIS applications can suffer from inaccurate results due to
perturbing methods [1].

Foster et al. [1] proposed an extension to the GH algorithm,
introducing more sophisticated labeling to handle degenerate
cases properly. It runs in O(n2) time, where time is domi-
nated by the intersection calculation phase similar to the GH
algorithm.

In this work, we chose Foster’s algorithm for developing
a GPU clipping implementation because it is more amenable
to GPU parallelization when compared to plane-sweep-based
Vatti’s algorithm [4], [5]. The current state-of-the-art parallel
GH algorithm runs in O(log n) time using O(n+ k) proces-
sors, where k is the number of intersections, on the CREW
(Concurrent Read Exclusive Write) PRAM (Parallel Random
Access Memory) model for simple polygons without properly
handling degenerate cases [5].

To optimize working space to store the intersections which
in practice are a small fraction of the worst-case O(n2), we
break down our GPU intersection point calculation step into
first finding the counts of intersections for each edge, then
allocating space, storing the intersections, and finally sort the
appended intersections in each edge. We introduce three filters
in our practical implementation, eliminating the bulk of line
segment intersection computations.

In practice, there is only a small percentage of intersecting
edges for a given pair of polygons. A key challenge is
to quickly find those before invoking a sufficiently-involved
edge-to-edge intersection algorithm which has to deal with
multiple scenarios including degenerate cases. The Minimum
Bounding Rectangle (MBR) of a two-dimensional figure is
the smallest rectangle encapsulating it, with the sides of the
rectangle parallel to either the x or y axis (Fig. 8 and Fig. 9).
The Common Minimum Bounding Rectangle (CMBR) is the
intersection of two MBRs (Fig. 8). Our CMBR Filter (CMF)
is a linear time filter that can reduce the quadratic workload
in the intersection calculation phase by a good fraction by
eliminating those edges which do not intersect with the CMBR
of input polygons (Fig. 8). Such edges can provably not
contribute to any intersections between the two polygons.
Aghajarian et al. employed the CMBR idea for spatial join

problem [6]. Puri et al.’s GPU polygon clipping algorithm [5]
does not leverage any filters.

Our Line Segment MBR Filter (LSMF) is a simple spatial
test to determine whether the MBRs of the two given line
segments overlap or not (Fig. 9c). The MBR overlap test is
computationally much faster than the elaborated line segment
intersection algorithm. Therefore, this filter can eliminate a
large number of non-intersecting edge pairs efficiently. With
intersection counts available, our Count-based Filter (CF)
simply eliminates those edges which are determined to have
no intersections in the storing step. In our experiments, these
filters collectively improved speedup by up to 9.5 times.

The main contributions of this work are as follows:
• A CREW PRAM polygon clipping algorithm that handles

all degenerate cases and runs in O(log n) time for poly-
gons without self-intersections using O(n+k) number of
processors, where n is the total number of edges in the
input polygons, and k is the number of edge intersections.

• A CUDA C++ implementation of parallel Foster’s algo-
rithm which can handle degenerate cases.

• Our GPU algorithm outperforms the GPU polygon clip-
ping presented in [5] with the help of reduced workload
using MBR based filters. These filters drastically elimi-
nate O(n2) candidate edge pairs by 80%-99%, leading
to significantly faster parallel execution.

• Our GPU algorithm yields up to 40 times speedup on real-
world datasets by processing two polygons with 174K
vertices in total on an Nvidia Quadro RTX 5000 GPU,
compared to the sequential Foster’s clipping algorithm [1]
executing on an Intel Xeon Silver 4210R CPU.

The rest of the paper is organized as follows. Section II
discusses the background of polygon clipping algorithms and
their limitations. Section III presents PRAM Foster’s polygon
clipping algorithm and its time complexity analysis. Section
IV presents our GPU polygon clipping algorithm. Section
V presents an experimental analysis of the GPU algorithm.
Section VI presents our conclusions and future work.

II. BACKGROUND

A. Polygon Clipping

There are well-known polygon clipping sequential and
parallel algorithms that are used in Computer Graphics and
GIS domains. Maillot’s algorithm only clips using a rectangle,
but not against polygons [7]. Sutherland-Hodgman, Weiler-
Atherton, Liang-Barsky, Vatti’s, and Greiner-Hormann algo-
rithms can clip a concave polygon against another concave
polygon [2], [3], [8]–[10]. However, Vatti’s and Greiner-
Hormann algorithms stand out since they can clip arbitrary
polygons [2], [3].

Vatti’s clipping uses a sweep line approach and is sensitive
to output size. Apart from Vatti’s algorithm, plane-sweep based
sequential polygon clipping algorithms are also discussed
in [11]–[13]. The GH algorithm has a simpler way to represent
polygons than Vatti’s and its time complexity is not output
sensitive. However, the GH algorithm is not able to handle
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degenerate cases, but Vatti’s is able to do so. Perturbation has
been used to solve this limitation of the GH algorithm, but
it can produce ambiguous results based on the perturbation
direction. Foster et al. [1] present a solution to overcome this
limitation in the GH algorithm with the use of more advanced
labeling and guarantees unique results.

There are parallel clipping algorithms based on [8], [10]
implemented on classic parallel architectures [14]. GPU ac-
celerated plane-sweep based clipping algorithms are harder to
implement since they use complex tree-based data structures
such as parallel segment tree and hierarchical plane-sweep
tree (array of trees) [15]. Naı̈ve O(n2) algorithms and grid
partitioning have been used in practical GPU overlay algo-
rithms discussed in [15], [16]. There is a multicore Vatti’s
algorithm implementation presented in [4]. [17] discusses a
plane-sweep based practical GPU polygon clipping algorithm
without using self-balancing tree structures. Parallel many-
core and multicore implementations of the GH algorithm are
presented in [5]. Both GPU clipping algorithms discussed
in [5], [15] are unable to handle degenerate cases.

Parallel polygon clipping algorithm research lacks an algo-
rithm that can handle complex situations such as degenerate
cases taking advantage of faster GPUs. In the current literature,
the existing systems are either single node sequential algo-
rithms [1], heterogeneous algorithms which can not handle
degenerate cases [5], [15] or compute cluster-based (CPU
only) using MapReduce/MPI that do not harness GPUs [4],
[18].

Fig. 2. Polygons P and Q intersection. P1 Q3, Q4, Q5, Q6, and Q7 are
degenerate vertices. The resulting polygon consists of 2 polygons; [P1, I1, I2]
and [I4, I5, I6, P6, I3, Q2]. I4, I5, and I6 are X-intersections.

B. Limitations of the GH Algorithm

GH polygon clipping algorithm is simple and works with
all types of polygons. But, the GH algorithm can produce
incorrect results when handling degenerate cases. This is due
to the even-odd rule violation in the intersection labeling phase
of the GH algorithm when handling degenerate cases [2].
The GH algorithm can handle degenerate cases by perturbing
such intersections. But this leads to inaccurate and ambiguous
results depending on the direction of the perturbation. Foster
et al. [1] address this issue by introducing additional labels.

C. Foster’s Polygon Clipping Algorithm

Similar to the GH algorithm, Foster’s algorithm uses two
doubly-linked lists to represent the input polygons. Each vertex
of a polygon has links to previous, next, and neighbor vertices.
Neighbor refers to the same intersection vertex saved in the

two input polygons (Fig. 2 and Fig. 3). Intersection vertices
and source vertices can be identified using the intersection
and source vertex properties.

The algorithm has three major steps, 1) intersection point
calculation, 2) intersection vertex labeling, and 3) result trac-
ing. In Foster’s algorithm, the intersection point calculation
phase remains the same as in the GH algorithm. It employs all-
to-all edge intersection computation to find intersecting edge
pairs and the intersection vertices. Foster’s algorithm adds
more advanced labels to the intersection vertices apart from
entry/exit labels used in the GH algorithm (Fig. 3 depicts
these vertices using EN/EX labels for the polygons in Fig. 2).
New labels help to handle degenerate cases properly.

1) Intersection point calculation: This phase aims to iden-
tify the intersecting edge pairs and save the intersection
vertices in the correct location of the two input polygons.
Degenerate intersections and overlaps reuse the source vertices
and mark them as intersections (e.g., I3 and Q3, I2 and Q4,
and P1 and Q6 in Fig. 2 and Fig. 3). The Intersection vertices
in the input polygons are linked as neighbors (for example,
I1 and Q5 in Fig. 2). Intersection classification is further
discussed in our PRAM algorithm in the next section.

2) Intersection vertex labeling: The GH algorithm only
uses the entry/exit label (based on the inside/outside status
of polygonal edges with respect to another polygon), where
an entry intersection is always followed by an exit vertex
and vice versa. But, this hypothesis is only valid with non-
degenerate cases. The degenerate cases need more information
to produce correct results. The intersection vertex labeling
phase in Foster’s algorithm consists of multiple stages involv-
ing different classifications to identify the intersecting label.
The three stages of labeling are described in the next section
along with our PRAM algorithm. These labels help to correctly
classify the entry/exit label.

3) Trace result: The result tracing starts from a crossing
intersection and traverses the polygons. It starts from one
polygon and can switch between considering the exit/entry
label and the geometric set operation.

Fig. 2 shows an example polygon P and Q clipping
using the intersection operation. The list of degenerate in-
tersections in this example is P1, Q3, Q4, Q5, Q6, and Q7.
Foster’s algorithm prepares the data structure in Fig. 3 at
the end of the intersection point calculation phase. The data
structure consists of two doubly-linked lists, where the source
vertices of polygon P and Q are saved with non-degenerate
intersections (denoted with I in Fig. 3). The arrows denote the
next and previous links. Dotted lines denote neighbor links.
Assume the result trace starts from I1 of P . The tracing order
is Q4 of Q, I7 of P, and P1. I7 is removed in the final
result since (I2, I7) and (I7, Q6) edges overlap with (P6, P1)
edge. For the next clipping region, assume trace starting from
I4 of P . The tracing order is I5 of Q, I6, P6 of P, I3, and
Q2 of Q. The traversal change between P and Q is based
on the geometric set operation (intersection in this case).
Neighbor links are used to switch between polygon vertex
lists.
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Fig. 3. Foster’s clipping algorithm uses doubly-linked lists to represent polygons including intersection vertices. Non-degenerate intersections are added as
new vertices in the relevant edge in the sorted order by α. Degenerate vertices are not duplicated. But they are linked with a new vertex or a degenerate
vertex depending on the case. This intersection graph is a visual representation of the vertices of polygons in Fig. 2. The arrows denote the next and previous
property between vertices. Dotted lines denote neighbor links between the same intersection vertex, but located in different polygons. The entry/exit labels
are shown for crossing and delayed crossing (orange color node) intersections. The resulting output consists of 2 polygons; [I1(Q5), I2(Q4), P1(Q6)]
and [I4, I5, I6, P6, I3, Q2]

III. PRAM FOSTER’S CLIPPING ALGORITHM

A. Terminology
We use the following terminology to explain polygon

clipping and our parallel algorithms. The input consists of
two polygons P and Q, where set of edges of P are
EP = {eP1 , eP2 , · · · , ePi , · · · , ePn } and set of edges of Q are
EQ = {eQ1 , e

Q
2 , · · · , e

Q
i , · · · , eQm}. Set of vertices of P are

V P = {vP1 , vP2 , · · · , vPi , · · · , vPn } and set of vertices of Q are
V Q = {vQ1 , vQ2 , · · · , vQi , · · · , vQm}. n ∈ N, n ≥ 3, vPi ∈ R2,
and ePi =(vPi , v

P
i+1), i ∈ {1, · · · , n−1}, ePn = (vPn , v

P
1 ). The

parent vertex of an edge ePi is the first vertex of that edge,
vPi . Similarly, m, vQi , eQi , i, and eQn are defined in terms of
polygon Q.

• Intersection vertex: vCi = (xC
i , y

C
i )

• Alpha value (αP
i ): Relative position of vCi in ePi [1]

• Beta value (βQ
i ): Relative position of vCi in eQi [1]

• Number of intersections: k

B. PRAM Polygon Clipping Algorithm
Algorithm 1 sketches our PRAM algorithm with three major

steps: intersection point calculation, intersection vertex label-
ing, and result tracing. Sequential intersection point calculation
is a simple but costly operation. Intersection point calculation
only needs the vertex data of the contributing two edges
which are locally available to each thread. Since the calculated
intersections are appended in parallel, edge-wise sorting is
necessary to maintain the order of intersections as they appear
on each edge.

Intersections are of three types: X-intersection, T-
intersection (Fig. 4a, Fig. 4b), and V-intersection (Fig. 4c).
Similarly, overlapping edge intersections are of three types:
X-overlap (Fig. 5a), T-overlap (Fig. 5b, Fig. 5c), and V-
overlap (Fig. 5d). These labels depend on α and β values [1].
The α and β values (between 0 and 1) are used to denote
the relative position of an intersection point within the two
endpoints of the two intersecting line segments that generated
the intersection point. Since α and β values are computed for
each pair of line segment intersections, these aforementioned
intersections and overlap type information can be indepen-
dently computed using local information and therefore can

be parallelized for all intersections. This is computed in the
first step of polygon clipping Algorithm 1 when line segment
intersections are computed. Local sorting of intersection points
within an edge using α and β values is carried out for all edges.
The data structure for polygonal vertices is implemented using
an array representation of a linked list. The test for α and β
values for labeling are the same as in Foster’s algorithm. In
Step 1, prefix sum is used to insert new intersection vertices
and pack the intersections with their α/β values consecutively,
assuming a 2D matrix for storage of intersection information.

Fig. 4. Degenerate intersection types [1]. T-intersections (a, b) and V-
intersection (c).

Intersection vertex labeling consists of three major stages, as
shown in Algorithm 1. In the first stage, the non-overlapping
intersections are labeled Crossing (Fig. 1: I1, I2, I3, and
I4) or Bouncing (Fig. 1: P2 and P4) depending on the
relative location of the contributed edge from the polygon
Q. Each intersection vertex is linked with the before and
after edge from both polygons. Overlapping intersections are
labeled Left|On, Right|On, On|On, On|Left, or On|Right
depending on the relative turn of contributed edge from
the polygon P (see examples in Fig. 6). We calculate the
signed areas of triangles whose vertices are chosen from three
consecutive vertices p1, p2, p3, and a test point q and use these
areas to determine a left or right turn. Therefore, crossing and
bouncing labels can be independently in parallel because the
area calculation based on neighborhood information is locally
available.

In the second stage (Step 2.b), the intersection
chains with adjacent overlapping edges are labeled. An
intersection chain starts with a turn label in x|On format
and ends with On|y, where x, y ∈ {right, left}. Intersections
within the chain are labeled as On|On. If neighbors of an
intersection vertex are also intersections and labeled with a
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Fig. 5. Degenerate overlap types [1]. X-overlap (a), T-overlap (b, c), and
V-overlap (d).

Fig. 6. Overlapping edges (i1, i2, .. , i6) from P and Q are shown as an
intersection chain. i) Delayed bouncing intersection chain: leftmost dotted
line is labeled Left|On. The rightmost dotted line is labeled On|Left. ii)
Delayed crossing intersection chain: leftmost dotted line is labeled Left|On.
The rightmost dotted line is labeled On|Right. The vertices i1 to i6 are
labeled On|On.

turn label of On|On, they are considered within a chain. An
intersection with x|On label is marked as a starting vertex of
an intersection chain if the next vertex is labeled On|On. An
intersection is at the end of an intersection chain if its label
is On|y and the label of the previous vertex is On|On.

Handling delayed intersection chains: In order to determine
the inside/outside status of an overlapping polygonal edge with
respect to another polygon, intersection chains are classified
as delayed bouncing and delayed crossing. An example of
an intersection chain is shown in Fig. 6. We save starting (i1)
and ending (i6) vertices in two arrays in the order they appear
in the polygons. The corresponding locations in the arrays
provide the start and end of a particular intersection chain,
which are labeled delayed crossing or delayed bouncing
depending on x and y names. Intersection chain labeling
computation can be reduced to segmented prefix sum [19].
Segmented prefix sum is a variation of prefix sum where
the input is an array of labeled intersection vertices with an
auxiliary array of boolean values to denote segment boundaries
on which prefix sum should be performed. Intersection vertices
with x|On and On|y are marked with True value and those
with On|On labels are marked with False value to denote
segment boundaries. The operator for the prefix sum is ‘+’
which is used to calculate the start and end index of an
intersection chain.

In the third stage (Step 2.c), the crossing intersections are
labeled. The entry/exit label is computed using the point-
in-polygon test. Following the rules of Foster’s algorithm,
endpoints of a delayed bouncing are marked with entry/exit
labels in the same way as regular crossing intersection ver-
tices. The endpoints of a delayed crossing are marked either
both as entry or both as exit points [1]. The remaining steps
of entry/exit labeling in parallel are similar to the method
described in [5]. Finally in Step 3, the application of the Link
Nullification rule from [5] removes the non-contributing parts
of the input polygons. The remaining parts in the intersection
graph between entry vertex and exit vertex are contributing.
The contributing parts form the output polygon(s).

Algorithm 1 - PRAM Foster’s Polygon Clipping
Input: P (V P ), Q(V Q). V P and V Q are vertex arrays. EP

and EQ are edge arrays. |EP |=n, |EQ|=m, and n ≥ m

1: Intersection point calculation
a: Calculate pairwise edge intersections from Polygon P
and Q and store them in array V C , vCl =ePi ∩ e

Q
j where i

and j denote edge index for P and Q polygons.
b: For each intersection point, using coordinates from ePi
and eQj , calculate αP and βQ values. Using αP and βQ

values, classify the intersection type and overlap type.
c: Insert (vCl , α

P ) in V P following vPi and (vCl , β
Q) in

V Q following vQj .
d: Sort the array of non-degenerate intersections in each
edge ePi and eQj based on αP and βQ values.

2: Intersection vertex labeling
a: Each vCi is given a label based on first stage labeling
rules.
b: Second stage labeling to classify intersection chains.
c: Third stage labeling based on entry/exit labels for
crossing intersections.

3: Tracing labeled intersection graph for output construction.

C. Time Complexity Analysis

We assume n ≥ m. Logarithmic time complexity is achiev-
able using n2 number of processors on a CREW PRAM
model. The number of processors used by the line segment
intersection reporting algorithm can be made output-sensitive
by invoking PRAM algorithms from [20], [21]. An output-
sensitive algorithm can determine the number of intersections
(output size k) online and performs better when the output size
(k) is relatively small. Using an output-sensitive algorithm for
reporting line segment intersections leads to O(log n) time
using O(n + k/ log n) number of processors where k is the
number of intersections for simple polygons [5], [20] and in
O((n+ k) log n log log (n)/p) time where p is the number of
processors and p ≤ (n + k) [5], [21] when self-intersecting
polygons are used.

Sorting in Step 1 can be done in O(log k) time using Cole’s
merge sort algorithm [5], [22]. In the worst case scenario
k=O(n2) and it takes O(log n) time. Steps 1.c and 1.d are
implemented using logarithmic time parallel prefix sum and
parallel sorting algorithms.

Step 2.b consists of adjacent overlapping edge intersection
chain labeling. Using a parallel segmented prefix sum algo-
rithm, this step takes O(log n) time and O(n+k) processors.

Step 3 can be performed in logarithmic time complexity
using O(n + k) processors by utilizing PRAM list ranking
and PRAM point-in-polygon test as shown in Lemma 1 to 4
from [5].

The time complexity of our PRAM algorithm is dominated
by Step 1.a. Its time complexity is O(log n) time using
O(n + k/ log n) number of processors for simple polygons.
This time complexity is the same as in the CREW PRAM
GH algorithm in [5], which does not handle degenerate cases
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Fig. 7. Sequential time breakdown for major steps in Foster’s algorithm using
different datasets. The datasets are described in Table I.

properly, whereas Algorithm 1 does.

IV. CUDA-BASED PRACTICAL IMPLEMENTATION

The most expensive computation of Foster’s algorithm is
the pairwise edge intersection operation. In our experiments,
it consumes 99% of the execution time (Fig. 7). Therefore,
our parallel algorithm is focused on this step to improve the
overall efficiency and scalability of the clipping algorithm.

A. GPU Data Structures
All GPU data structures employed are arrays. Each input

polygon is copied into GPU global memory using two arrays,
one for x coordinates and the other for y coordinates. Inter-
section counts for edges are calculated locally by each thread
and saved in Count arrays. Steps 1.b and 1.c use these count
arrays to prepare exclusive prefix sum arrays. Their sizes are
equal to input polygon sizes + 1. The neighborMap array
contains a mapping of contributing polygon P ID at the index
of contributing polygon Q ID. The ISP and ISQ arrays are
used to save the vertices of polygons including any discovered
non-degenerate intersection vertices. The NBP and NBQ

arrays link neighbors. For a given intersection vCl =ePi ∩ e
Q
j ,

the nbPi =j and nbQj =i. The NB arrays are used to read
neighbors in O(1) time.

Algorithm 2 - Count Intersections
Input: P (V P ), Q(V Q), CMBR = MBRp ∩MBRQ.
Output: Count1, Count2.

1: for each GPUBlocki, 0 ≤ i ≤ |EP | do in parallel
2: if CMBR intersects ePi then
3: for each eQj do
4: if MBRePi

intersects MBReQj
then

5: if ePi intersects eQj then
6: Count1[i] += 1
7: if ePi ∩ eQj not degenerate case then
8: Count2[i] += 1
9: end if

10: end if
11: end if
12: end for
13: end if
14: end for

Algorithm 3 - Create MapQ List

Input: P (V P ), Q(V Q), PSQ
1 , PSQ

2 . Output: neighborMap.
1: for each GPUBlocki, 0 ≤ i ≤ |EQ| do in parallel
2: if PSQ

1 [i] ̸= PSQ
1 [i+ 1] then

3: for each ePj do
4: if MBReQi

intersects MBRePj
then

5: if eQi intersects ePj then
6: if ePi ∩ eQj not degenerate case then
7: lcount += 1
8: else
9: lcount = 0

10: end if
11: neighborMap[PSQ

2 [i] + lcount] = j
12: end if
13: end if
14: end for
15: end if
16: end for

B. GPU Polygon Clipping Algorithm

Our GPU algorithm is sketched as Algorithm 5. Intersec-
tion calculation only requires vertex data of the contributing
edges which are locally available for each thread. But there
are a few challenges due to the algorithm parallelization
and the limitations of the GPU hardware. The challenges
are: appending the non-degenerate intersection vertices in the
contributing edges in parallel, degenerate intersections reuse
source vertices as intersections, link both degenerate and non-
degenerate intersections across input polygons, parallel non-
degenerate intersection vertex append does not guarantee the
correct order of the intersections as they appear on the edges,
dynamic memory allocation in the GPU memory is inefficient.

To mitigate these challenges, new data structures (count,
prefix sum, and neighborMap arrays) are introduced in
step 1 along with four kernels: i) CountIntersections fol-
lowed by Thrust library based prefix sum calculation [23], ii)
Create MapQ List, iii) Save Intersection V ertices, and
iv) Sort Q.

Step 1.a uses Count Intersection kernel (Algorithm 2)
where each thread computes ePi ∩ EQ. This configuration
helps to easily balance the load while maintaining a higher
GPU utilization since the input polygons are larger. The
Count1 and Count2 arrays provide the total intersection
counts which help to allocate GPU memory for the new
intersection vertices in the input polygons. Algorithm 2 also
takes advantage of the faster GPU-shared memory. When the
polygon Q is sufficiently smaller to fit in the shared memory,
each thread takes advantage of the faster memory in the
ePi ∩EQ computation by first copying the V Q collaboratively
from global memory to the shared memory. When Polygon Q
is too large to fit in the shared memory, it is tiled and threads
iteratively copy a tile of the polygon Q collaboratively into
the shared memory and complete the intersection calculation
for each tile (ePi ∩ ÊQ, ÊQ ⊂ EQ). This is carried out until
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Algorithm 4 - Save Intersection Vertices

Input: P (V P ), Q(V Q), neighborMap, PSP
1 , PSP

2 , PSQ
1 ,

PSQ
2 . Output: ISP , ISQ, NBP , NBQ.

1: for each GPUBlocki, 0 ≤ i ≤ |EP | do in parallel
2: if PSQ

1 [i] ̸= PSQ
1 [i+ 1] then

3: for each eQj do
4: if MBRePi

intersects MBReQj
then

5: if ePi intersects eQj then
6: count += 1
7: (vCi , α, β)← ePi ∩ eQj
8: if ePi ∩ eQj not degenerate case then
9: count2 += 1

10: Add (vCi , α) to ISP

11: else
12: count2 = 0
13: Add (ePi , 0) to ISP

14: end if
15: if eQi ∩ ePj not degenerate case then
16: Add (vCi , β) to ISQ

17: else
18: Add (eQj , 0) to ISQ

19: end if
20: start = PSQ

2 [j]
21: end = PSQ

2 [j + 1]
22: for k = start to k = end do
23: if i == neighborMap[k] then
24: nIndex = k + 1
25: NBP [PSP

2 [i]+count2]=nIndex
26: NBQ[k]=PSP

2 [i]+count2 + 1
27: end if
28: end for
29: end if
30: end if
31: end for
32: end if
33: end for

all threads finish working on polygon Q completely.
We compute two exclusive prefix sums for each input poly-

gon in Step 1.b: i) PSP,Q
1 : prefix sum of intersection counts

of each edge, and ii) PSP,Q
2 : prefix sum of non-degenerate

intersections including parent vertex. Each thread uses PSP,Q
1

and PSP,Q
2 to save non-degenerate intersections in the correct

location of the input polygon. Degenerate intersections involve
a source vertex and a new vertex to be inserted in an input
polygon unless it is a V-intersection / overlap. The new vertex
is inserted, treating it as a non-degenerate intersection vertex
and the related source vertex is marked as an intersection.

In step 1.d Create MapQ List kernel (Algorithm 3) is
used to map the indices of an intersection vertex in polygon
P with Q. The map helps to find the exact location of an
intersection vertex in the polygon Q array by saving the
contributing edge ID of the polygon P in the NeighborMap
array. This kernel can be replaced with a reduction function

Algorithm 5 - GPU Foster’s Polygon Clipping
Input: P (V P ), Q(V Q)
where |EP |=n, |EQ|=m, and n ≥ m

1: Intersection point calculation
a: For each ePi : save the count of all intersections (Count1)
and non-degenerate intersections (Count2).
b: Compute exclusive prefix sum of Count1 (PSP

1 ) and
Count2 (PSP

2 ) for polygon P .
c: Compute PSQ

1 and PSQ
2 similarly for polygon Q.

d: Save indices of intersection vertices from polygon Q in
neighborMap array
e: Save intersections in ISP and ISQ arrays with neighbor
links in NBP and NBQ.
f: Sort non-degenerate intersections within a source edge
ePi of ISP based on α values. Similarly, sort ISQ based
on β values.

2: Intersection vertex labeling
a: Classify V C using rules from first stage labeling.
b: Classify V C using rules from second stage labeling in
sequential manner on CPU side.
c: Classify V C using rules from third stage labeling in
sequential manner on CPU side.

3: Trace labeled intersection graph to construct output poly-
gons in a sequential manner on the CPU side.

to make the neighbor connection between polygon P and
Q. But it is more expensive with heavy communication and
synchronization involved. Another alternative is to duplicate
intersection computation using eQi ∩ EP . But it is inefficient
for larger polygons.

Step 1.e uses Save Intersection V ertices kernel (Algo-
rithm 4) to save the intersection vertices in the ISP and ISQ

arrays at the correct indices which are calculated using the
prefix sum and NeighborMap arrays. The kernel searches
the current edge ID of the polygon P in NeighborMap to
calculate nIndex. nIndex− 1 is the exact location to save a
non-degenerate intersection. The search starts from the starting
vertex of the current edge from polygon Q, which is available
from PSQ. Algorithm 4 also saves neighbor links in the NBP

and NBQ arrays.
Step 1.f needs a barrier between ISP and ISQ sorting

since it affects the neighbor links. Therefore, we sort ISP

at the end of Save Intersection vertices kernel and then
employ Sort Q kernel to sort ISQ. This provides a global
synchronization between the two sortings. Intersections are
sorted edge-wise using α/β values as the key. We employ
parallel Radix sort in each thread to sort non-degenerate
intersection vertices within a particular source edge.

The Intersection vertex labeling consists of three stages
as explained in the PRAM algorithm. We only perform
first stage labeling on the GPU side using Initial label
kernel (Step 2.a). Classification is based on vCi ’s previous,
next, and neighbor vertices along with vCi ’s neighbor’s next
and previous vertices. These are locally available to each
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thread in ISP , ISQ, NBP , and NBQ arrays.
Our experiments show that real-world data consume less

than 1% of the total execution time in labeling and result
tracing phases together (Fig. 7). Therefore, we have not
yet parallelized these final phases and we leverage Foster’s
algorithm sequentially on the CPU side.

C. GPU filtering of line segment intersection tests

Fig. 8. MBRP=[P1, P2, P3, P4], MBRQ=[P5, P6, P7, P8].
CMBR=[P9, P2, P3, P10]. All edges of P and Q are intersected with the
CMBR and only those intersecting are used for further processing.

We introduce three filters, 1) CMBR Filter (CMF), 2)
Count-based Filter (CF), and 3) Line Segment MBR Filter
(LSMF). They help to improve the efficiency of the duplicated
all-to-all-edge intersection computations in step 1 by filtering
out non-intersecting edge pairs using relatively inexpensive
tests. Step 1.a. uses CMF and then LSMF. Step 1.d. and 1.e.
use CF followed by LSMF.

1) CMF: CMF can improve the efficiency of the parallel
intersection point count phase. Aghajarian et al. used CMF
to solve the spatial join problem [6]. CMF first calculates the
two Minimum Bounding Rectangles (MBRs) for the two input
polygons and calculates a Common MBR (CMBR) for them.
CMBR is the rectangle that is common to both MBRs (see
Fig. 8). Next, the algorithm filters out any edge that does not
intersect with the CMBR (Algorithm 2). Initially, we have n
number of input edges. CMF reduces n to n̂ where n̂ ≤ n.
Now, the required work for the algorithm has been reduced
to n̂2. This filter has O(n) amount of work, which leads to
faster parallel execution using up to n threads.

Fig. 9. Illustration of LSMF: (a) possible intersection, (b) no intersection
possible, (c) MBRs drawn for edges of the input polygons. Overlapping MBRs
nominated for intersection candidacy.

2) LSMF: Calculating and classifying an intersection vertex
is a relatively expensive operation involving many condition
checking. We optimize this task by employing LSMF, which
evaluates if a given pair of edges is spatially close enough to
possibly intersect with each other (see Fig. 9). The filter treats
the edge coordinates as their MBRs and checks if there is

an overlap between the MBR pair (Algorithm 2, Algorithm 3,
Algorithm 4). As shown in Fig. 9c, overlapping MBR pairs are
reported as intersection candidates and the rest are discarded.
Candidate edge pairs are then subjected to a refined calculation
to check if there is an intersection. For example, in Fig. 9c,
eP4 (p

P
4 , p

P
1 ) has a MBR overlap with eQ6 (p

Q
6 , p

Q
1 ), but the

edges do not intersect with each other. Since real-world data
have only a few intersecting edge pairs, most of the pairs get
eliminated. LSMF provides a cheaper way to eliminate the
vast majority of edge pairs (see Table III).

3) CF: In the first stage, we check if ePi ∩ EQ discovers
any intersections by checking the intersection count for this
edge using PSP

i+1−PSP
i . Count value 0 implies there are no

intersections to be discovered for ePi and further processing
is unnecessary ( Algorithm 3, Algorithm 4). If the count is
a positive integer, there are that many intersections required
to be discovered and saved in the intersection arrays. In the
second stage of CF, we use PSQ to filter any edge candidates
of Q.

V. EXPERIMENTAL RESULTS

1) Testbed: We used an Intel Xeon Silver 4210R CPU-
equipped workstation running on 2.40GHz with 64 GB of
memory and an Nvidia Quadro RTX 5000 GPU card with
16 GB of VRAM, 48 SMs, and 3072 CUDA cores. We used
CUDA 11 and C++ for our GPU implementation.

2) Dataset: The experiments exhibit two major aspects of
this work: 1) the ability to handle degenerate intersections,
and 2) weak scalability. We used two datasets to evaluate
the performance of the GPU clipping algorithm compared
to Foster’s clipping algorithm. The first dataset only consists
of real-world polygons. The second dataset is a synthetic
dataset which consists of manipulated real-world polygons and
simulated polygons. The number of intersections found in real-
world polygons is smaller than the total input vertices. The
synthetic dataset has test cases to evaluate a larger number of
intersections.

For real-world dataset, we used Classic [24], Ocean
(ne 10m ocean), Land (ne 10m land), and Continents [25]
real-world datasets for our experiments. The nine test cases
consist of large polygons as shown in Table I along with their
corresponding polygon ID, the number of vertices, degenerate
and non-degenerate intersection sizes, parallel, and sequential
run times, and speedups. The result is the output polygon using
the intersection operation.

The Synthetic test cases 1 to 3 in Table II represent
k=O(n). We generated them using the Open-Street-Map lakes
dataset (from http://spatialhadoop.cs.umn.edu/datasets.html)
and Classic dataset polygons (S and C) [24]. These cases
use a real-world polygon as the first polygon and a generated
polygon as the second polygon, with the same size, maintain-
ing k=O(n). Synthetic test case 4 to 8 in Table II represent
k=O(n2). In each of them, we generated two polygons of the
same size based on the worst-case polygon shape in [2].
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TABLE I
PERFORMANCE OF OUR GPU POLYGON CLIPPING ALGORITHM ON REAL-WORLD DATASETS (EXECUTION TIMES EXCLUDING I/O TIMES) [24], [25].

# Dataset |P| |Q| |Result| Degenerate
count

Non-degenerate
count

Sequential
Time (ms)

Parallel
Time (ms) Speedup

1 Classic S, C 101,242 72,997 50,312 4 43 38,429 955 40

2 ne 10m ocean (36),
ne 10m land (1) 66,475 66,475 66,447 66,474 0 34,602 1,041 33

3 ne 10m ocean (0),
ne 10m land (4) 100,612 81,511 5 81,495 2 64,434 1,543 42

4 ne 10m ocean (0),
continents (521) 100,612 16,205 37,608 0 10,082 18,026 355 51

5 ne 10m ocean (0),
continents (1661) 100,612 12,613 16,895 2 1,425 9,048 252 36

6 ne 10m ocean (2742),
continents (1048) 15,547 15,653 43 0 18 2,050 136 15

7 ne 10m ocean (2742),
continents (1081) 15,547 4,562 20 0 14 561 134 4

8 ne 10m ocean (2742),
continents (1193) 15,547 4,028 33 0 32 439 132 3

9 ne 10m ocean (2741),
continents (1048) 10,887 15,653 156 0 32 1,447 136 11

TABLE II
PERFORMANCE OF OUR GPU POLYGON CLIPPING ALGORITHM ON A

SYNTHETIC DATASET.

# Polygon
size

Number of
Intersections

Sequential
time (ms)

Parallel
Time (ms) Speedup

1 206,429 3.90× 106 41,712,596 48,963 852
2 101,242 1.47× 105 277,502 7,349 38
3 72,997 8.34× 104 59,246 3,940 15
4 500 2.50× 105 3,113 275 11
5 700 4.90× 105 11,009 404 27
6 1,000 1.00× 106 41,302 676 61
7 1,500 2.25× 106 158,803 1,299 122
8 2,000 4.00× 106 422,124 2,129 198

3) Comparison with the sequential Foster’s algorithm: 1

Using real-world dataset: We compared our CUDA C++
parallel implementation against Foster’s sequential clipping
algorithm employing intersection operation over nine test cases
as shown in Table I. We first optimized the sequential Foster’s
implementation using LSMF for a fair comparison. The Other
filters are more parallel friendly. We validated our results with
Foster’s algorithm for the correctness and calculated speedups
for each test case, excluding I/O time. Table I shows the
sequential times, parallel times, and speedups for each case.
Since polygon clipping is output-sensitive, the speedups vary
based on the number of intersections. The best speedup is
shown in test case 1, where polygons with 170k and 70k are
clipped. The resulting polygon has 50k vertices with only 47
intersections. Test cases 2 and 3 polygon sizes are smaller, but
they have more intersections. Therefore, we observe a lower
speedup than that of test case 1.

Using synthetic dataset: For k=O(n2) (synthetic test cases
1 to 3), the best speedup is reported in synthetic test case 8.
Simulated polygon sizes vary from 500 to 2000 each, which
are smaller sizes than the polygon sizes used in synthetic test

1We used the C++ implementation of Foster’s polygon clipping
algorithm, downloaded from the second author’s webpage at
https://www.inf.usi.ch/hormann/polyclip/.

cases 1 to 3. However, they have all-to-all intersections, where
the number of intersections ranges from 2.5× 105 to 4× 106.
Synthetic test cases 1 to 3 also discover a similar number of
intersections. Table II shows the sequential Foster’s clipping
algorithm run times against our GPU clipping algorithm. The
best speedup for k=O(n) is reported in synthetic test case 1
reducing 11.5 hours of workload to 49 seconds, illustrating
the effectiveness of our filters. In all cases, we can observe
a positive correlation between input polygon size and the
speedup, demonstrating the weak scalability of our parallel
algorithm.

Fig. 10. Kernel execution timings for datasets in log scale.

4) Execution time breakdown in kernels: We can observe
that for larger datasets the Count intersections kernel is
the dominating step in our parallel algorithm as discussed
in the performance analysis. The Highest total run times are
observed in test cases 2 and 3. They have the highest number
of input vertices among the test cases. The total run time
in test case 1 is smaller than both of them, even though it
has more input vertices. This is due to the low number of
intersections. Fig. 10 is a detailed run-time breakdown for
each kernel using the real-world dataset. Fig. 10 shows that
Create mapQ list and Save intersection vertices kernels
consume more time in test cases 2 and 3 compared to other
cases. This is due to the higher number of intersections (see
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Table I). Both Sort Q and Initial labeling kernels only
consume a smaller fraction of the execution time, including
test cases 2 and 3. The majority of the intersections being
degenerate cases cause this observation since they do not need
any sorting. Initial labeling maintains about 10 µs constantly
for all test cases.

Fig. 11. % Reduction in Count intersection kernel run time after applying
different filter configurations. Kernel time with no filters is considered 100%.

5) Filter performance: The Count intersections ker-
nel employs CMF followed by LSMF. Both MapQ and
Save intersection vertices kernels employ CF followed
by LSMF. We compare both reduction in execution time
(Fig. 11 and 12) and reduction in the number of candidate
pairs eliminated (Table III) with and without filters in the
aforementioned kernels. We use Equation 1 to calculate the
percent reduction in run time considering filter-less kernel
times as 100%.

saved time % = 100− timewith filter

timeno filter
× 100 (1)

Fig. 12. % Reduction in Map Q kernel run time after applying different
filter configurations. Kernel time with no filters is considered 100%.

Fig. 11 shows the percentage reduction in execution time
using CMF and LSMF in the Count intersections kernel. In
our test cases, CMF run-time savings vary in the 0% − 50%
range. As seen in Table III, the low efficiencies are caused
by the input polygons being located in a very close spatial
proximity, where CMBR covers most of the edges of both
polygons (Test case 1-4). It performs better in test cases 5-6
and 8-9. The efficiency of LSMF is 79% − 82% and in all
the test cases, LSMF performs better than CMF. This is due
to LSMF’s more fine-grained filtering by only considering the
spatial proximity of two edge pairs. CMF and LSMF together
save 81%−88% run time in the Count intersections kernel.

TABLE III
NO. OF SURVIVING CANDIDATE EDGE PAIRS AFTER EACH FILTER IN

DIFFERENT KERNELS.

# Total
candidate
edge pairs

Intersection count
kernel

MapQ / Intersection
save kernel

After
CMF

After
LSMF

After
CF

After
LSMF

1 7,390,362,274 6,073,522,515 25,599 1,936 54
2 4,418,925,625 4,418,925,625 206,710 123,825,380 206,706
3 8,200,984,732 6,746,910,003 252,427 6,641,679K 252,384
4 1,630,417,460 1,141,798,656 38,767 58,528,984 11,776
5 1,269,019,156 186,036,216 5,765 1,710,672 1,530
6 243,357,191 1,820,430 95 34 21
7 70,925,414 22,287,012 27 20 18
8 62,623,316 2,514,720 34 34 33
9 170,414,211 1,512,264 178 64 33

Fig. 12 shows the percentage reduction in execution time
using CF and LSMF in the Create mapQ List kernel. Their
efficiency range is 1% − 99%. CF removes candidate edges
with no intersections using the already calculated intersection
counts by the Count intersections kernel. The large vari-
ance in the efficiency is due to the number of intersections
discovered. Test cases 2 and 3 have the lowest reduction
percentages since they report a large number of intersections
(see Table III). All test cases report greater efficiency using
CF than LSMF. Together, the savings range from 86%−99%.

The percentage reduction in execution time and
the filter effectiveness using CF and LSMF in the
Save intersection vertices kernel is similar to the
Create mapQ List kernel.

VI. CONCLUSION

In this work, we present an efficient PRAM algorithm
and a scalable GPU algorithm for polygon clipping which
can also handle degenerate intersections. The state-of-the-
art parallel GH algorithm is unable to handle degenerate
intersections properly. We optimize our practical CUDA C++
based implementation by introducing three effective filters.
CMF and LSMF have been used to solve spatial join problems
in prior related work, but not for polygon clipping. The result
is speeding up about 10 minutes of computation for large real-
world polygons to about a second.

In the future, we plan on parallelizing the remaining steps
of our parallel algorithm. Sequential post-processing only
consumes a small run-time fraction for large polygons. But
our experimental results suggest that there is still room for
improvement. Effectively parallelizing the tracing results phase
is challenging due to its sequential nature.

We also plan to extend this to large datasets by enabling
clipping between two layers of polygons, a more real-world
scenario. This needs an efficient method to identify candidate
intersecting polygon pairs and balance the clipping workload
across nodes. Here, our GPU clipping algorithm can be used
as a subroutine for efficient pairwise polygon clipping.
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