
GWC Week 6

Methods

Katie Tooher and Carmen Seda

WIT Shout-Out of the Week
Margaret Heafield Hamilton

● An American Computer Scientist, Hamilton earned a bachelor's degree in
mathematics from Earlham College in 1958

● Instead of attending graduate school she accepted a position developing software
predicting weather in the meteorology department at MIT where her work helped
made contributions to mathematics such as Chaos Theory

● Later she wrote software to help track unfriendly aircraft at MIT for the US Air
Force

● She worked on the team developing software for the Apollo Space Mission with
Nasa

Video

Data Types Refresher

● Must declare data type when CREATING
variable, but not when CALLING variable
○ Int, double, boolean, char, string

● Typecasting for strings → use .Parse();
○ Ex: int x = int.Parse(s); // s is a string

● Typecasting for numbers → use casting
○ Ex: int x = (int)y; // y is a double

Class Warm Up

Warm-up

- Write a C# program that takes the radius of a
circle as input and calculate the perimeter and
area of the circle.

- Write a C# program that takes three letters as
input and display them in reverse order.

Methods

See Week 5 Slides

Methods (aka Functions)

● Containers of code that allow you to perform a
specific portion of code that is reusable

● Methods for a program are contained inside of
a Class but we will discuss those more later

● We’ve already seen several different methods
○ Console.Write()
○ Console.Read()
○ Main (string[] args)

Main Methods: Driver Programs

● In each C# program that you create the Main method is
the one special container of code that is used to execute
the overarching program.

● The main method is where you “Call” or execute the other
methods (or functions) that you created to use to run the
entire program

● For every program that you create you will need to
create a main method

● In Repl.it, the main method is the first one that you see:

This is a main method, you can tell because it’s named “Main” and is makes use of the
(string[] args) parameters

Parts of a Method

● Methods are pieces of code that are run by
receiving both input and giving output
1. input comes either from parameters or from

user input or defined input
2. Output for a method is data given back based

on a return-type
● Methods also make use of a Signature or method

name that is “called” later to execute the portion of
code you’ve defined in a method

Method Signature (Method Name)

● Each Method you write needs a signature or name that
you can reference later to run the code inside of that
method

● Names should be related to purpose of the method
● camelCase or use_underscores

public static int methodName(int a, int b) {
 // body
}

Parts of a Method: Return Type

● Each method you write will either return a value or not
● Since C# is strong typed like Java, we must define what type

of value the method will return (ex: int, double,float, string)
● Methods that do not return anything but simply execute some

operation will be a void return type

public static int methodName(int a, int b) {
 // body
}

Return Type

● Think back to data types from last
week
○ int
○ double
○ bool
○ string
○ char
○ etc.

public static double methodName(int a, int b)
{
 // body
}

Parts of a Method: Access Modifiers (or
property types)

● Each method that you write should be defined by a what is called
an Access Modifier: the level to which this portion of code can be
accessed by other parts of the program

public static double methodName(int a, int b) {
 // body
}

public static int methodName(int a, int b) {
 // body
}

Method Examples

public static string methodName(int a, int b) {
 // body
}

Parameters

● This is the data that will be used in the method that are
passed in to the method -- they are specified inside of the
parenthesis next to the method name

● Must declare a data type for the values (above we use int)
● Can have multiple parameters

○ Just put a comma between them as shown above
● Can have 0 parameters

○ Ex: Console.ReadLine();

public static int methodName(int a, int b)
{
 // body
}

Parameters (continued)

● You only specify the data type when CREATING the method,
when you call it in your main method you just include the
variables

● Parameters are a way to PASS DATA BETWEEN METHODS

public static int methodName(int a, int b)
{
 // body
}

int x = 0;
int y = 3;
sum(x,y)

How to Call a Method

● To “Call” or execute/run a method we use the method
name and any parameters that it requires

● Methods can be called in the main method, another
method, or the same method (recursion)

● For example we call our add function from the previous
example in the main method using:

add(4,5)

OR use variables: add(x,y)
int x = 0;
int y = 3;
sum(x,y)

Method Example

Class Activity

We will be writing a calculator program

1. Write a method for each of the following math operations
○ Add
○ Subtract
○ Multiply
○ Divide

2. Write your main method so that someone can enter +, -, *,
or /, and the correct mathematical operation will occur
a. Each math operation should get a user input for the

parameters

Your Turn

How to generate a Random Number

Activities: Dice Rolling Simulation

● Write a program that asks a user for a “yes” or “no” answer
to the question: Would you like to roll the dice? In a while
loop until a person says “no”

● If a user says yes, then call a method named “roll” that will
generate a random number between 0 and 6 and then
return that integer this method should be public

● If a user says no, then the program quits
● Use the random number generator code from the previous

slide to help you with the roll method

