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Oblivious RAM – the setting 

• Setting: Client with small secure memory. 
Untrusted server with large storage. 

client server 
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Capacity: 
O(1) data items 
log(n) bit counter Capacity: 

n data items 



Oblivious RAM – the setting 

• Setting: Client with small secure memory. 
Untrusted server with large storage. 

 Client can store data with the server 

 Can encrypt data to hide its contents 

 MAC data to prevent server from changing it 

 But also desires to hide access pattern to data 
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Oblivious RAM – the setting 

Hiding access pattern to data: Server does not know 
whether client access the items numbered (1,2,3,4) or 
items (1,2,2,1) 

 Client can store data with the server 

 Can encrypt data to hide its contents 

 MAC data to prevent server from changing it 

 But also desires to hide access pattern to data 
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Oblivious RAM - definition 

• Client 
– Stores n data items, of equal size, of the form      

(indexi , data blocki).     i,j  indexi    indexj 

– Performs a sequence y of n read/write ops 

• Access pattern A(y) to remote storage contains 
– Remote storage indices accessed 

– Data read and written 

• Secure oblivious RAM: for any two sequences y,y’ 
of equal length, access patterns A(y) and A(y’) are 
computationally indistinguishable.  
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Immediate implications of ORAM Definition 

• Client must have a private source of randomness 

• Data must be encrypted with a semantically secure 
encryption scheme 

• Each access to the remote storage must include a read 
and a write 

• The location in which data item (indexi , datablocki)  is 
stored must be independent of indexi 

• Two accesses to indexi must not necessarily access the 
same location of the remote storage 
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Oblivious RAM - applications 

• Related to Pippenger and Fischer’s 1979 result 
on oblivious simulation of Turing machines 

• Software  protection (Goldreich Ostrovsky) 
– CPU = client, RAM = remote storage 

– Prevent reverse engineering of programs 

• Remote storage (in the “cloud”) 

• Search on encrypted data 

• Preventing cache attacks (Osvik-Shamir-Tromer) 

• Secure computation 
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Trivial solution 

• For every R/W operation 

– Client reads entire storage, item by item 

– Re-encrypts each item after possibly changing it 

– Writes the item back to remote storage 

• O(n) overhead per each R/W operation 
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The Goldreich-Ostrovsky 
Constructions 

Software protection and simulation on 
oblivious RAMs, O. Goldreich and R. 

Ostrovsky,  Journal of the ACM (JACM) 43, 
no. 3 (1996): 431-473. 
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Basic Tool: Oblivious Sort 

• The client has stored n encrypted items on a 
remote server. 

• The client needs to obliviously sort the items 
according to some key. 

– Comparing two items can be done by 
downloading them to the client, decrypting and 
comparing them. 

– But the server is aware which items the client 
downloads.  
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Oblivious Sort 

• Oblivious sort: the sequence of 
comparisons is independent of the input 

– Naïve Bubble Sort √ (but O(n2)) 

– Quick Sort O(nlogn) X 

– Sorting network √ 

• Basic primitive – black box comparator 

• Batcher - O(nlog2n) 

• AKS - O(nlogn), but > 6100∙nlogn 

 Randomized Shell sort… 
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Randomized Shell sort 

• Goodrich (2009) 

• A randomized version of Shell sort (Shell, 1959). 

• Oblivious - The distribution of the items that are 
compared is independent of their values.  

• Efficient - O(nlogn), small constant, correct whp. 
Shell sort (1959) Randomized Shell sort (2009) 
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Square Root ORAM 

• First Step (once), Initialization 

m words m1/2 

dummy 
words 

m1/2 
sheltered 

words 
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Square Root ORAM 

• Second Step 

Permute Memory 
Select a permutation π over the integers 
1,…,m+m1/2 and obliviously relocate the 
words according to the permutation 

Sheltered 

Can be implemented 
using oblivious sort 
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Square Root ORAM 

Sheltered 

• Accessing the RAM 
To access a virtual word i 

Scan through the 
entire shelter in a 
predefined order 

If not found in the shelter go to the 
actual word π(i) 

If found in the shelter, access the next 
dummy (in the actual address π(m+j) 
where j is the step# in this epoch) 
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Square Root ORAM 

Sheltered 

• Writing to the Shelter 
The updated value for the ith virtual location is 
written to the shelter 

 

 

• update is done IN ANY CASE, and it is done by  
scanning ALL the shelter 

• Obviously, after m1/2 I/O ops, shelter becomes full   
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Square Root ORAM 

Sheltered 

• Updating the permuted memory  
After m1/2 accesses, the shelter values obliviously 
update the content of the permuted memory 

 

 

• Implemented using oblivious sorting… 

• The overhead using Batcher network is O(mlog2(m)) 
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Square Root ORAM 

• Overhead: 

– Each access requires reading all m1/2 sheltered 
items 

– After m1/2 accesses, must sort all items at a cost of 
O(mlog2(m)) 

– Overall an amortized cost of O(m1/2 log2(m)) 

– Relatively simple to implement. No hidden 
constants. 

• Security? 
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The Hierarchical Solution [GO] 

• Data items are arranged in logn 
levels 

• For each level i (i=0..log t) there 
is a buffer of 2i buckets 

• Each bucket contains O(log n) 
items 

• Invariant: item x is located in 
one of the levels, in bucket Hi(x) 

(Hi() maps values to one of the 2i buckets in level i) 
Secure Computation and Efficiency          

Bar-Ilan University, Israel 2015 

Level i stores at 
most 2i items 
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The Hierarchical Solution [GO] 

• Data items are arranged in logn 
levels 

• For each level i (i=0..log t) there 
is a buffer of 2i buckets 

• Each bucket contains O(log n) 
items  

logn size per bucket since whp no more than 
logn items are mapped to each bucket 
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The Hierarchical Solution: Accessing 
an Item 

• Scan the entire first level for x 
• Read a bucket from each other level, 

i=2,…,logn: 
• If x was not yet found, read and 

search bucket Hi(x) 
• If x was already found, search a 

random bucket 
(If x found in more then one level, use top value of x) 
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The Hierarchical Solution: Writing 
Back an Item 

• All items are written back to the 
first level 

• If an item already exists there, 
rewrite it 
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The need for a reshuffle 

• Each lookup ends with the updated item being 
written to the first level. 

 

• At some point the first level becomes full 

– Then its contents are moved to the second level, 
which is twice as big. 
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The need for a reshuffle 

• In general, level i stores at most 2i items. (It has 2i 
bins, each of size logn, storing the real items and 
padded with dummy items to size logn.) 

 

• Every 2i
  steps the (real) contents of level i are 

moved to level i+1 and reshuffled with its 
contents. 

 

• It always holds that levels i and i+1 have together 
at most 2i+1

 items.  
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Reshuffle 

• The reshuffle process must 

– Empty level i and move its contents to level i+1 

 

– If an item with the same index v appears in both 
levels, its newest version (from level i) is kept and 
the other version is erased. 

 

– After the reshuffling, level i+1 must be reordered 
using fresh random hash functions.  
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Implementing the Reshuffle 

• Just use oblivious sorting: 
– Sort the contents of both levels based on their ids. 

A total of (2i+2i+1)logn items.  

–  Two copies of same item are now adjacent. 
Scan data and replace older copies with dummies. 

– Use a new hash function Hi+1(). Scan the items and 
attach  Hi+1(x) to each non-dummy item x. 

– Sort the contents. Whp at most logn items are 
assigned to each bucket. 

– Scan and adjust the number of dummies. 
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Hierarchical ORAM 

• After the reshuffle level i is empty, and level i+1 

has at most 2i+1
 items. 

• A reshuffle of level i takes O(2i log2(2ilogn)) = 
O(2ilog2n) time. 

• After n operations, the overhead of reshuffles is 
O(nlog2n + 2∙(n/2)log2n + 4∙(n/4)log2n + …) = 
O(nlog3n). 

• Amortized cost of a lookup is therefore O(log3n) 
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Hierarchical ORAM: Security 

• Server’s view is easy to simulate 

 

• Accessing an element includes 

– A scan of the first level 

– Reading a random bucket in each level 

– Storing an item in the first level 
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Hierarchical ORAM: Security 

• Level i is reshuffled every 2i data accesses 

• A reshuffle includes 

– Moving data 

– Oblivious sorts 

– Linear scans 

• All operations are easy to simulate. The 
simulation breaks only if in some level more than 
logn items are mapped to the same bin. 
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Hierarchical ORAM: Discussion 

• Server storage is O(nlogn) 

• The constants are quite high 

• Amortized overhead of O(log3n) hides a worst 
case time of O(nlog2n) for a single operation.  

• Replacing the Batcher sorting network with AKS 
removes a factor of logn from the asymptotic 
overhead, at the cost of a ridiculous constant. 

• Other protocol variants exist. 
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Tree Based ORAM 
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Tree based ORAM 

• A series of results that are very competitive 
and very simple to implement, in software and 
in hardware 

– Oblivious RAM with O((log N)3) Worst-Case Cost. E. 
Shi, T.-H. Chan, E. Stefanov, M. Li. Asiacrypt 2011.  

– Path ORAM: An Extremely Simple Oblivious RAM 
Protocol. E. Stefanov, M. van Dijk, E.  Shi, C. 
Fletcher, L.  Ren, X.  Yu, S. Devadas. ACM CCS 2013. 

• We will only describe the simplest scheme. 
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Server Storage 
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A full binary 
tree with logn 
levels and n 
leaves. 
 
Each node 
contains a 
bucket of logn 
data items. 



Client Storage 
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For now, assume that 
the client stores  a 
position map, 
randomly mapping 
data items to leaves. 
 
O(n) storage, but each 
item is only logn bits 
long.  

leaf item 

3 0 

2 1 

5 2 

7 3 

… … 

2 7 



Storing Items 
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An item is 
always stored 
somewhere on 
the path from 
the root to its 
leaf.  

leaf item 

3 0 



Accessing an Item 
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1. Read path (leaf) from 
position map. 

2. Traverse path from 
root to leaf. Look for 
the item in each bucket 
along the path. 
Remove when found. 

3. Assign a new random 
leaf to the data item. 

4. Update position map. 
5. Write updated item to 

the root. 

Note that these 
operations are oblivious 



Evict to Prevent Overflows 
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In each level choose two 
nodes at random 
 
For each node 
- Pop an item (if bucket is 

non-empty) 
- Move item downwards 

to next node on its path 
- Do a dummy write to 

other descendant of 
the node 

These operations are 
oblivious, too.  



Security 

• All operations of the client are either 
deterministic or uniformly random 

• All works well as long as no bucket overflows… 

– The evictions ensure this. The analysis uses Markov 
chains: 

– A buffer in level i receives an item with probability 
(2/2i-1)∙(1/2) 

– It evicts an item with probability 2/2i 
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Using Recursion (I) 

• When the client looks for an item in a node, it 
can either 

– Read all O(logn) items in the bucket 

– Or, use ORAM recursively to check if the item it 
searches for is in the bucket 
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Using Recursion (II) 

• In the basic scheme the client stores a 
position map of n∙logn bits.  

– The client can store the position map on the 
server. 

– Its size is smaller than that of the original data by 
a factor of (data block length) / logn. 

– The client can access the position map using a 
recursive call to ORAM. 

– And so on… 
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Overhead 

• Basic scheme 
– Server storage is O(n∙logn) data items 

– Client stores n indexes (n∙logn bits) 

– Each access costs O(log2n) r/w operations 

• Using ORAM to read from internal nodes 
– Using, e.g., n0.5-ORAM reduces cost to O(log1.5n) 

• Storing position ORAM at server 
– Client storage reduced to O(1) 

– Overhead increases to O(log2.5n) 
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Followup Work 

• Multiple results tweaking the construction 

• Different variants 

– For small or large client storage (which can store 
O(logn) data items) 

– For small or large data items (blocks) 

• Path ORAM achieves O(logn) overhead, with 
O(logn) client storage and large data items 

– Implemented even in hardware 
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Path ORAM 

• Similar to the tree-based ORAM we described 

• Eviction strategy is greedy: 

– The client maintains a stash of some data items 

– After searching for an item in path P, relocate each 
data item in P, as well as each item in the stash, as 
deep as possible along the path. 

– It was shown that this scheme works well even 
with buckets of size 4 
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Secure Computation based on 
ORAM 

(Recall, a circuit implementing indirect 
memory access is inefficient. RAM 
machines are much better at this.) 
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Secure Computation based on ORAM [LO] 

• Suppose two parties wish to securely compute 
a RAM program. The program 

– Has a state (shared by the parties) 

– Has a state machine (can be securely 
implemented by a circuit) 

– Needs to read/write a RAM 
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Secure Computation based on ORAM [LO] 

• Read/write a RAM 

– Store RAM encrypted in P1. P2 knows the key. 

– The program accesses the RAM using ORAM. 

– The program state, shared by the parties, defines 
which RAM location to access. Therefore, the 
address to read/write is shared between P1, P2. 

– The ORAM “client” is now shared between the two 
parties. 
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Secure Computation based on ORAM [LO] 

• Read/write a RAM 

– The operations of the ORAM “client” (data access, 
reshuffle, eviction) are implemented  using secure 
computation. 
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Conclusions 

• ORAM is a remarkable achievement and a 
great tool for many applications 

• A huge amount of new results in recent years 

– At least 14 eprint manuscripts in 2014 alone 

• Current performance is pretty impressive 
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