
1

Oblivious RAM

Benny Pinkas

Bar-Ilan University

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Oblivious RAM – the setting

• Setting: Client with small secure memory.
Untrusted server with large storage.

client server

2
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Oblivious RAM – the setting

• Setting: Client with small secure memory.
Untrusted server with large storage.

Client
Server farm
Cloud storage

3
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Oblivious RAM – the setting

• Setting: Client with small secure memory.
Untrusted server with large storage.

Client
Server farm
Cloud storage

4
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Capacity:
O(1) data items
log(n) bit counter Capacity:

n data items

Oblivious RAM – the setting

• Setting: Client with small secure memory.
Untrusted server with large storage.

 Client can store data with the server

 Can encrypt data to hide its contents

 MAC data to prevent server from changing it

 But also desires to hide access pattern to data
5

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Oblivious RAM – the setting

Hiding access pattern to data: Server does not know
whether client access the items numbered (1,2,3,4) or
items (1,2,2,1)

 Client can store data with the server

 Can encrypt data to hide its contents

 MAC data to prevent server from changing it

 But also desires to hide access pattern to data
6

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Oblivious RAM - definition

• Client
– Stores n data items, of equal size, of the form

(indexi , data blocki). i,j indexi  indexj

– Performs a sequence y of n read/write ops

• Access pattern A(y) to remote storage contains
– Remote storage indices accessed

– Data read and written

• Secure oblivious RAM: for any two sequences y,y’
of equal length, access patterns A(y) and A(y’) are
computationally indistinguishable.

7
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Immediate implications of ORAM Definition

• Client must have a private source of randomness

• Data must be encrypted with a semantically secure
encryption scheme

• Each access to the remote storage must include a read
and a write

• The location in which data item (indexi , datablocki) is
stored must be independent of indexi

• Two accesses to indexi must not necessarily access the
same location of the remote storage

8
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Oblivious RAM - applications

• Related to Pippenger and Fischer’s 1979 result
on oblivious simulation of Turing machines

• Software protection (Goldreich Ostrovsky)
– CPU = client, RAM = remote storage

– Prevent reverse engineering of programs

• Remote storage (in the “cloud”)

• Search on encrypted data

• Preventing cache attacks (Osvik-Shamir-Tromer)

• Secure computation

9
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Trivial solution

• For every R/W operation

– Client reads entire storage, item by item

– Re-encrypts each item after possibly changing it

– Writes the item back to remote storage

• O(n) overhead per each R/W operation

10
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

The Goldreich-Ostrovsky
Constructions

Software protection and simulation on
oblivious RAMs, O. Goldreich and R.

Ostrovsky, Journal of the ACM (JACM) 43,
no. 3 (1996): 431-473.

11
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Basic Tool: Oblivious Sort

• The client has stored n encrypted items on a
remote server.

• The client needs to obliviously sort the items
according to some key.

– Comparing two items can be done by
downloading them to the client, decrypting and
comparing them.

– But the server is aware which items the client
downloads.

12
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Oblivious Sort

• Oblivious sort: the sequence of
comparisons is independent of the input

– Naïve Bubble Sort √ (but O(n2))

– Quick Sort O(nlogn) X

– Sorting network √

• Basic primitive – black box comparator

• Batcher - O(nlog2n)

• AKS - O(nlogn), but > 6100∙nlogn

 Randomized Shell sort…

13
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Randomized Shell sort

• Goodrich (2009)

• A randomized version of Shell sort (Shell, 1959).

• Oblivious - The distribution of the items that are
compared is independent of their values.

• Efficient - O(nlogn), small constant, correct whp.
Shell sort (1959) Randomized Shell sort (2009)

14
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

15

Square Root ORAM

• First Step (once), Initialization

m words m1/2

dummy
words

m1/2
sheltered

words

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

16

Square Root ORAM

• Second Step

Permute Memory
Select a permutation π over the integers
1,…,m+m1/2 and obliviously relocate the
words according to the permutation

Sheltered

Can be implemented
using oblivious sort

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

17

Square Root ORAM

Sheltered

• Accessing the RAM
To access a virtual word i

Scan through the
entire shelter in a
predefined order

If not found in the shelter go to the
actual word π(i)

If found in the shelter, access the next
dummy (in the actual address π(m+j)
where j is the step# in this epoch)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

18

Square Root ORAM

Sheltered

• Writing to the Shelter
The updated value for the ith virtual location is
written to the shelter

• update is done IN ANY CASE, and it is done by
scanning ALL the shelter

• Obviously, after m1/2 I/O ops, shelter becomes full

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

19

Square Root ORAM

Sheltered

• Updating the permuted memory
After m1/2 accesses, the shelter values obliviously
update the content of the permuted memory

• Implemented using oblivious sorting…

• The overhead using Batcher network is O(mlog2(m))

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

20

Square Root ORAM

• Overhead:

– Each access requires reading all m1/2 sheltered
items

– After m1/2 accesses, must sort all items at a cost of
O(mlog2(m))

– Overall an amortized cost of O(m1/2 log2(m))

– Relatively simple to implement. No hidden
constants.

• Security?

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

21

The Hierarchical Solution [GO]

• Data items are arranged in logn
levels

• For each level i (i=0..log t) there
is a buffer of 2i buckets

• Each bucket contains O(log n)
items

• Invariant: item x is located in
one of the levels, in bucket Hi(x)

(Hi() maps values to one of the 2i buckets in level i)
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Level i stores at
most 2i items

22

The Hierarchical Solution [GO]

• Data items are arranged in logn
levels

• For each level i (i=0..log t) there
is a buffer of 2i buckets

• Each bucket contains O(log n)
items

logn size per bucket since whp no more than
logn items are mapped to each bucket

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

23

The Hierarchical Solution: Accessing
an Item

• Scan the entire first level for x
• Read a bucket from each other level,

i=2,…,logn:
• If x was not yet found, read and

search bucket Hi(x)
• If x was already found, search a

random bucket
(If x found in more then one level, use top value of x)

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

24

The Hierarchical Solution: Writing
Back an Item

• All items are written back to the
first level

• If an item already exists there,
rewrite it

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

The need for a reshuffle

• Each lookup ends with the updated item being
written to the first level.

• At some point the first level becomes full

– Then its contents are moved to the second level,
which is twice as big.

25
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

The need for a reshuffle

• In general, level i stores at most 2i items. (It has 2i
bins, each of size logn, storing the real items and
padded with dummy items to size logn.)

• Every 2i
 steps the (real) contents of level i are

moved to level i+1 and reshuffled with its
contents.

• It always holds that levels i and i+1 have together
at most 2i+1

 items.

26
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Reshuffle

• The reshuffle process must

– Empty level i and move its contents to level i+1

– If an item with the same index v appears in both
levels, its newest version (from level i) is kept and
the other version is erased.

– After the reshuffling, level i+1 must be reordered
using fresh random hash functions.

27
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Implementing the Reshuffle

• Just use oblivious sorting:
– Sort the contents of both levels based on their ids.

A total of (2i+2i+1)logn items.

–  Two copies of same item are now adjacent.
Scan data and replace older copies with dummies.

– Use a new hash function Hi+1(). Scan the items and
attach Hi+1(x) to each non-dummy item x.

– Sort the contents. Whp at most logn items are
assigned to each bucket.

– Scan and adjust the number of dummies.

28

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Hierarchical ORAM

• After the reshuffle level i is empty, and level i+1

has at most 2i+1
 items.

• A reshuffle of level i takes O(2i log2(2ilogn)) =
O(2ilog2n) time.

• After n operations, the overhead of reshuffles is
O(nlog2n + 2∙(n/2)log2n + 4∙(n/4)log2n + …) =
O(nlog3n).

• Amortized cost of a lookup is therefore O(log3n)

29
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Hierarchical ORAM: Security

• Server’s view is easy to simulate

• Accessing an element includes

– A scan of the first level

– Reading a random bucket in each level

– Storing an item in the first level

30
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Hierarchical ORAM: Security

• Level i is reshuffled every 2i data accesses

• A reshuffle includes

– Moving data

– Oblivious sorts

– Linear scans

• All operations are easy to simulate. The
simulation breaks only if in some level more than
logn items are mapped to the same bin.

31
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Hierarchical ORAM: Discussion

• Server storage is O(nlogn)

• The constants are quite high

• Amortized overhead of O(log3n) hides a worst
case time of O(nlog2n) for a single operation.

• Replacing the Batcher sorting network with AKS
removes a factor of logn from the asymptotic
overhead, at the cost of a ridiculous constant.

• Other protocol variants exist.

32
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Tree Based ORAM

33
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Tree based ORAM

• A series of results that are very competitive
and very simple to implement, in software and
in hardware

– Oblivious RAM with O((log N)3) Worst-Case Cost. E.
Shi, T.-H. Chan, E. Stefanov, M. Li. Asiacrypt 2011.

– Path ORAM: An Extremely Simple Oblivious RAM
Protocol. E. Stefanov, M. van Dijk, E. Shi, C.
Fletcher, L. Ren, X. Yu, S. Devadas. ACM CCS 2013.

• We will only describe the simplest scheme.

34
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Server Storage

35
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

A full binary
tree with logn
levels and n
leaves.

Each node
contains a
bucket of logn
data items.

Client Storage

36
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

For now, assume that
the client stores a
position map,
randomly mapping
data items to leaves.

O(n) storage, but each
item is only logn bits
long.

leaf item

3 0

2 1

5 2

7 3

… …

2 7

Storing Items

37
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

An item is
always stored
somewhere on
the path from
the root to its
leaf.

leaf item

3 0

Accessing an Item

38
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

1. Read path (leaf) from
position map.

2. Traverse path from
root to leaf. Look for
the item in each bucket
along the path.
Remove when found.

3. Assign a new random
leaf to the data item.

4. Update position map.
5. Write updated item to

the root.

Note that these
operations are oblivious

Evict to Prevent Overflows

39
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

In each level choose two
nodes at random

For each node
- Pop an item (if bucket is

non-empty)
- Move item downwards

to next node on its path
- Do a dummy write to

other descendant of
the node

These operations are
oblivious, too.

Security

• All operations of the client are either
deterministic or uniformly random

• All works well as long as no bucket overflows…

– The evictions ensure this. The analysis uses Markov
chains:

– A buffer in level i receives an item with probability
(2/2i-1)∙(1/2)

– It evicts an item with probability 2/2i

40

Secure Computation and Efficiency
Bar-Ilan University, Israel 2015

Using Recursion (I)

• When the client looks for an item in a node, it
can either

– Read all O(logn) items in the bucket

– Or, use ORAM recursively to check if the item it
searches for is in the bucket

41
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Using Recursion (II)

• In the basic scheme the client stores a
position map of n∙logn bits.

– The client can store the position map on the
server.

– Its size is smaller than that of the original data by
a factor of (data block length) / logn.

– The client can access the position map using a
recursive call to ORAM.

– And so on…

42
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Overhead

• Basic scheme
– Server storage is O(n∙logn) data items

– Client stores n indexes (n∙logn bits)

– Each access costs O(log2n) r/w operations

• Using ORAM to read from internal nodes
– Using, e.g., n0.5-ORAM reduces cost to O(log1.5n)

• Storing position ORAM at server
– Client storage reduced to O(1)

– Overhead increases to O(log2.5n)

43
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Followup Work

• Multiple results tweaking the construction

• Different variants

– For small or large client storage (which can store
O(logn) data items)

– For small or large data items (blocks)

• Path ORAM achieves O(logn) overhead, with
O(logn) client storage and large data items

– Implemented even in hardware

44
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Path ORAM

• Similar to the tree-based ORAM we described

• Eviction strategy is greedy:

– The client maintains a stash of some data items

– After searching for an item in path P, relocate each
data item in P, as well as each item in the stash, as
deep as possible along the path.

– It was shown that this scheme works well even
with buckets of size 4

45
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Secure Computation based on
ORAM

(Recall, a circuit implementing indirect
memory access is inefficient. RAM
machines are much better at this.)

46
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Secure Computation based on ORAM [LO]

• Suppose two parties wish to securely compute
a RAM program. The program

– Has a state (shared by the parties)

– Has a state machine (can be securely
implemented by a circuit)

– Needs to read/write a RAM

47
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Secure Computation based on ORAM [LO]

• Read/write a RAM

– Store RAM encrypted in P1. P2 knows the key.

– The program accesses the RAM using ORAM.

– The program state, shared by the parties, defines
which RAM location to access. Therefore, the
address to read/write is shared between P1, P2.

– The ORAM “client” is now shared between the two
parties.

48
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Secure Computation based on ORAM [LO]

• Read/write a RAM

– The operations of the ORAM “client” (data access,
reshuffle, eviction) are implemented using secure
computation.

49
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

Conclusions

• ORAM is a remarkable achievement and a
great tool for many applications

• A huge amount of new results in recent years

– At least 14 eprint manuscripts in 2014 alone

• Current performance is pretty impressive

50
Secure Computation and Efficiency

Bar-Ilan University, Israel 2015

