Graphene-SGX

A Practical Library OS for Unmodified

Applications on SGX
Chia-Che Tsai Donald E. Porter Mona Vij
/=3 | THE UNIVERSITY
- (— ILL | oes canonnns 0

University

i Fortanix

Keke.Chen
Pencil

Intel SGX: Trusted Execution on Untrusted Hosts

S

E Pr(c;cesl\s/:nzgj.Seln;itive:a;ta - . = 1 Public
x: Medical Records 1

- R Cloud

Ll o -

M

Ll

Ll

0

O

=

" Client

— Machines

App confidentiality & integrity on machines you have no control

Porting Apps to SGX is Not Exactly Painless

= OS functionality available but not trusted

= Porting: novice =2 hell

(Ex: WolfSSL) ? (Ex: lighttpd) (Ex: OpenlDK)

Crypto Functions m N Language Runtimes

Some SGX frameworks
(SCONE/Panoply) target here

Still “some” porting effort (Ex: recompiling)

An effortless option for wide-ranged Ubuntu apps?

Keke.Chen
Pencil

Open SGX framework for Unmodified Linux Apps
= Graphene-SGX:

* No reprogramming or recompiling

* Servers / Command-line apps / Runtimes
(Apache, NGINX, GCC, R, Python, OpenJDK, Memcached, ...)

* Multi-process APIs (fork, IPC, ...)

* Not meant to be perfect, but a quick, practical option
(or to avoid app changes)

Talk Outline

" How does Graphene-SGX protect unmodified applications?
= Why should you try Graphene-SGX?

= What is the right way for porting applications to SGX?

The Graphene LibOS Project [Eurosys14]

" An open libOS for reusing Linux applications
(github.com/oscarlab/graphene)

Unmodified Application

* Inspired by Drawbridge[ASPLOS11]

and Haven[0SDI14] Process Process

145 Linux syscalls (growing)

* Gradually adopted by labs / industry
LibOS LibOS

e Active development & tech support
(doing our best!)

r

Easy to port to new OS/platform

Intel SGX (Software Guard Extensions)

Completely
“Enclave” isolated

Sensitive from OS
Data App

Process

SGX instructions
(ECREATE/EINIT)

% Untrusted
9 o

Intel SGX (Software Guard Extensions)

.
Encrypted .,

& signed ‘

Process

Untrusted
0S

Intel SGX (Software Guard Extensions)

Enclave app requirements:

“Enclave”

1. Signed initial code

Sensitive § Signed 2. Nodirect syscalls
Data App App _ g
3. Checking untrusted inputs

Process

Unmodified Linux app:
2 Untrusted (1) Dynamic linked
,.... 03 (2) Built with syscall usage

Keke.Chen
Pencil

Running Unmodified App with Graphene-SGX

{1F>

A
$ SGX=1 ./paI_Ioaderth?péd) [args]

Graphene Loader

Untrusted

0S

Keke.Chen
Pencil

Running Unmodified App with Graphene-SGX

N~

.- I'y(tpd ‘ u}gr Libs

| GNU libc |

Signed by developers
as a CPU-verifiable signature
(Signing tool provided)

@ Untrusted
0S

Keke.Chen
Pencil

Keke.Chen
Pencil

Running Unmodified App with Graphene-SGX

Enclave app requirements:
1. Signed initial code \/

i httpd ‘ User Libs

GNU libc

Graphene LibOS

2. No direct syscalls \/

3. Checking untrusted inputs

key research problem

Enclave Interface (28 calls)

% Untrusted

& o

Checking Untrusted Inputs from the OS
" Checking untrusted syscalls is subtle [Checkoway, 2013]

" Graphene-SGX:

* Narrowing to a fixed interface (28 calls)
* Redefining an interface suitable for checking

= Examples:
* Reading an integrity-sensitive file (Ex: library/script/config)

* See paper: multi-process APls

Ex: Reading an Integrity-Sensitive File

L. httpd ‘ User Libs

ENU libx

read mmap dlopen

Untrusted
0S

= Ask for explicit inputs

= Checksums given
in a signed “manifest”

F/*/_‘_\——_\-\

= Copy & verify in enclave
N

Keke.Chen
Pencil

Keke.Chen
Pencil

Keke.Chen
Pencil

Keke.Chen
Pencil

Checking All 28 Enclave Calls

W

Examples # Result Explanation

(1) Reading a file 7 Fully (1) File checksums

(2) Inter-proc / @ (2) CPU attest. + crypto:
.. Checked , _
coordination Inter-proc TLS connection

Yielding a thread 6 Benign Nothing to check

|

(1) Polling handles

—
(2) File attributes Mﬁ Unchecked Future work

Keke.Chen
Pencil

Summary

" Graphene-SGX turns an unmodified app into enclave app

* A app-specific signature authenticating all binaries
e Syscalls implemented inside enclaves

* Narrowing & redefining untrusted OS inputs to checkable values

S

Keke.Chen
Pencil

Why (and When) You Should Try Graphene-SGX

» Unmodified apps / needs dynamic loading
= When alternatives don’t offer OS functionality you want

" Graphene-SGX:
e Rich OS functionality (145 syscalls so far)

* Blow up enclave size & TCB (trusted computing base)?

* Performance?

Comparison with Other SGX Frameworks

Graphene-SGX

[OSDI16] [NDSS17]

Approach LibOS

“Shim” Layers: redirect &
check system APIs ;e

N hA

Functionalit :
Y Can grow without
VS :
extending checks

Using more system APIs
= more checks

Keke.Chen
Pencil

Trusted Computing Base

/ J
Graphene-SGX SCONE Panoply
[OSDI16] [NDSS17]
LibOS/shim 53 kLoC 97 kLoC 10kLoC
Choice of GNU libC & mus| No libc
libc (1.1 MLoC) (88 kLoC) in enclave

Not fundamental to libOS, but more by the choice of libc

Keke.Chen
Pencil

Keke.Chen
Pencil

Graphene-SGX Performance
= Baselines: Linux, Graphene (without SGX)

= \Workloads:

e Server: Apache with iwgilﬂm;esses
* Command-line: R benchmarks

= Evaluation Setup:
4-core 3.20 GHz Intel i5 CPU + 8 GB RAM

Keke.Chen
Pencil

Apache with 5 Processes (w/ IPC Semaphore)
#Linux @Graphene (without SGX) ¢Graphene-SGX

Graphene-SGX: | Graphene:
Impact by enclave exits little effect (~5%)

& checking OS inputs on top throughput

Average Response

0 2 4 6 3 10 12

Throughput (k.req/S) o

Keke.Chen
Pencil

Overhead to Linux

B Linux
10x -

- l better
j Graphene-SGX:

R Benchmarks

B Graphene (without SGX) Graphene-SGX

T

Memory-intensive impact
(app behavior)

overhead

W

|
ﬁffﬂ:fffffffffffffffffffffffﬂ.Q

|
L AR

S S

W
0% N N N § N N
TN AR NER NER
TR T PSS I SR N SRR SR~ W R O ORI O B
S T E & F & FTE RS
RIS SN e

$ ¥ D ¢
Workloads Graphene: ~0% overhead

Keke.Chen
Pencil

Keke.Chen
Pencil

Graphene-SGX Performance Discussion

= Latency overhead less than ~1x unless memory-intensive
_/\/\/\,\/\F/

= LibOS memory cost only 5-15 MB

= Cause:

* Enclave exits & checks (can improve)
NSN~—me—~——

* App memory usage (reduce with configuration / partitioning)

Keke.Chen
Pencil

In the End: A Developer’s Guide for SGX Porting

. Explore / POC with Graphene-SGX

= Keep safe interface to OS

= Compile out code & syscalls = Reduce memory footprint
. = SCONE / Panoply & enclave exits

= Other tools: Eleos, T-SGX Take care of vulnerabilities

(side channels!)

= Partitioning (W)
- = Optimize performance & security

Keke.Chen
Pencil

Conclusion

Graphene-SGX — quick, practical Linux-to-SGX porting option
* Usability: Rich Linux functionality with multi-process

* Performance: Less than ~1x overheads (normal cases) 4

* Security: (1) Reduce OS interaction to checkable services
(2) LibOS TCB comparable to other options

Graphene library OS: github.com/oscarlab/graphene
(chitsai@cs.stonybrook.edu)

Stony Brook mn of NORTH CAROLINA |||i|I| Fort an ix i’n te I)

University @ 43 |« cuarer min

QF

Keke.Chen
Pencil

