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Deep Learning

e Cognitive tasks: speech, text, image recognition
e Natural language processing: sentiment analysis, translation

e Planning: games, autonomous driving
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Privacy of Training Data

( Data encryption in transit and at rest
( Data retention and deletion policies

( ACLs, monitoring, auditing

What do models reveal about training data?
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Machine Learning Privacy Fallacy
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Since our ML system is good, it automatically
protects privacy of training data.
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Machine Learning Privacy Fallacy

e Examples when it just ain't so:

o Person-to-person similarities
o  Support Vector Machines

e Models can be very large

o Millions of parameters

e Empirical evidence to the contrary:

o M. Fredrikson, S. Jha, T. Ristenpart, “Model Inversion Attacks that Exploit
Confidence Information and Basic Countermeasures”, CCS 2015

o R. Shokri, M. Stronati, V. Shmatikov, “Membership Inference Attacks
against Machine Learning Models”, https://arxiv.org/abs/1610.05820



https://arxiv.org/abs/1610.05820
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Model Inversion Attack

e M. Fredrikson, S. Jha, T. Ristenpart, “Model Inversion Attacks that
Exploit Confidence Information and Basic Countermeasures”, CCS
2015 p

e R. Shokri, M. Stronati, V. Shmatikov, “Membership Inference Attacks
against Machine Learning Models”, https://arxiv.org/abs/1610.05820
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Deep Learning Recipe

Loss function
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Deep Learning Recipe

Loss function softmax loss
Training / Test data MNIST and CIFAR-10

1.
2.
3. Topology
4
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Training algorithm
. Hyperparameters



Deep Learning Recipe
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Layered Neural Network

Inception Resnet V2 Network
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Deep Learning Recipe

1. Loss function softmax loss

2. Training / Test data MNIST and CIFAR-10
3. Topology neural network

4. Training algorithm

5. Hyperparameters
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Gradient Descent

Loss function
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Gradient Descent

Compute VL(0))

1 0,:=0, -7V L(0,)

Compute VL(0,)

1 0,:=0,—7V L(0,)




Stochastic Gradient Descent

Compute VL(0))
on random sample

1 0,:=0, -7V L(0,)

| Compute VL(6,)

on random sample

1 0,:=0,—7V L(0,)




Deep Learning Recipe

1. Loss function softmax loss

2. Training / Test data MNIST and CIFAR-10
3. Topology neural network

4. Training algorithm  SGD

5. Hyperparameters tune experimentally
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Differential Privacy



Differential Privacy

(¢, 0)-Differential Privacy: The distribution of the output
M(D) on database D is (nearly) the same as M(D’):

V' S: w; exp(g) - Pr{M(D")ES]+3.
quantifies information leakage /

allows for a small probability of failure



Interpreting Differential Privacy

Training Data




Differential Privacy: Gaussian Mechanism

If £,-sensitivity of f:D—R":
max, ,, [AD) ~AD,< 1,
then the Gaussian mechanism

AID) + N"(0, 6°)

offers (g, §)-differential privacy, where § = exp(-(€6)*/2).

Dwork, Kenthapadi, McSherry, Mironov, Naor, “Our Data, Ourselves”, Eurocrypt 2006



Simple Recipe

To compute f'with differential privacy

1. Bound sensitivity of 1
2. Apply the Gaussian mechanism




Basic Composition Theorem

If fis (¢,,6,)-DP and g is (¢,, 6,)-DP, then
AD), g(D) is (g +¢,, §,+5,)-DP



Simple Recipe for Composite Functions

To compute composite f'with differential privacy

1. Bound sensitivity of f's components
2. Apply the Gaussian mechanism to each component .

%

3. Compute total privacy via the composition theorem %Z"vw




Deep Learning with Differential Privacy



Deep Learning

1.
2.
3.
4
9

Loss function softmax loss
Training / Test data MNIST and CIFAR-10
Topology neural network
Training algorithm  SGD

. Hyperparameters tune experimentally



Our Datasets: “Fruit Flies of Machine Learning”

MNIST dataset: CIFAR-10 dataset:
/0,000 images 60,000 color images

28x28 pixels each 32x32 pixels each
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Differentially Private Deep Learning

Loss function softmax loss
. Training / Test data MNIST and CIFAR-10

1.
2
3. Topology PCA™Ineural network
4
3

Training algorithm  SGD
. Hyperparameters tune experimentally



Stochastic Gradient Descent with

Differential Privacy

Compute VL(0))
on random sample

| Compute VL(6,)
on random sample

0,:=0 VL)) 0,=0,—VL(©,) —

Clip Clip
Add noise Add noise



Differentially Private Deep Learning

Loss function softmax loss
Training / Test data MNIST and CIFAR-10

1.
2.
3. Topology PCA™neural network
4
S

. Training algorithm  Differentiallyprivate SGD
. Hyperparameters  [lifiEleXperimentally




Naive Privacy Analysis

1.
2.
3.
4,

V2log1/5

=)

Each step is (g, 6)-DP

Choose o =

Number of steps T
Composition: (Te, 75)-DP

=4
(1.2, 10°)-DP
10,000

(12,000, .1)-DP



Advanced Composition Theorems



Composition theorem

+¢ for Blue

+.2¢ for Blue

+ ¢ for Red




“Heads, heads, heads”

Rosenkrantz: 78 in a row. A new record, | imagine.



Strong Composition Theorem

1. Choose o = ‘/QIZgl/d =4

2. Each stepis (g, 5)-DP (1.2, 10™)-DP
3. Number of steps T 10,000

4. Strong comp: (/T log1/6, T5)-DP

Dwork, Rothblum, Vadhan, “Boosting and Differential Privacy”, FOCS 2010
Dwork, Rothblum, “Concentrated Differential Privacy”, hitps://arxiv.org/abs/1603.0188



https://arxiv.org/abs/1603.01887

Amplification by Sampling

1. Choose o = V2 lzg 1/9 =

2. Each batch is ¢ fraction of data 1%

3. Each stepis (2¢¢, ¢8)-DP (.024, 107)-DP
4. Number of steps T 10,000

5. Strong comp: (2¢ge+/T log 1/6, qT5)-DP

S. Kasiviswanathan, H. Lee, K. Nissim, S. Raskhodnikova, A. Smith, “What Can We Learn Privately?”, SIAM J. Comp, 2011



Privacy Loss Random Variable
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Moments Accountant

1.
2.
3.
4,
3),

V2log1/5 _

=)

Each batch is ¢ fraction of data 1%

Choose o =

Keeping track of privacy loss’'s moments

Number of steps T 10,000

Moments: (2¢qeV'T, 5)-DP (1.25, 10°%)-DP



Results



Summary of Results

Baseline

no privacy

MNIST 98.3%

CIFAR-10 80%




Summary of Results

Baseline [SS15] [WKC+16]
. reports € per _
no privacy barameter g=2
MNIST 98.3% 98% 80%




Summary of Results

Baseline | [SS15] | [WKC+16] this work

o [ | e2 [i7% (170 [s200
MNIST 98.3% | 98% 80% 97% 95% 90%
CIFAR-10 | 80% - 713% 6/7%




Contributions

e Differentially private deep learning applied to publicly
available datasets and implemented in TensorFlow
o https://qgithub.com/tensorflow/models

e Innovations

o Bounding sensitivity of updates

o Moments accountant to keep tracking of privacy loss
e |essons

o Recommendations for selection of hyperparameters

e Full version: https://arxiv.org/abs/1607.00133



https://github.com/tensorflow/models
https://github.com/tensorflow/models
https://arxiv.org/abs/1607.00133

