
COLT: Constrained Lineage Tree Generation from Sequence Data

Keke Chen and Venkata Sai Abhishek Gogu
Data Intensive Analysis and Computing Lab

Department of Computer Science and Engineering
Wright State University, Dayton, Ohio, USA

{keke.chen, gogu.2}@wright.edu

Di Wu and Jiang Ning
Systems Immunology Lab

Department of Biomedical Engineering
University of Texas at Austin, Austin, Texas, USA

{wudi,jiang}@austin.utexas.edu

Abstract—Lineage analysis has been an important method
for understanding the mutation patterns and the diversity of
genes, such as antibodies. A mutation lineage is typically rep-
resented as a tree structure, describing the possible mutation
paths. Generating lineage trees from sequence data imposestwo
unique challenges: (1) Types of constraints might be defined
on top of sequence data and tree structures, which have to be
appropriately formulated and maintained by the algorithms.
(2) Enumerating all possible trees that satisfy constraints
is typically computationally intractable. In this paper, we
present a COnstrained Lineage Tree generation framework
(COLT) that builds lineage trees from sequences, based on
local and global constraints specified by domain experts and
heuristics derived from the mutation processes. Our formal
analysis and experimental results show that this frameworkcan
efficiently generate valid lineage trees, while strictly satisfying
the constraints specified by domain experts.
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I. I NTRODUCTION

Lineage analysis is a widely used method for analyzing
biological evolution and mutation [1]. With the development
of next-gen high-throughput sequencing techniques, we can
now study mutations at the molecular level via lineage
structures extracted from sequences. Lineage analysis for
sequence data is extremely useful for studying mutation-
abundant biological mechanisms, such as the immune sys-
tem. On virus infection our body can generate numerous
mutated genes in a short period that direct the synthesis of
various antibodies [1]. Studying this complicated mutation
process can help us understand how our immune system
works. Lineage analysis for sequence data has also been
applied to studies on HIV and cancers. We believe it will
be an essential method for many emerging applications of
next-gen high-throughput sequencing techniques.

There are two major categories of algorithms for lineage
tree generation, based on phylogenetic tree [2] and IgTree
[3], respectively. During the early years (e.g., before 2008),
phylogenetic trees have been the major tool for presenting
and analyzing lineages. A phylogenetic tree generation algo-
rithm typically employs a hierarchical clustering algorithm
on the sequences to form a binary tree by progressively
merging close sequence clusters. However, phylogenetic

trees do not well serve the need of molecular-level stud-
ies. Specifically, its structure does not directly tell how a
sequence mutates to another. It only tells the similarity
between two sequences at the leaf nodes and any two groups
of sequences at the internal nodes. It is also impossible to
find which sequence is the origin of mutation and which
sequences are the ancestors of a specific sequence.

Barak et al. [3] proposed the IgTree algorithm to address
these problems. In an IgTree, each node represents a se-
quence. A path from the root to a leaf represents one of the
possible mutation processes. The IgTree algorithm consists
of two phases. With a given root, the first phase will grow the
initial tree based on the minimum mutation cost assumption,
where each node represents an actual sequence. The second
phase will insert artificial internal nodes so that only one-
base mutation happens from any parent to any of its children.
The inserted artificial nodes aims to help researchers better
understand the possible mutation processes.

However, the IgTree algorithm has not addressed several
important features of sequence-level mutation analysis that
are highly demanded by biomedical researchers. First, the
IgTree algorithm assumes the root node is known (i.e., the
corresponding sequence is known to be the root of muta-
tions). This is only valid when researchers know the root se-
quence, for instance, by tracing back the sample that the root
sequence comes from, or using the well-known germline
sequence as the root. However, in many cases it is difficult
to designate the root sequence of a lineage tree. In particular,
mutations in the immune system can happen quickly. As a
result, multiple mutated sequences can be possibly found in
one sample, where the root sequence is difficult to determine.
Second, when constructing a lineage tree, many constraints
may have to be considered and maintained. For example,
sequences from older samples cannot appear as the children
of the sequences from newer samples; the sequences of
isotype “IgM” in the immune system cannot be mutated
from other non-“IgM” sequences. Mutations also follow a
certain pattern that good mutations tend to survive and thus
descendants’ mutations are unlikely to revert to ancestors’
sequences. All these unique requirements demand a new
unified framework for lineage tree construction algorithm.

Scope of Research.To address these unique challenges,



we develop the COnstrained Lineage Tree generation frame-
work for sequence data (COLT) that allows users to formu-
late and integrate various types of constraints, automatically
determines the root sequence, and generates directed lineage
trees. The developed algorithms should be efficient enough
to handle a large number of sequences, and flexible enough
to incorporate various types of constraints.

The basic idea is to formulate the problem as acon-
strained minimum spanning tree (MST) problem, where the
domain-specific constraints can be mapped to sub-structures
(e.g., edges and paths) in the graph. The problem is to find
the MST in this directed graph that satisfies the specified
constraints. The rationale using MST to model the lineage
tree is that small progressive mutations are more likely to
happen in nature than large dramatic ones, which can be
nicely captured by MSTs.

We model the constraints in two categories: the local
ones that can be mapped to single edges and the global
ones that may involve multiple edges (and nodes) such
as paths. It is easy to satisfy the local constraints by
removing the corresponding edges from the graph, while
the global ones are difficult to maintain. We develop an
undirected MST (UMST) based fast approach to generating
the directed trees. Because the directed edges between a
pair of vertices have the same weight in our problem, we
can treat them as undirected edges first and then propagate
the edge directions later. The root determining heuristic and
the constraint checking and maintaining methods are applied
after initial edge propagation. We show that this method is
much faster than the directed MST (DMST) based approach.
Our contributions can be summarized as follows.

1) We propose a general framework that can conveniently
integrate sequence-based constraint formulation and
maintenance into the lineage tree generation process.

2) We have developed a fast lineage tree generation
algorithm that uses an iterative process to maintain
the global constraints.

3) The algorithmic results on real datasets have been
validated by domain experts. We have also conducted
extensive experiments to identify the optimal setting
for the framework to achieve high efficiency, scalabil-
ity, and tree quality.

II. PRELIMINARIES

Sequence.A sequence is simply a string of characters
from the set{‘A’, ‘C’, ‘G’, ‘T’ }, i.e., the four nucleobases,
of a certain length. We use edit distance to define the
similarity between sequences. For a sequencev, we usev[i]
to represent the nucleobase at the positioni.

Graph and Tree. A graph G(V,E) has the vertex (or
node) setV and the edge setE. Let vi (or ui) denote a
vertex (i.e., a sequence) in a graph or a node in a tree,Vi

a subset of vertices (nodes),ei an edge, andEi a subset
of edges. We use|Vi| and |Ei| to represent the size of the

sets, respectively. A vertexv can also have a number of
associated attributes, denoted asv(a1, . . . , am). A directed
edgeei from the vertexui to vi is also represented in the
form ui → vi, whereui is called thetail andvi thehead. An
edgeei is also associated with a weight denoted aswi and
thus represented as a three-tuplee(u, v, w) for tail vertexu,
head vertexv, and weightw. A path in the graph fromu to
v is represented asu v.

Minimum Spanning Tree (MST). A MST algorithm
is to find a tree with the minimum sum of edge costs
from a weighted undirected or directed graph. The popular
MST algorithms will be adopted in our framework, such as
the Kruskal’s algorithm [4] for undirected graphs and the
improved Edmonds’ algorithm [5] for directed graphs.

III. COLT: A F RAMEWORK FORGENERATING

CONSTRAINED L INEAGE TREES

We will first give the definition of the constraints, then
present the details of the algorithm, and finally formally
analyze the costs of different implementation approaches.

A. Constraints

Two types of constraints are defined in the framework.
Local Constraints. We consider local constraints are

those that can be applied to individual edges. We further
classify the local constraints to the “forbidden” and “must-
have” types. The forbidden ones are mapped to the edges
that should be excluded from the result, while the “must-
have” ones are pre-included in the MST before the MST
algorithm starts.

Specifically, for an edgee(u, v, w), a “forbidden” con-
straint is a boolean functionf(u, v, w) that checks certain
relationships between the attributes ofu and v and the
weightw to returntrue for a constraint violation. A specific
example is that, in the lineage tree the sequence from a new
tissue sample cannot be the parent of another sequence from
an old sample. This constraint can be specified as

f0(u, v, w) = (u.timestamp>v.timestamp)

and if f0(u, v, w) is true, the edgeu → v should be
excluded. For another example, a sequence of isotype “IgM”
in antibody mutation cannot be the child of another isotype,
which is specified as

f1(u, v, w) = (v.isotype==IgM and u.isotype!=IgM)

similarly, if f1 is true, the edgeu→ v should be excluded.
Global Constraints. Global constraints are those in-

volving more than one edge (e.g., a path in the tree).
We define such a constraint with a boolean function
g({v1, . . . , vk}, {e1, . . . , em}) for a subset of vertices and
edges. For example, domain experts have observed that in
most cases if a mutation lineageu → v → s exists, it
is very unlikely that the grandchilds of u recovers from
the previous mutation at the positioni. This can be further



extended to old ancestors ofs. Formally, this constraint can
be defined as

g(r v → s) (1)

= ∃i, u ∈ r  v andu[i] 6= v[i] andv[i] 6= s[i]

andu[i] == s[i], i = 1..m,

If g()̇ is true for anyv’s ancestoru, the constraint is violated.
It would be difficult to maintain such global constraints on

the complete graph as we have done for local constraints. In
fact, it is simply too expensive to just check constraints on
the graph. For example, let’s assume the global constraints
only involve two-hop paths likeu → v → w. Then, the
number of candidates will be|V |(|V | − 1)(|V | − 2) in the
complete graph. As a result, we would like to maintain the
global constraints on a generated tree instead.

Algorithm 1 Sketch of COLT Framework
1: W ← compute the distance matrix for each pair of

sequences, wherewij is the weight of the edgeeij
2: f0()̇← the “forbidden” constraints;
3: f1()̇← the “must-have” constraints;
4: g()̇← global constraints ;
5: E0 ← all edges of the complete graph;
6: E0 ← E0 − {eij, iff0(eij) == true}; // valid edges
7: E1 ← {eij , iff1(eij) == true}; // initial set of edges

for the MST
8: if E1 contains cyclesthen
9: report error and return;

10: end if
11: repeat
12: E2 ← generateUMST (E0, E1)
13: T ← generatedirected tree (E2);
14: E3 ← check global constraints(T , g()̇); // return a

set of edges to be removed
15: E0 ← E0 − E3

16: until E3 = ∅// all constraints are satisfied
17: returnT

B. Framework Design

With the definitions of constraints, we are ready to dis-
cuss our framework in more details. Assume there areN

sequences. Letvi, i = 1..N represent the sequences, andeij
represent the edgevi → vj . The algorithm first removes
the “forbidden” edges and initializes the MST algorithm
with the “must-have” edges. Then, it enters the iterations,
each of which will generates the MST, derives the directed
lineage tree, and checks the global constraints, until all
global constraints are met. Algorithm 1 gives the sketch of
the framework.

C. Tree Generation With UMST

Since the directed edges between a pair of vertices have
the same weight in our problem, we can apply undirected

MST algorithm first, and assign the edge directions later.
In the following, we describe the method of assigning edge
directions and determining the root.

To grow a directed tree from a UMST, we start propa-
gating directions from the existing single-directed edgesin
the UMST. Edge propagation is an iterative process. With
a direction-determined edgeu → v, for any neighbor ofv,
sayw, we can decide the directionv → w. It continues by
checking the newly reached nodes and so on, until no more
nodes can be expanded. The result of propagation has to be
validated so that no vertex is the head of more than one
edge. Figure 1 and 2 show an invalid result and a valid one,
respectively.

Conflicting vertex 
with indegree>1

Initial single-directed edges 
based on local constraints Propagated

Figure 1. An invalid result after
direction propagation.

Initial single-directed edges 

A

B

Propagated

Figure 2. A valid edge propagation
result. NodeA is chosen as the root.

As Figure 2 shows, after the initial propagation the
directions of some bidirectional edges are still undetermined,
which will be finally determined after the root is selected.
We use the following heuristics to rank the candidate nodes
and determine the root node.

• For a single-directed edgee : u → v, v cannot be the
root;

• The remaining valid candidate nodes are ranked by their
outdegrees in the tree; the node of the highest outdegree
becomes the root; for tied top candidates, randomly
select one as the root.

In Figure 2, the nodesA-E are the candidates of root.
Since the nodeA’s outdegree 4 is the highest among all
candidates’,A is chosen as the root. As the outdegree
is mapped to the diversity of mutations started from this
node, this algorithm prefers the root as the center of most
diversified mutations. Once the root is selected, the same
propagation process is applied starting from the root. The
following proposition says that this algorithm will not leave
any edge direction undetermined.

Proposition 1: With a valid initially propagated tree, once
the root is selected and direction propagation is applied,
every edge’s direction will be uniquely determined.
The proof is straightforward and thus we skip the details
due to the space limitation.

D. Maintaining Global Constraints

The algorithm checks the global constraints after the
directed tree is formed. It first traverses the tree to setup
the root-to-node mutation profile for each node. Then, an-
other traversal is conducted to check any nodev with its
parent node’s and grandparent node’s mutation profile to see
whether the constraint is violated. A node’s mutation profile



M is an array of the sequence length, where each element
M [i] records the bases having shown in the path from the
root to the node in the positioni. If a violation is detected,
the algorithm will try to break the pathr  u → v using
a certain policy. We will test two policies in experiments.
(1) Choose the end edgeu → v to break. The intuition
is to maintain the stability of the generated tree so that
the iterations can converge quickly. (2) Choose the largest-
weight edge in the path to break. The intuition is to maintain
the overall cost of the tree as small as possible. We will use
experiments to evaluate the validity of these methods. The
primary goal is to obtain minimum-cost and valid lineage
trees that do not break one lineage to multiple1.

It is easy to verify that if a common UMST algorithm
(e.g., the Kruskal’s algorithm) withO(N2 logN) complex-
ity is used, the overall complexity of the COLT algorithm is
O(dN2+ tN2 logN), whered is the length of the sequence
and t is the number of iterations.

IV. EXPERIMENTS

The experiments’ goal is twofold: (1) test the algorithms
on the real datasets and validate the results, (2) evaluate dif-
ferent framework settings to find the best one and understand
the actual cost distribution with simulated datasets.

Implementation. We implemented the algorithms with
C++. The local constraints include the time ordering and
the Ig* dependency. The global constraint is the path-based
mutation rule. These constraints have been discussed in
Section III-A. The sequences in the real datasets are obtained
from an open-source sequence processing pipeline (SeqPrep:
github.com/jstjohn/SeqPrep) and some in-house processing
tools. Edit distance is used for computing pairwise sequence
distances. We also implemented a version of DMST-based
algorithm for comparison, using the optimized implementa-
tion of Edmonds’ algorithm (edmonds-alg.sourceforge.net).
For each node, the DMST-based algorithm generates the
directed tree using that node as the root and then checks
the global constraints. The final tree is selected among the
valid ones using the optimal root selection heuristic.

Datasets.Two real datasets were from our recent study
on human antibody repertoire for the malaria disease [6].
These datasets are used to validate the generated lineage
trees. We will compare the trees manually constructed by
domain experts and those generated by our algorithm.

We also generate a bunch of simulated sequence datasets
for performance and tree-quality evaluation. The process of
generating sequences mimics the mutation process with a
preset depth of mutation treed (i.e., the longest path from
the root to the leaves) and the upper bound of mutations
m (i.e., the number of mutations is randomly chosen in
the range[1,m]). The algorithm will start with a seed

1Note that we assume the set of sequence under study forms one lineage.
For the cases where multiple lineage may exist, the best way is to apply
clustering first and then apply our framework on each clusterof sequences.

Figure 3. A comparison between manually constructed trees (left) and
automatically generated ones (right). The automatically generated trees are
visualized with an in-house lineage tree visualization tool.

sequence from a real dataset to form the sequence pool.
In each iteration, a sequence is randomly drawn from the
pool and then randomly mutated, satisfying the restriction
of mutation depth and upper bound, and also the local
and global constraints defined in Section III-A. The new
sequence is then added to the pool for future iterations. In
our experiments we used = 5 andm = 10 to generate all
the simulated datasets.

Validation with Real Datasets.These two real datasets
are quite small, having 12 and 26 sequences, respectively.
Thus, they are appropriate for domain experts to manually
analyze the mutations and construct the lineage trees. Figure
3 shows the comparison between the manually constructed
trees (left) and the automatically generated trees (right). For
the first dataset the manually constructed tree is identical
to the automatically generated one. For the second dataset,
the three internal nodes on the backbone (i.e., the major
mutation path) match exactly, while only a couple of leaf
nodes are placed to different branches. The generated tree
also leads to the same analytical result for the domain
problem. Thus, the domain experts consider both are valid
lineages.

Results on Simulated Datasets.The second set of experi-
ments focuses on the time costs of algorithms and the quality
of generated trees. Batches of simulated datasets are used
for evaluation. For each number of sequences, we randomly
generate multiple sets of sequences and obtain the average
values and standard deviations. We will first look at the effect
of the edge breaking methods for maintaining the global
constraints, and then compare the UMST-based method with
the more expensive DMST-based method. Finally, we will
investigate the cost distribution over the major components
in the framework.

Since our goal is to achieve minimum cost lineage trees
that satisfy all the specified constraints, we use the sum
of edge weights as the quality of the tree and aim to find
valid trees with smaller sums as possible. According to our
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Figure 5. Comparing the quality
of trees generated by UMST and
DMST. Both generate similar qual-
ity trees.
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Figure 6. The cost comparison on
the UMST and DMST methods.

50 100 150 200 250
0

10

20

30

Number of Sequences

T
im

e
C

o
st

(S
ec

o
n

d
s)

Distance Matrix
Tree Generation

Figure 7. Overall cost distribution.
Computing distance matrix is still
dominating.

method of generating the simulated datasets, each dataset
exists one valid single lineage tree that contains all the
sequences. Trees that do not contain all the sequences are
considered invalid results.

The first experiment is focused on two edge breaking
methods: Cut-the-End and Cut-the-Max for maintaining
the constraints. Specifically, we use the UMST method to
generate trees and compare the number of iterations for
each method that is proportional to the cost of the tree
generation process. Figure 4 shows that Cut-the-Max has
overwhelmingly larger costs than the other. Furthermore, we
find that the Cut-the-Max very frequently leads to invalid
trees if the dataset size is larger than 50. Among the sizes
of 50, 100, 150, 200, 250 sequences, we find that it only
constantly generates valid trees for datasets of size 50.
Overall, it can find valid results for only 11 of 25 datasets,
while the Cut-the-End can find valid results for 24 of 25.
Therefore, we consider the Cut-the-Max method is not an
effective method for our framework.

Next, we study the use of UMST or DMST as the tree
generation algorithm. We use the Cut-the-End method to
maintain the global constraints. Figure 5 shows that both
methods can find trees of about the same quality. However,
the DMST-based method is much more expensive than the
UMST-based method, as shown in Figure 6. We conclude
that the UMST-based method should be the method of choice
for the framework.

Finally, we consider the cost distribution of the two major

components in the framework: distance matrix computation
and tree generation. We use the UMST-based method to
generate the trees and the Cut-the-End method to maintain
the global constraints. Figure 7 shows that with the efficient
UMST-based method the cost of computing distance matrix
will become the bottleneck in analyzing a practical number
of sequences.

V. CONCLUSION

Automatically generating lineage trees is appealing to
many sequence-based biomedical studies. However, it
presents several unique challenges, especially for generating
trees under constraints. In this paper, we establish the
constraint-based lineage tree generation framework COLT
that can adapt to different types of constraints (e.g., local
or global) and generate rooted and directed lineage trees.
The algorithm uses the heuristic that evolutions in nature are
more likely driven by a series of small mutations rather than
large dramatic ones, which is modeled with the minimum
spanning tree (MST) of the complete sequence-sequence
mutation graph. We develop an iterative UMST-based algo-
rithm to maintain the global constraints. Experimental results
show that the proposed approach is efficient and can generate
high-quality lineage trees.
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