Modeling the Progress and Efficacy of Wisconsin Computer Science Education
Alexander Rambasek, Sujeeth Ramagoni, Dr. Dennis Brylow

Motivation
- Understanding of computer science fundamentals increasingly more relevant, but high schools do not adequately teach CS
- Lack of CS educational standards and departmental infrastructure results in messy, incomplete records

Purpose
- Identify important statistics: how many high schools teach CS, how many students take CS, and how many licensed CS teachers are there
- Analyze how CS has grown in the last few years
- Investigate equity of access to CS
- Guide unlicensed CS teachers to pathways to licensure
- Inform state and local educational policy-making

Results
- CS enrollment has sharply increased in recent years
- Growth especially seen in courses palatable to students with minimal CS experience
- Lagging CS licensure acquisition casts some doubt on quality
- Economic/racial equity in CS largely absent, mirrors U.S. trends

Challenges
- The vast majority of this data is noisy, incomplete, outdated, and often erroneous – reflective of poor data collection protocols
- Must compensate for this with quantity and variety of records

Conclusions
- Likely more funding required to stimulate growth of CS departments
- A standardization of CS courses and data collection would open up more avenues for research

Future Work
- Machine learning techniques may be able to predict CS growth trends
- Problem can be viewed as a supervised, binary classification question (does this school have CS enrollment?)
- Requires a larger annotated dataset than currently available; relies on standardization of information collection

This material is based upon work supported by the National Science Foundation under Grant #1923597

2018-19 CS High School Course Density

<table>
<thead>
<tr>
<th>Course Name</th>
<th>With licensed teacher at school</th>
<th>Without licensed teacher at school</th>
</tr>
</thead>
<tbody>
<tr>
<td>AP Computer Science A</td>
<td>35</td>
<td>32</td>
</tr>
<tr>
<td>AP Computer Science Principles</td>
<td>23</td>
<td>19</td>
</tr>
<tr>
<td>Exploring Computer Science</td>
<td>37</td>
<td>12</td>
</tr>
<tr>
<td>Computer Programming</td>
<td>36</td>
<td>35</td>
</tr>
<tr>
<td>Mobile Applications</td>
<td>45</td>
<td>6</td>
</tr>
<tr>
<td>Computer Game Design</td>
<td>18</td>
<td>18</td>
</tr>
</tbody>
</table>