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Objectives

 Use Gaussian stochastic processing (GaSP) to approximate computer models.

* |ncorporate experimental data to account for bias in the model.

e Utilize Markov chain Monte Carlo (MCMC) techniques to select parameters
for the computer model that best match field data.

Background

Hazard mapping is an essential tool used to estimate the risk faced by residents
living in areas susceptible to natural disasters. Computer models are often used in
situations where experimental data is costly or impossible to obtain. However,
accurate computer models can take hours or even days to compute, which is
problematic when attempting to validate the model, a procedure that requires
running the model hundreds or thousands of times.

We analyzed statistical surrogates using Gaussian stochastic process (GaSP)
approximations that can be computed more efficiently than computer models,
and aim to apply this technique to validate landslide models using data gathered
from previously conducted simulations.
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Figure 1: 2001 landslide affecting the Las Colinas
neighborhood of Santa Tecla, El Salvador?.

Approximating Computer Models

A Gaussian process approximation can be used as a statistical surrogate for a
computer model. The surrogate takes the form of a multivariate normal
distribution with conditional mean m(x*) described below?34:

m(x*) = W(x*)-0+R(x*)-R(B)* - (Y - X6)
where:
X — inputs (design points); Y — output
W(x*) — linear regression of x*
0=(X"R(BX) XR(B)Y
R(B) — covariance matrix with elements defined by

rx,x )= Jexpl=,[x,—x |)

R(x*) — vector with elements r(xl,,x*)

X — X,
/ j

Contact

John Bihn

Department of Mathematics and Statistics
Williams College

Email: john.r.boihn@williams.edu

Finding Parameters for Computer Model

In order to compute m(x*), we must select values for the correlation parameters
B. One selection method is to choose the parameters that optimize the following
maximum likelihood equation:

L(B) = RIB) I XTR(B) X [T (S*(B)) "
with S(B)=(Y = X0) R(B) (Y - X6)
Further, the selection process can be improved by incorporating a reference prior

into the optimization equation. Below is an example where a GaSP is used to
approximate an arbitrary function.
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Figure 2: Approximation using 11 design points.

After obtaining an approximation for the computer model, the model can be
compared to data obtained through experiments or simulations. This field data is
used to determine the bias in the model, which reflects the difference between
the model and “reality” (as indicated by the field data). The bias function can be
calculated using another GaSP, adjusting the covariance matrix to include
measurement error. Below is a example of a bias-corrected prediction compared
with a prediction made solely using the model approximation.
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Figure 3: Model approximation adjusted for bias.
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Markov Chain Monte Carlo (MCMC) Process

Markov chain Monte Carlo (MCMC) processes can be used in situations
where computing a density function is otherwise computationally difficult.
We aim to model the stationary distribution mt(x) using the following

process.

1. Select the first element in the Markov chain x,
2. Tofind x,,, sample a new value z from the sampling distribution q(x,,z)
3. Setx.,, =z with probability t(x) *q(x,,z) /qa(z,x,) * m(x). Otherwise, set x_,, = X

A demonstration of this process is shown below.
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Figure 4: The target distribution> (left) and coordinates from MCMC samples as a
histogram (center) and as a plot over time (right).

Conclusion

The model that we have utilized allows the user to approximate and map hazard
functions in a way that was previously not possible. We intend to move forward
by calculating an approximation of a computer model that aims to predict the
behavior of landslides.

With this approximation, we can adjust for the bias in our model by utilizing data
obtained through simulations, as shown in Figure 5. Using MCMC techniques, we
can also calculate a range of values for the parameters in our computer model
that best fit the field data.

Pile height result for t = 0.3 sec

Figure 5: Experimental data from landslide simulation®.
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