Optimizing Car Production with Game Theory Elias Kehr, Eastern Mennonite University Advisor: Kim Factor

INTRODUCTION

A car company's profit is optimized using game theory given that they can produce:

CREATING UTILITIES

- Game theory is applied to the problem
 - Two players: car company and the consumer
 - Utility functions give a numerical value to individual preferences

> A utility function is created for the car company: $U_c(v) = I_v - M_v + (T_v/n)$ where $U_c(v)$ is the utility for selling vehicle v I_v is the income for selling the vehicle M_v is the cost of manufacturing the vehicle T_v is the tax credit the company receives for making the vehicle

n is the number of vehicles manufactured

Then a utility function for the consumer:

 $U_k(v) = C_v + P_v \cdot \varphi_k + F_v \cdot \sigma_k + R_v \cdot \alpha_k$ $U_k(v)$ is the utility of buying the vehicle for consumer k C_v is the up-front cost of the vehicle

 P_{ν} is how much less pollution the vehicle emits than a comparable gas-powered one F_{ν} is the yearly fuel costs for the vehicle R_v is the range of the car (electric only)

 φ_k, σ_k , and α_k are weighting coefficients based on the consumer

PAYOFF MATRIX

> The payoff matrix represents what each party gets out of each sale scenario

		Consumer	
Car Company		Buy Vehicle	Don't Buy
	Gas-Powered only	$(U_c(g), U_k(g))$	(- <i>M</i> _g , 0)
	Hybrid only	$(U_{c}(h), U_{k}(h))$	$(-M_h, 0)$
	Electric only	$(U_c(e), U_k(e))$	$(-M_e, 0)$

A java program is created and applied to calculate the car company's total profit for marketing every combination of these vehicles

> The algorithm is to be applied to both the Nissan and Ford Motor Companies

Concumor

CONCLUSIONS & FUTURE WORK

Initial trials indicate that:

- profitable
- > The program requires further refinement and testing on more data
- Future work could include:
- > Expanding the model to incorporate two car companies as competing players
- > Including plug-in hybrid vehicles
- > Testing more strategies in the year-to-year model

pp. 686-705

For Ford, focusing on gasoline vehicles is most

REFERENCES

1. Hidrue, M.K., Parsons, G.R., Kempton, W., and Gardner, M.P., "Willingness to pay for electric vehicles and their attributes", Resource and Energy Economics, Vol. 33, No. 3, 2011,