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1 Introduction

The JavaTAL project is an effort to provide infrastructure for a safe, fast system for transporting
object-oriented programs from an untrusted source to a protected destination. A comparable
mechanism is currently used by Java developers everywhere; Java is compiled to Java byte codes,
a machine-independent, stack-based language, and is then run on Java Virtual Machines that try
to guarantee certain safety properties for the code consumer. A very serious drawback to the Java
Virtual Machine system is that it is shockingly slow, and continues to resist optimization techniques
that have been successfully applied to other compilers for decades. An even more serious drawback
to the JVM system is that it isn’t truly safe either; dangerous errors have been found in the JVM
language, and there still is no rigorous proof of the JVM’s correctness, despite years of effort.

The JavaTAL project aims to construct a new machine-independent, assembly-like language,
capable of encoding common object-oriented languages while still allowing aggressive optimizations
to be performed. An integral part of this JavaTAL language will be type-soundness. Any program
encoded into JavaTAL can be run through a simple verifier which has been rigorously proven
to accept only type-sound programs. While type-safety is only the beginning of comprehensive
software safety, it is a critical foundation upon which all other mobile code safety mechanisms can
depend.

This paper does not describe a completed system. It is a snapshot of a design in progress. While
many components of the system have been completed in the past seven months, the overall scope
of this work is such that many more months of design, implementation, and testing remain. Figure
1 is a high-level road map of the JavaTAL project. This work builds upon the advances made
by the TAL group at Cornell, (see Section 3 for references,) which currently has no support for
objects. Our goal is to complete the design for a Typed Assembly Language capable of supporting
“bounded existential types,” which are a general description of objects and classes that transcend
most commonly used object models. When our design is complete, we will be able to encode not
only Java programs, but most other object-oriented programming languages as well.

Of the three major milestones in the JavaTAL project, we have passed the first, and are rapidly
approaching the second. We have completed our prototype compiler for translating a Java subset
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into a Typed Assembly Language, as well as an interpreter to test the results of this compiler. After
reaching this first milestone, “JavaTAL v0,” we discovered that Java’s name-based type system
is not strong enough to prove type-safety at an assembly language level. The second milestone
will be to borrow enough structure from the bounded existential types to prove type-safety for
JavaTAL version 1. This is all but done; the current design appears to have all of the necessary
safety properties, but time constraints and a rapidly improving type-system design have precluded
completion of a formal proof.

The last major phase of the project will be to convert completely to the bounded existential
type system. This final system, which we have temporarily dubbed “ObjectiveTAL,” will support
all of the relevant object capabilities of Java, but leave behind many of its failings.
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Figure 1: A Road map of the JavaTAL Project

Briefly, the major sections of this paper are as follows.

Section 2 is a broad survey of the mobile code arena. Although relatively new, the study of
mobile code is already a large, multi-faceted area with many diverse open questions.

Section 3 is an in-depth examination of previous related work in the field of Typed Assembly
Languages. Typed Assembly Language is a promising new idea in the mobile code arena; there
are only a handful of prototype mobile Typed Assembly code systems in development, and none of
these has progressed to the point of supporting object-oriented languages yet.

Section 4 is a status report on our JavaTAL system.

Appendices A, B, and C give detailed technical information about our completed compiler, and
the draft design for JavaTAL version 1.

Appendix D, “Type Systems Explicated for Non-Theoreticians,” is a short explanation of the
type-theory notation commonly used by theorists. While the theoretical notation used in this paper
is extensive, much of it can be conveniently mapped to concepts familiar to mainstream computer
scientists who do not derive lambda calculus type judgments on a daily basis.
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2 Mobile Code

As platform-independent languages like Java become progressively more prevalent in the comput-
ing world, questions of safety and security for mobile code become more pressing. This section
examines several possible frameworks for supporting secure mobile code, particularly in Java.
Proposed possibilities have ranged from redesigning or enhancing the Java Libraries or Virtual
Machine to allow software interposition [WBDF97], to proof-carrying code with certifying com-
pilers [NL96, Nec97, NL98], to Java Language changes to support information flow annotations
[ML97, Mye99], to type-safe assembly language [MWCG97]. These widely disparate methods each
have their advantages and disadvantages, and each aims to satisfy a particular class of safety
concerns.

In order to implement a full scale, comprehensive mobile code system, the entire gamut of safety
concerns must be covered adequately. This section discusses the advantages of the four techniques
above, and explores the need to combine these techniques in order to address the diverse security
requirements of an entire mobile code system.

2.1 What Does a Mature Mobile Code System Require?

Memory protection is a must for any mobile code system. Untrusted code cannot be allowed to run
rampant on the system stack, or reference protected memory on the host system; without memory
protection, any other safety properties we wish to discuss are invalid.

Any mature mobile code system will need a notion of secure services. In order for mobile code
to perform any non-trivial tasks, it must be able to interact in a safe, regulated manner with the
services provided by the host system.

But merely protecting memory and securing services will probably still not be enough. It would
really be desirable to set down semantic limitations for code — to in some way ensure that the code
“does what it is supposed to do.” To be sure, semantic properties like termination are undecidable
in the general case; but that does not mean that sufficiently sophisticated mechanisms could not be
devised for stricter language subsets that would provide a mobile code system with some guarantees
of behavior.

A large-scale mobile code system needs a mechanism for controlling the flow of information.
The web of trust in a mobile-code system could rapidly become untenable without some mechanism
for explicitly annotating where information is and is not permitted to flow.

And finally, a mobile-code system needs speed. So-called “Active Networks,” which toss around
mobile “agents” to manage traffic and services, are already starting at a performance disadvantage
to traditional passive networks, because the active part of the active network requires additional
bandwidth, computational power, and complexity of design. As the entire point of active networking
is to tangibly improve overall network performance in certain tasks, the cost of mobile code must
not outweigh the benefit.

2.2 The Need For Software Protection

In Wallach, et. al’s “Extensible Security Architectures for Java,” [WBDF97], the first claim the
authors advance is the need for software security mechanisms instead of hardware protection. One
clear overarching argument in favor of software protection is portability. Committing to a particular
hardware security paradigm also constrains code to a particular architecture, or at best, a subset of



the available platforms. This is inherently contrary to the hardware independence that has driven
Java’s success in the first place. It is even less practical in an environment where mobile code is
desired, because assurances of safety must be given for each class of desired security, multiplied by
each kind of hardware.

If we ignore the portability argument, (which is quite conceivable, considering the vast number
of Internet users currently using the IA-32 architecture,) there is the issue of performance overhead
for hardware security measures. Having instrumented a JVM, the authors estimated the time
spent by normal programs crossing software “trust boundaries” to be 0.5% of overall runtime. If
this percentage is multiplied by the factor of 1000 slowdown caused by an Intel x86 Task Switch,
a program using hardware memory protection (instead of software protection) would spend 6-8
seconds crossing hardware trust boundaries for every second of productive computation [WBDF97,
pp-116-117].

In essence, using the TA-32’s built in hardware features for memory protection would be like
enforcing the traditional sand box model — except that now there will be a twelve-person committee
standing next to the sand box, which must debate and approve every grain of sand prior to its
use. While the authors’ ballpark estimate of slowdown caused by this naive scheme is plausible, it
is difficult to believe that the selection of the Intel Task Gate, (quite possibly the most intricate
and time-consuming micro-code sequence ever devised, [Int99]) is a representative model for the
implementation of hardware memory protection for Java. However, those issues aside, there is
certainly need for safety guarantees without hardware dependence.

2.3 Language Level Interposition

Most papers on software protection concentrate on memory protection, guaranteeing that software
does not run amok in a shared memory space, or begin executing arbitrary, unrelated, or even
supposedly protected code. Methods such as software fault isolation, proof-carrying code, and
type-safe languages are all designed to enforce memory protection. Wallach and colleagues argue
that while certainly necessary, memory protection alone is not sufficient to guarantee the security
of a mature system. Comprehensive security requires the notion of secure services, subsystems for
file I/O, GUI manipulation, network I/0O, etc., that can be trusted not to compromise the entire
system.

The authors outline three separate concepts for implementing secure services in software. All
three methods are a form of interposition, a technique that routes calls to secure services through
a trusted reference monitor of some sort. Also, all three methods assume the presence of digital
signatures to identify the principals responsible for mobile code.

Capabilities, the first of the three software security mechanisms [WBDF97, p.119], are encap-
sulating entities that regulate access to services according to some security policy. The idea is that
an untrusted code segment would be able to access only those secure services for which it was given
a capability upon startup. In addition, untrusted code could request a capability from a central
broker, which would dole out capabilities based upon the principal signature of the code, and some
internal security policy.

The chief advantage of capabilities in Java is that they are easily implemented in the current
language. The chief disadvantage is that all of the secure services openly available in the current
Java runtime libraries would have to be hidden, so that the only permissible access path would be
through the capability system.



Extended Stack Introspection, the second proposed software security mechanism [WBDF97,
p-120], is a scheme by which calls to secure services are accepted or denied based upon a search
of the call stack for certain “privileges”. Untrusted code would acquire a privilege by calling
an EnablePrivilege() method, which would consult a policy engine to determine if the privilege
should be allowed. A DisablePrivilege() method would allow the privilege to be discarded. A
CheckPrivilege() method would check the call stack for the privilege of a particular secure service.

The chief advantage of Extended Stack Introspection is that privileges are contained; unlike the
capability system, one piece of untrusted code cannot pass a privilege to another piece of untrusted
code from another principal. The chief disadvantage of this scheme is that a modified JVM would
be required to properly handle any older code that was written prior to the adoption of the privilege
system.

The final proposed software mechanism [WBDF97, p.122], Name Space Management, would
interpose the Java Class-Loader to change the visibility of secure services from untrusted code.
The new class-loader would use a “configuration,” a mapping of old Java class names to new class
names. In this way, all of the security decisions for a program are made prior to execution, at
link-time.

The chief advantage of this system is that there is no runtime overhead from the security
mechanism itself — only the overhead of the interposition itself. Also, third-party trusted subsystems
could be distributed with untrusted applets. The chief disadvantage is that this mechanism may
not be possible with newer versions of Java, as applets may be able to inspect all of the available
class libraries to find the new name of the secure service they seek.

The authors include an analysis and comparison of the three methods using various criteria for
performance, effectiveness, and compatibility [WBDF97, pp.123-127]. In the end, they conclude
that none of the three methods are perfect — each has its respective advantages and disadvantages.
Ultimately, the answer for providing secure services for Java code is probably a clever combination of
the three mechanisms, but the exact nature of that merging remains an open question. In addition,
none of these methods help at all with the prerequisite memory protection, and all require changes
to the JVM or Java Libraries across all of the hosts in the mobile code system.

2.4 Proof-Carrying Code

In 1996, Necula and Lee proposed “Safe Kernel Extensions Without Run-Time Checking,” [NL96], a
technique for embedding a formal proof of correctness in mobile code, which could then be verified
upon arrival at its destination. In 1997, Necula refined this mechanism called “Proof-Carrying
Code,” [Nec97], and showed what such a framework might look like. In 1998, Necula and Lee
revealed a working, non-trivial implementation of this concept in “Design and Implementation of
a Certifying Compiler,” [NL98].

In a proof-carrying code system, the ultimate destination of mobile code, called the “code
consumer” would publish a safety policy of some type. In this case, the safety policy would consist
of three parts [NL96, p.3]: a verification condition generator, called a safety predicate, which would
compute a first-order logic predicate for the code to be certified; a set of initial axioms to be used
by the safety predicate; a precondition, to indicate the calling conventions under which the proof-
carrying code will be invoked by the consumer. In essence, it is the function of the safety policy to
describe completely what is considered “safe” behavior by the code consumer.

The code producer would construct a safety proof to accompany the mobile code to its destina-



tion. Upon arrival at the destination, the proof is checked against the safety policy of the consumer,
and the code is validated.

The key benefit of this approach is that the mobile code is, in some senses, tamper-proof. While
the code or the proof can be maliciously forged or altered in transit, the code consumer will only
accept the code if upon arrival the proof still guarantees the safety policy, and the code still matches
the proof. This alleviates the need for encryption, and other verification mechanisms to establish
relationships of trust between code sources and destination. Furthermore, this system can actually
detect many kind of compiler errors, and does not require the compiler to be in the trusted code
base.

The authors have concentrated on fine-grained memory protection, but their scheme could be
extended to far more complex notions of secure services. It is not difficult to see how a code
consumer could setup facilities and security policies for handling a system of capabilities, or other
semaphore-based access to protected resources [NL96, pp.5-6].

Necula and Lee have implemented their proof-carrying code system in the context of packet-
filtering. Packet filters are an interesting case where other approaches to safe code are already in
use. In addition to being able to compare the proof-carrying code system to other previous systems,
working in this venue has the added bonus of restricting the complexity of possible programs. The
packet filters are greatly limited in their memory access, and all code branches are forward. As
expected, hand-coded assembly language packet filters carrying proofs were able to outperform
other more costly schemes, such as the BSD packet filter architecture, Software Fault Isolation and
implementations in a more restrictive, safe high-level language [NL96, p.10]. The start-up cost
of verifying the proof is negligible when amortized across the speedup of assembly code with no
run-time overhead of any kind.

The chief obstacle to this type of approach is the difficulties and overheads associated with the
proof itself.

In the first place, Necula and Lee’s experience thus far has shown that the size of the proof
is usually 2 to 3 times the size of the actual code [NL96, p.8][NL9I8, p.342]. In a mobile code
situation, a 200% to 300% overhead for transmission and buffering could be prohibitively large.
Unfortunately, a proof can in theory be exponentially large in the size of the code, and the task of
constructing a proof for a general program can be undecidable [NL96, p.13]. While this has not yet
shown itself in the authors’ testing, it could ultimately prove to be a serious flaw if such as system
were deployed on a large scale.

In the second place, this kind of formal proof technique requires limitations on control flow. In
the packet-filter application, all branches were limited to forward — in other words, no loops. If
loops are permitted, then explicit invariants must be included, in order to precisely characterize
the nature of the loop. This process is not readily automated, and may require the programmer
to specify the invariant at the source level. This would be an annoyance to developers, although
it should be noted that it is an excellent software engineering practice, particularly if the author
wishes to guarantee or verify certain code properties.

These difficulties aside, Necula and Lee have implemented a certifying compiler for a type-
safe subset of C, which is able to generate proofs, and verify them, without the tedious manual
intervention characteristic of earlier theorem-proving systems [NL98].



2.5 Confinement: Sometimes Mobility is a Bad Thing

In the press for platform independence and mobile code, it is easy to forget that not everything in a
mobile code system should be mobile. In addition to services that need to be secure, most systems
also have information that must be secured. If the system uses capability-style secure services,
what is to prevent semi-trusted code that has acquired a capability from passing it on to another
entity that the code consumer would not have trusted in the first place? The problem of confining
information and controlling its propagation is addressed in Myers and Liskov’s “Decentralized
Model for Information Flow Control,” [ML97], and Myers’s “JFlow” paper [Mye99].

JFlow is an extension to Java, allowing the developer to explicitly annotate permissible infor-
mation flow. Such a system can be used not only to facilitate capability confinement, but also to
confine all kinds of sensitive data.

The JFlow flow annotations appear in the form owner:reader appended to the types of variable
declarations. This system allows multiple owners to specify by name all of the permitted readers.
As a result, the effective reader set is the intersection of the readers specified by every owner. In
other words, a reader can only access a variable if all of that variable’s owners agree that the reader
is permitted. In addition, principals can declassify data safely, thus loosening their own protections
without weakening the policies of others.

Although JFlow allows dynamic checks to be used for granting authority, the normal mode of
operation is to performs all checks statically, yielding no run-time overhead. This is a substantial
improvement over comparable mechanisms, such as mandatory access control, and allows a finer
granularity of control over information as well.

Of special interest is the decentralized nature of the JFlow model. Unlike many schemes, which
require a centralized authority to dole out capabilities or their equivalents, the JFlow model allows
principals to protect their private data, without having to establish relationships of trust. This
is especially beneficial in a mobile code system, as any kind of central authority would require
additional bandwidth, and in itself would become an additional security concern.

As Myers is quick to point out, [Mye99], there are still covert channels of information through
which JFlow programs could leak information, such as inter-thread communication, and timing
code. However, all of the obvious channels for circumventing secure services are covered.

2.6 The Need For Speed

Executing software in Java remains slow — shockingly slow. While many attempts have been made
to speed up the process of verifying and executing Java byte codes, the only solid advances have
come from returning to machine-level code, as in Just-In-Time (JIT) Compilation.

With this in mind, it is interesting to consider the recent advances in Typed Assembly Language,
such as Morrisett’s TAL [MWCG97]. The TAL language is a RISC-like assembly language, with
annotations at basic block and allocation points that allow the code to be proven type-safe. In this
way, typed assembly language is a particular kind of proof-carrying code, with the overhead of the
proof being dramatically reduced.

The chief advantage of typed assembly language is speed. A program in typed assembly language
can be aggressively optimized by the code producer well before it is sent to the code consumer.
Upon arrival, the code requires only verification, and compilation down to machine code. The
verification process can be proven to be correct, and guarantees type-safety and memory safety.



More importantly only the verifier and final translator need to be trusted by the code consumer,
substantially reducing the size of the trusted code base over a purely Java-based system.

Typed assembly language can be targeted to particular architectures, thereby reducing the
tremendous run-time overhead of interpreting Java byte code through a Java Virtual Machine.
Unlike JIT compilers, typed assembly language need not start out fighting the stack-based target
architecture of the JVM, which is not especially well emulated in today’s largely register-based
architectures.

An important step in Morrisett’s compilation down to typed assembly language is Continuation-
Passing Style (CPS) conversion. CPS conversion has the property of eliminating all procedure
calls, replacing them with branch statements. The benefit of this can be enormous in modern
architectures, in which an actual procedure call can be quite expensive in terms of execution cycles
and cache management. The end result is again faster execution over call-based code, although
some increase in code size can be expected for complex programs.

Unfortunately, typed assembly language by itself lacks many of the desirable properties of the
approaches outlined earlier. Typed assembly does nothing to promote secure services, and does
not even address matters of confinement of sensitive data. In fact, typed assembly really offers no
guarantees of any kind as to the actual semantics of a program, merely that it is type-safe, memory
safe, and will not “get stuck”.

Even in the realm of type-safety, additional work remains to be done in order to support
type-safe object-oriented programming. While Morrisett’s TAL supports all of the standard types,
polymorphic types, and existential types, it still lacks facilities for key object-oriented features like
dynamic dispatches and inheritance.

2.7 The Best of All Worlds

It would seem that no mechanism proposed thus far is capable of providing more than a fraction of
the desired properties for a large-scale, mature mobile code system. In order to achieve all of the
security properties a mobile code system should possess, it seems natural that components of all of
these methods must be employed.

Consider a typed-assembly language like TAL which was capable of completely implementing
the Java Language. If one was willing to sacrifice guaranteed platform independence, a JavaTAL
would be a laudable speed increase over Java byte code, while still offering assurances of type-safety
and memory safety. Even if platform independence were still a key issue, any suitably RISC-like
JavaTAL would be readily mapped onto actual instructions for most modern architectures, still
leaving only the verifier and final translators as the trusted code base.

JavaTAL alone would not be sufficient to enforce any semantic policies. However, the addition
of proof-carrying code components on top of it could serve such a purpose. Relieved from the
burdens of type-safety and memory safety, the proof-carrying code segment of our hypothetical
design would need only be concerned with purely semantic aspects of a mobile code segment —
termination, or computational correctness. The addition of this PCC (Proof-Carrying Code) layer
would increase the size of the mobile code segment, but would again incur a time penalty only at
the initial analysis time, not during subsequent run-time.

Unfortunately, a proof of correctness is still not enough to guarantee secure services, without
some rather awkward restrictions on the entire service structure of the mobile-code network. Java
capabilities, however, remain an excellent option for implementing secure services. In addition



to having very well understood security properties, introducing the capability model at the Java
source level allows programmers to design service-level security in the most natural way possible.
Since capabilities in Java would be nothing more than normal objects and classes, they would still
translate without difficulty to the JavaTAL level. Capabilities introduce actual run-time overhead
to our JavaTAL programs, but no more so than any other secure service mechanism that does not
rely on changes to the Java Virtual Machine.

In order to address the confinement issues with Java capabilities, we could introduce the JFlow
extensions to the language. JFlow would allow a developer to explicitly control dissemination of
capability objects, while at the same time substantially tightening the information security of the
system as a whole. In addition, the JFlow verifier could be modified to enforce the capability
system, without requiring that all of the Java run-time Libraries be altered to hide the non-secure
Java services encapsulated by the capabilities.

JFlow flow information is annotated to variables like types. Also like types, this flow information
could be propagated all the way down to the JavaTAL level, where it could still be statically checked
at the same time as the typed assembly language.

The end result is a multi-layered system addressing a wide array of mobile code concerns, with
a minimum of run-time overhead, and a minimum of trusted code-base. On top of that, most of
the security design mechanisms are at the Java source level, where developers are most comfortable
with coding security features, and the vast majority of computational overhead takes place either
at compile time, (optimization and proof construction,) or at startup time, (one-time initial checks
of the proofs.)

2.8 What Remains to be Done?

As idyllic as the above proposal sounds, there are still many open questions buried within it.

As mentioned earlier, at present there is no typed assembly language that implements all of
Java, or even most of it. Whether the verifier for such a language would be a “smaller trusted code
base” than an entire Java Virtual Machine remains to be proven. The assertion that a RISC-like
assembly language could be verified and mapped to machine code faster than a JVM with JIT
compilation remains to be proven.

First-order logic proof-carrying code may not become notably smaller when relieved of the
burdens of type-safety and memory safety. Furthermore, it has not been shown that proof-carrying
code can prove anything useful about an object-oriented language without restricting the language
to a trivial subset. The Halting Problem remains undecidable as ever, and it seems unlikely
that a proof-carrying code system will ever be able to make sweeping guarantees about program
termination or computational correctness without strict limitations on the expressiveness of the
source language.

While the JFlow system is a marvelous vehicle for limiting the flow of secure information, its
author is quick to point out that many clever covert information channels remain uncovered. In
addition, although the TAL group has shown it is possible to retain type information through all
of the compilation stages, it does not necessarily follow that JFlow’s type-like annotations can also
be correctly pushed through to the assembly language level.

Overarching all of these open questions about particulars is the bottom line. In the end, would
all of this be worthwhile? Could the system described above really beat the Java Virtual Machine
in both functionality and reliability? How would its speed and bandwidth compare to a mobile
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code system based on the JVM?

Finally, one wonders if at the end of the day support for object-oriented, mobile code design
can really supplant “unsafe”, unstructured, hardware-level “bit-fiddling” in a real arena such as an
Active Network. It would seem that the only way to find out is to build both and compare.

2.9 The Key Mobile Code Question

A wide variety of security issues are being discussed in the area of mobile code. As shown in Figure
2, most of the proposed mechanisms for facilitating mobile code address particular safety concerns,
while leaving others completely untouched.

Mechanism | Memory Safe | Type Safe | Semantic Safe | Secure Services | Data Confinement
Capabilities Yes

PCC Yes Yes Yes

JFlow Yes

TAL Yes Yes

Figure 2: Mobile Code mechanisms vs. desired properties

It seems clear that a comprehensive, large-scale mobile code system will require components
from many of these different mechanisms. A key open question in this area is to what extent can
these mechanisms be combined to provide, fast, powerful, and safe mobile code?

This section has presented an overview of several proposed code safety mechanisms which, in
combination, possess a much wider spectrum of desirable properties than any mechanism alone.
Fortunately, as orthogonal as the many security concerns are, so are the solutions. It would seem
that there is hope to successfully combine many of the current branches of disparate mobile code
research into a single, powerful system with the capabilities and assurances desired by developers
everywhere.

Toward that end, the next section will examine, in depth, the properties of current Typed
Assembly Language research. Of particular interest is the extent to which Typed Assembly Lan-
guage can already provide safe mobile code, and in what areas it still requires improvement to be
considered fast and powerful.
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3 Typed Assembly Language

In 1997, Morrisett et al. presented a translation from System F (a variant of the polymorphic
lambda calculus,) into Typed Assembly Language] MWCGY7]. Using this is a foundation, Morrisett
and his colleagues have produced an entire line of Typed Assembly Language research, tackling
issues like type-safe linking[GM99], type-safe memory management|[CWM99] and type-safe stack
management[MCGW98] for a substantial subset of the Intel x86 instruction set. Morrisett’s group
has also constructed a working prototype compiler for a safe subset of the C language as proof that
their concept is a practical, realizable system for producing mobile code]MCG™99]. This section
of the paper will explore in depth the advances that have been made in the TAL arena, as well as
what advances remain to be made.

Figure 3 summarizes the strengths of each of the flavors of TAL. TALx86 is the culmination of
this Typed Assembly Language line of research, lacking only the explicit deallocation feature of the
Capability Calculus to be the final word in functional Typed Assembly Language. However, none
of the current flavors of TAL support encoding of objects, or dynamic dispatch; as we will see in
the third section of this paper, this requires more than simply adding another type to TAL.

Memory | Type | Stack Separate Heap Support for
Flavor Safety Safety | Manipulation | Compilation | Deallocation | Objects
TAL (vanilla) Yes Yes
STAL Yes Yes Yes
MTAL Yes Yes Yes
Capability Calc | Yes Yes Yes
TALx86 Yes Yes Yes Yes

Figure 3: Flavors of TAL vs. desired properties

3.1 Wherefore Typed Assembly?

There are a variety of reasons to study Typed Assembly Language even without mobile code con-
cerns. From a compiler standpoint, many compilers require type information during intermediate
passes in order to perform sophisticated optimizations. Maintaining type information throughout
the compilation process can help verify the correctness of the individual transformations; many
compiler bugs can be caught by type-checking each intermediate form. Furthermore, the restric-
tions brought about by the type system do not appear to interfere with most of the low-level
optimizations used by the cleverest of compilerssMWCG97].

Secondly, as mentioned in the previous section, compiling to Typed Assembly removes the
compiler from the trusted code base. One does not have to rely upon the correctness of the compiler,
its optimizations, or any kind of authentication scheme in order to verify that the resultant code is
type-sound. Only the type-checker itself must be trusted, as well a comparatively trivial final pass
to map the assembly language down to machine code. This also means that the assembly code can
be safely hand-tuned, or run through any number of additional low-level optimizations, with the
confidence that the type-checker will only verify type-safe code.
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3.2 TAL

Morrisett’s original TAL paper outlines five translations between six typed calculi as a process for
getting from System F to TAL. These translation steps will be summarized below, as a prelude to
presenting our own adaption, called “JavaTAL”, in the next section of this paper.

The initial typed calculus, called “Lambda F”, is a call-by-value variant of the “System F”
polymorphic lambda calculus, and is sufficiently expressive to model most functional languages.
It contains types for integers, functions, and tuples (like C structs, or Pascal records,) as well as
polymorphic types. (The need for these will become apparent later.)

The desired result is that each basic block of assembly code, and each memory allocation point,
will be annotated with typing information. This typing information will allow a simple, provably
correct type checker to examine the annotated code, and quickly accept or reject the program as
type sound. For example, a typical basic block label might be annotated with the following type
information:

[_swap : code{rl : int,r2 :< int,int >}

which would indicate that the opcodes below this label, which comprise function “swap,” expect
register rl to contain an integer, and register r2 to contain a record with two integer fields. Of
course, a real TAL label will have more complicated syntax, because many functions require more
elaborate type information than simple combinations of integers, as we shall soon see.

3.3 Compiling to TAL

The first step in compilation is a type-preserving Continuation-Passing Style (CPS) conversion.
CPS conversion is a well-understood transformation for replacing all non-void functions with e-
quivalent void counterparts. The end effect of this process is that the Typed Assembly Language
will contain no “call” or “return” instructions; all control transfers will be handled by uncondi-
tional jumps or conditional branches. While this method incurs additional runtime overhead from
managing the continuation structures, it removes much of the overhead caused by procedure calls
in modern architectures.

Next, the intermediate representation is “closure converted”, which means that all functions
referencing free variables outside of their scope are rewritten to accept an environment parameter
containing those free variables. In this way, each function becomes closed, which has the effect of
breaking each function body into its own “basic block”, separated in variable scope from each other
basic block. This transformation is, again, provably type-sound.

It is at this step in the conversion that existential types first appear, in order to abstract the
environment parameters of the closures. Consider a function, “f”, which after CPS conversion is a
function which takes a single integer argument and has a void return type. (Of course, in reality,
after CPS conversion the function should also have a second parameter that is a continuation
function, but this is omitted for the clarity of this example.) Function f has type:

[ V[.(int) — void
where the V|| indicates polymorphic abstraction, which will be explained later.

After closure conversion, the environment will be bundled in with the function, and its type
abstracted:
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f:3B. < V[.(B,int) — void, B >

This can be read as, “There exists an environment type 8 such that function f has the type of a
two-element tuple, where the first element is a void-type function taking two parameters, (of type
B and int, respectively), and the second element is an environment of type 5.” The fact that § is
hidden behind the existential, rather than being spelled out explicitly, acts to prevent the function
in this closure from being called with anything but the correct environment bundled along with it
in the closure. When the existential is “unpacked” later, 8 becomes instantiated to a new, fresh
type, so only the correct environment will have the proper type to be passed as the first parameter
to the function. In this way, the type system guarantees the integrity of the closures, by mandating
that the newly transformed function bodies are only called with the same environment they would
have had prior to the transformation.

Immediately following closure conversion, all of the basic blocks are “hoisted” to the top level
of the code, thereby eliminating all nested blocks. This transformation has no bearing on the types
of the program, as it is simply re-ordering independent basic blocks.

Once this is done, all of the tuple declaration points in the intermediate representation are
expanded into explicit allocation points. Thus, for each struct or record in the program, instructions
are generated for allocating and initializing the appropriate amount of space in a type-sound fashion.

Finally, the last intermediate representation is translated down to TAL itself, which is not
especially difficult because the code looks pretty much like assembly language at this point anyway.
Throughout each of the five transformations, type information is preserved or correctly transformed
for each variable and function. The TAL program can be checked to ensure that each arithmetic
operation is applied only to numeric operands, that each jump instruction targets executable code
with the correct number and type of arguments, etc.

TAL is a small, RISC-like instruction set, containing opcodes for load, store, move, conditional
branch, and unconditional jump. In addition, there is a macro instruction for memory allocation,
“malloc”, which would be expanded into a simple move/addition instruction pair during the final
translation from TAL to machine code. Also, there is an “unpack” instruction, which acts to
unpack the existentially typed closures generated earlier in the closure conversion phase. In the
final translation to machine code, the unpack instructions generate no opcodes — they can be
thought of as directives to the type-checker, with no real computational effect or instruction cycles.

During type-checking, each line of TAL is checked for type-soundness. The line

mul rl,r2,r3

passes the type-check only if it can be statically determined that registers r2 and r3 do indeed both
contain data of the proper type to be multiplied together. Register r1 will then have the appropriate
result type in subsequent checks of lines farther down the basic block. A store operation,

st rl[3],r2

type-checks only if register rl contains a tuple type with at least four entries, and the fourth entry
of that type corresponds to the type of the source register, r2.

Each basic block of TAL code has a tag indicating the types required in the registers in order
for a jump to that basic block to be type-sound. For example:
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I_fact: code[l{rl :<>,r2:int,r3:3P. < V[.(B,int) — void, f >}

demarcates a basic block with name, “l_fact”, which expects register rl to be empty, (or rather,
specifies that anything in rl is thrown away,) r2 to contain an integer, and r3 to contain a closure
of the type discussed earlier. The type checker simply needs to statically verify that the type
environment at each jump point suits the type constraints at the target label.

Morrisett et al. go on to prove “Subject Reduction”, (that a well-typed program remains
well-typed after any step of execution,) and “Progress” lemmas (that a well-typed program can
continue taking valid execution steps until it completes execution,) based on the structure of the
type derivations and possible cases of the actual instructions. Combined, these lemmas prove
that a TAL program that passes the type-check cannot get stuck, and will perform only type-
sound operations during its execution.[MWCG97] (Of course, this makes no guarantees about
other semantic properties, like algorithmic correctness, or termination, but it’s a major first step.)

3.4 STAL: Stack-based TAL

The original TAL deals in heap-allocated data, and heap-allocated activation records, but has no
provisions for explicit, type-sound stack operations. This is a substantial shortcoming, in light of
the fact that the vast majority of modern compilers rely on stack allocation for all but dynamically
allocated data structures. Furthermore, the CPS conversion required for the heap-based translation
is a complex transformation that can backfire for certain classes of circumstances. (This is discussed
in greater detail in the final section on design decisions for JavaTAL.) Clearly, the utility of a
Typed Assembly Language is increased if it supports either heap-based or stack-based allocation,
so Morrisett and colleagues proposed “STAL”, a stack-based extension to TALIMCGW98].

First, the register abstraction is extended to include a “sp” Stack Pointer register. A new class
of types is devised to support typing of the Stack Pointer. Not surprisingly, these are called stack
types.

If a code fragment were to allocate three locations on an empty stack, and store integers in the
first and last, the Stack Pointer would be typed as follows:

sp: int i ns ant onal

The type “nil” indicates the end of the stack; the type “ns” or “nonsense” indicates uninitialized
(and therefore untyped) stack locations.

Because the type rules for TAL do not cope with stack types in the load and store operations,
new pseudo-opcodes are added to STAL — salloc, sfree, sld, and sst — to allocate, free, load and
store things on the stack. In the final translation to machine code, these instructions would be
mapped to the expected opcodes, with the stack pointer register used as the appropriate source or
destination. Common stack operations, like push and pop, can be easily typed using combinations
of salloc/sst and sld/sfree.

The obvious thing to do now would be to append the following type to a basic block:

label : V[].{rl :int,sp: o,ra:V[].{sp:0}}
where o would be a stack type.
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This type annotation appears to specify a function that takes a single integer as parameter in
rl, a particular stack type “o” in sp, and a return address in register ra that mandates the stack
be returned to its initial state when the function returns. However, this has several critical flaws.

First of all, once the stack type o is actually spelled out, there is no mechanism to prevent this
function body from popping items off of the stack, and storing whatever it likes in higher stack
frames, as long as it uses the correct types. More importantly, once ¢ is finalized, this function can
only be called from jump points that have identical stack shapes. In fact, this function cannot even
call itself recursively, because it cannot push its own return address on the stack before jumping to
this label.

Finally, a clear example where parametric polymorphism can save the day comes into view. If

the label is given the polymorphic type,
label : V[B].{rl :int,sp: B,ra :V[].{sp: B}}

then the type system essentially says that, “for any stack type §, this function returns with stack
type B.” Because § is abstracted in the function body, this basic block can make no type-safe alter-
ations to higher stack frames, because it cannot create values with the proper type. Furthermore,
[ can be instantiated to any stack type prior to jumping to this label, so this function can be called
with any kind of stack, because it promises not to touch anything that it did not push on itself.

Support for exceptions in original TAL is not difficult, because all that needs to be done to CPS
converted code is to add an exception continuation parameter to each function. Unfortunately,
simply adding an exception return address to an STAL function is not sufficient, because the
two possible return addresses could specify completely different, conflicting stacks. However, the
addition of compound stacks can overcome this deficiency.

The key observation is that when an exception occurs, proper behavior is to pop superfluous
data off the stack, and jump to an exception routine. The ramification of this is that the stack
type for the exception block is necessarily a suffix of the normal return address’s stack type. Thus,
we can express the type of the normal return stack as the compound stack type, “o1 0 02”, where
o1 is stack items to be disposed of if there is an exception, and o9 is the stack items in common
between the two possible return addresses.

Of course, for compound stacks types to actually be useful, there must be a type-safe way to
pop off all the o items, even though o9 could be buried an arbitrary and statically unknowable
number of layers deep in the stack. The solution is to introduce pointers into the stack, and permit
registers to store stack locations. At face value, this seems like a dangerous scheme, but it can
be proven that stack pointers are not out of date as long as they are a tail of the current stack
whenever they are used.

The final, correct typing scheme for a stack-based function call with an exception handler is:

label : V[oq,09].{rl :int,sp: 01 0 09,7a : V[|].{sp : 01 0 02},
ep : ptr(oz),re : V[].{sp : o2}}

where register “ra” contains the return address, (which expects the same stack as the function
entry point,) “ep” contains the pointer to the portion of the stack the exception handler expects,
and “re” contains the return address to use if an exception occurs.
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3.5 MTAL: Modular TAL and Type-Safe Linking

One of the chief drawbacks of the Typed Assembly Language family that has been presented so
far is that all type checking is done under the closed-world assumption. All of the code must be
available to the checker, and any changes require all of the code to be re-examined. However, in
the normal world of compiling, it is desirable to break large programs into separate modules, both
as a matter of software engineering principle and the simple convenience of separate compilation
after updates.

Cardelli proposed a high-level calculus for compilation units in 1997[Car97|. Findler and Flatt
[FF98] described how the concept of “interfaces” could be extended to link-level modules in the
context of their MzScheme units. Glew and Morrisett then formalized and codified these concepts
in the context of TAL in “Type-Safe Linking and Modular Assembly Language” [GM99].

The new typed module language, called MTAL, (pronounced, “metal”,) allows an interface to
be calculated for each TAL module file. These interfaces specify exactly the set of imports and
exports the module claims. Intuitively, two modules can be safely linked together if their import
interfaces agree on all overlapped items, and their export sets are disjoint. A new module is formed,
whose import set is the union of the submodule imports, minus the submodule exports, and whose
exports are the union of the submodule exports. A complete program is formed when there are no
more outstanding imports.

The MTAL calculus allows this to be done in a provably safe fashion.

On top of that, the MTAL calculus offers several handy features to augment it’s modules.
Using abstraction in the interfaces as in previous flavors of TAL, it is possible to encapsulate
implementations in their modules. Other modules are constrained by the type system to use such
imported types only in the fashion proscribed by the interface.

Glew and Morrisett point out that the MTAL system not only is applicable to dynamic linking,
but probably can be extended to dynamic loading. However, dynamic loading has many additional
caveats, centered mostly around possible failure modes should an attempted dynamic load fail.
Their work in this area has not been completed, largely because it is difficult to evaluate the many
design decisions involved in a prototype implementation.

3.6 Typed Memory Management

The next shortcoming of vanilla TAL is in the area of memory management. While TAL programs
are free to allocate space on the heap, there is no mechanism for safely freeing memory. The
incarnations of TAL presented thus far depend upon a trusted conservative garbage collector to
clean up after them. Clearly, there is a need for type-safe memory management if fast, efficient
code is to be run under this system.

The solution is a Capability Calculus, presented in “Typed Memory Management in a Calculus
of Capabilities.”[CWM99]

The basic idea is to have the type-safe code allocate dynamic space in chunks called, “regions.”
Individual basic blocks are assigned static “capabilities,” which govern their access to specific
memory regions. A capability is thought of as an unforgeable pointer to a memory region, but in
reality these capabilities are no longer present at runtime.

It is not difficult to envision a naive scheme in which memory is allocated and deallocated in a
LIFO order, with stacks of capabilities acting not unlike stack-based activation records. However,
such a system lacks the flexibility to support real programs, because software frequently does not
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deallocate heap data in a LIFO fashion. Furthermore, it is desirable to place matching region
allocation and deallocation points in separate basic blocks, as part of the normal course of compiler
optimizations.

The fundamental information that a typed memory management system must track can be
summed up in the question, “when is it safe to free an object?” The answer is that it is safe when
there are no other references to the given object. Thus, Crary and colleagues employ capabilities
to track aliasing, that is, how many references there are to a given object in memory. In this way,
respousibility for deallocation can be formally assigned to particular basic blocks; many common
memory leaks, caused by failure to voluntarily deallocate, can be statically detected before runtime.

If a code segment has a capability corresponding to a region, “r”, the capability appears as {r}
in the analysis. This capability is annotated as either “r!”, indicating a unique capability, or “r*”
to indicate a capability for which duplicates may exist. If a block has the capability {r'}, then it
may deallocate that region, and discard the capability.

The difficulty, of course, is in recovering a unique capability r! after a block has already dupli-
cated a reference and upgraded to a T capability. Once again, the tricky typing problem is solved
through abstraction, this time using bounded quantification. There is a fair amount of additional
syntax necessary to append static capabilities to basic blocks (which will not be covered here for
the sake of brevity,) but the basic idea is as follows. For a block with type:

V[p1 : Rgn, pa : Rgn,c < {p1, p2}]-(c,...(c,...) = 0) — 0

a calling block holding capability r! could instantiate “c” with !, and instantiate p; and p, with
rT. This would have the effect of allowing the outer nested function to have aliases to the region
“”  while ensuring that the continuation function would regain the unique capability r'. The
bounded quantification abstraction allows the calling routine to hide certain information from the
callee about its capability — i.e. that there is only one copy of “r” which can be deallocated — while
still revealing other information — such as a duplicate of region “r” being available to the callee.

Crary et al. prove that their capability calculus is type-sound, and claim that the system
is sufficiently flexible to type voluntary memory management in real programs. In addition to
guaranteeing that programs return all dynamic memory to the system before exiting, this capability
calculus can be applied to other interesting problems.

One common operating systems problem is caused by the passing of buffers in and out of kernel
memory space. Many kernels demand time-consuming copy operations to move data between
protection layers, in order to guarantee the integrity of kernel memory. With modifications, this
system could be used to pass unduplicatable capabilities into the kernel, essentially passing memory
space into the kernel with a statically verifiable guarantee that the user process cannot touch the
memory space until the kernel returns the capability. In fact, all kinds of statically checkable locking
mechanisms could be devised with such a system.

3.7 TALx86: TAL for the common man

The 1999 paper “Talx86: A Realistic Typed Assembly Language”[MCG™99], presented a realistic
subset of the Intel x86 instruction set which makes use of most of the properties discussed in this
section so far.

TALx86 supports separate compilation of modules, stack allocation, parametric polymorphism,
arrays through singleton types, and abstract data structures like linked lists through the use of
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sum types and recursive types. In short, it is powerful enough to completely support a powerful,
type-safe C-like language, which the authors have dubbed “Popcorn”. (Popcorn has most of the
features of C, except for the “dangerous” pointer arithmetic and type casting features, plus some
additional features like exceptions.)

At this point, there are only a few salient features missing from TALx86. Alias based optimiza-
tions remain difficult to type, as they require substantially more complicated flow analyses or other
mechanisms to guarantee semantic properties of the code. The explicit deallocation mechanisms
described in the previous subsection have not been incorporated into TALx86’s type system, be-
cause they add quite a bit of complexity. Finally, support for true object abstractions has not been
added.

It seems difficult to encode the nature of object-oriented programs in a low-level language
like TALx86 without either committing to a very narrow, particular object model, or inducing
gigantic runtime overheads. However, with the addition of bounded existential types, and a few
other mechanisms to support object inheritance hierarchies, we believe a practical solution can be
engineered. It is toward this goal, efficiently encoding general support for object oriented programs
in a typed assembly language, that our own work has been directed.
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4 JavaTAL

This section will present a Typed Assembly Language designed to demonstrate support for object
oriented code. As our chosen source language happens to be Java, we have dubbed this variant of
TAL, “JavaTAL.” (OOTAL seemed a most unsatisfactory moniker.)

In many ways, JavaTAL’s features remain very similar to the original RISC-like TAL]IMWCGY7],
diverging only where necessary to provide object support, or simplify the presentation. Appendix A
presents the overall compilation process from a subset of Java to JavaTAL, with special attention
to the salient object-related design issues. The next few subsections detail the actual syntax of
JavaTAL, with explanations for key design decisions.

Not surprisingly, it is the object-oriented enhancements to the TAL type-system that have
proven most problematic. After exploring several type representations, we concluded that many of
the problems inherent in encoding objects into Typed Assembly Language have been documented
by theoreticians encoding objects into the Lambda Calculus. Unfortunately, some of these problems
have not been solved in the Lambda Calculus yet, either. As a result, we have only a design for
a Typed Assembly Language at this point — not an actual proof of type-soundness. Furthermore,
there are significant obstacles to generalizing our design for object-oriented languages other than
Java. However, the lack of known solutions to these problems is more a reflection of the newness
of the area than an indication of unsolvability. We are confident that a system with the desired
properties can be designed, and optimistic that the latest proof techniques will be able to prove its
correctness.

In the latter half of this section, we present our new type systems, reasons why object-oriented
programs are so very difficult to prove type-sound, and vectors along which we believe the solutions
may lie.

4.1 JavaTAL version 0

Instruction Meaning

14 rq, 7s[i] Load into 74 the i entry of the array starting at address ;.

st rqli], rs Store the contents of r, into the i entry of the array starting at address 4.
mov 714, v Move value into 74.

add 74, 75, v | Add v and g, store result in 4.

sub r4, 75, v | Subtract v from r,, store result in r4.

cmp 74, Ts, v | Functionally identical to sub. Used to distinguish between numerical
subtraction and pointer comparison.

malloc 74, T | Allocate an object of type 7 on the heap, and set r4 to point to it. This is a
macro that will be expanded into simple instructions during the final
mapping from JavaTAL to machine code.

jmp w Continue execution with the instruction at the address specified by v.
bnz r, v If register r contains 0, branch control to address at v.

halt End execution.

print r Print contents of register . Used for debugging.

Figure 4: JavaTALv0 instruction set
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Once the major steps of compilation are complete, we are ready to map the last MiniJava
intermediate representation to JavaTAL. Appendix A describes all of the standard compilation
steps necessary to transform the initial MiniJava programs into simple, assembly-like MiniJava
statements. Figure 4 summarizes the JavaTAL assembly language instruction set.

The JavaTAL instructions are for a generic load/store register machine, and are not meant to
represent a particular processor or architecture. These instructions are relatively easy to map to
most modern processors, which means that the final translation software will be substantially easier
to verify than a complex compiler or proof-generator.

4.2 JavaTALv0 Compiler Design Decisions

In order to actually build objects at runtime, we have chosen a standard two-level vector approach,
as illustrated in Figure 5.

Register pointing to Ohject

Registers
Heap
Data Vector
| | |
Obhject Member Data. o e
| | |
Jump Vector
| | |
Method Jump Addresses v
| | |

Figure 5: Runtime object layout

In this design, a pointer to an object is in fact a pointer to an array. The elements of the array
are the member variables of the object, as defined by the object’s class. Under MiniJava, these
elements can be base types, which each fit in one array element, or other classes, which are simply
pointers to other arrays. The very first element of this data vector is reserved, and points to a
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second vector often called the “jump vector”, or the “virtual table”. The jump vector contains the
addresses of the basic blocks corresponding to the object’s methods. When a dynamic dispatch is
executed, the normal protocol is to load the first element of the data vector into a register. Then,
the correct jump address is loaded from the jump vector, and the jump takes place.

The two-level vector approach has several advantages in the MiniJava context. At runtime,
all objects of a given class can point to the same jump vector, which saves heap space by not
duplicating jump vectors. (Note that this is not required; a type system could allow objects of
the same class to have different jump vectors, or even to change jump vectors while running. This
behavior, called “mode-switching”[AC96], is not allowed in Java, but could be allowed in more
flexible object-oriented languages.)

interface 1_I1

<
<
( r0:1_TI1 ri1:int r2:1_Result r3:1_ContInterface ) ; m
>

>

class 1_Ex1 implements 1_I1

<

<
( ; Method m
r0:1_1_Ex1 ri:int r2:1_Result r3:1_ContInterface
)

>
1_Result ; rstack
1_Result ; tempstack
int HED ¢
1_C1 ; vb
int s vT
int ; V6
int ; v
int ; v8
int ; v3
1_ContFor_Ex1_m_2 ; Cont_K_Ex1_m_2

>

Figure 6: Ex1 class hierarchy information.

The jump vectors for a MiniJava program need not be constructed at runtime, as they are well
understood by compile time, and entirely known by link time. As a result, the actual jump vectors
are assembled and explicitly listed at in our JavaTAL programs. At the verification stage, the jump
vectors can be checked for correctness — that they have the correct number of jump addresses, and
each jump address points to a basic block with the type promised by the class or interface definition.

22



At runtime, the jump vectors are located on the heap after the basic blocks of executable code,
where they are referenced when objects are created and initialized.

While we employ a two-level vector design for this current incarnation of MiniJava, this scheme
could be expanded to an n-level vector design if MiniJava were expanded to include inheritance
from classes. One can envision a system of inheritance where jump vectors contain pointers to
other jump vectors containing the methods of their parent classes. For the time being, two levels
and single interface inheritance are sufficient to show the viability of the design.

interface 1_ContInterface

<
<
( r0:1_ContInterface ) ; apply
>
>
class 1_ContFor_Exl_m_2 implements 1_ContInterface
<
<
( ; Method setCont
r0:1_1_ContFor_Ex1 _m_2 r1:1_Ex1 r2:1_C1 r3:int
r4:1_Result rb5:int r6:1_Result r7:1_ContInterface
)
( ; Method apply
r0:1_1_ContFor_Ex1_m_2
)
>
1_Ex1 ; that
int ; a
1_Result ; resstack
1_ContInterface ; Continuation_K
1_Result ; rstack
>

; End hierarchy information
; Begin jump vectors

Figure 7: Ex1 continuation class hierarchy information.

Because the typing information in the program will reference classes and interfaces by name,
it is helpful to verify the integrity of the object hierarchy before examining the program. For this
reason, we include a layout of the class hierarchy at the top of each JavaTAL program. Interfaces
and classes are enumerated, as well as the methods and members for each class. The verifier will
check that all referenced classes and interfaces are properly defined, and that all of the subtyping
and inheritance relationships are legal.

The code example given in the appendix of the paper would generate the class hierarchy infor-
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1_Ex1 : ; Jump vector for class Exl1.

<
1 Ex1__m
>
1_ContFor_Exl_m_2 : ; Jump vector for class ContinuationFor_Exl_m_2.
<

1_ContFor_Exl_m_2__apply

1_ContFor_Ex1_m_2__setCont

Figure 8: Jump vectors for Ex1.

mation shown in Figures 6 and 7, and the jump vectors shown in Figure 8.

Each entry of class hierarchy information describes the exact layout of the corresponding run-
time objects in memory. Each entry in the jump vector information lists the exact labels of the
corresponding method’s basic block. At link time, the labels in the jump vectors will be replaced
with the actual addresses. Any item prepended by “1_” is an actual label that can be looked up
elsewhere in the JavaTAL file.

4.3 Typing the Leap of Faith problem: a Solid False Start

With the JavaTAL language and compiler completed, all that remained was to devise the JavaTAL
type system and type-checker. Unfortunately, this proved to be a more challenging task than it
had first appeared. This subsection describes the chief difficulty in typing JavaTAL, and details
two possible type systems for JavaTAL. While both systems would result in type-soundness for Ja-
vaTAL, we have discarded both for either imposing unacceptable restrictions on the expressiveness
of JavaTAL, or being too cumbersome to result in an elegant proof of type-soundness.

The central problem in typing JavaTAL is the dynamic dispatch mechanism. When the target
class of a method call is known to the caller only by its interface, we know intuitively that the
method call is still OK. In order for any class to legally implement an interface, it must have all of
the proper methods specified by the interface. Unfortunately, it is not possible to encode the “big
picture” into a type system. The JavaTAL type-checker will examine the JavaTAL programs line
by line, and must be certain it has the correct class when it reaches the jump point. We call this
problem the “Leap of Faith”, because without a type system, we simply take it on faith that the
jump address is correct.

Figure 9 shows a standard dynamic dispatch sequence in JavaTAL. Typing information has
been included in the comments. This code segment does not exhibit the Leap of Faith problem,
because the proper class type of the message receiver is known. When the type-checker reaches the
“ymp” line, it looks up the “code” clause of the destination, and sees that the required type for the
“self” pointer is in r0.

Figure 10 shows the Leap of Faith problem. The class of the receiver is known only by an
interface type. As a result, when the type-checker arrives at the final “jmp” instruction, it cannot
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; Prepare for jump sequence to labell()

; Initial Types = [ r0:1_ClassC ... ]

1d ri, r0[0] ; Load address of Virtual Table into temp.
; Types = [ r0:1_ClassC
; ri1:Virtual(1_ClassC) ...]

1d r2, ri[1] ; Load address of Jump Vector into temp.

; Types = [ r0:1_ClassC
; r1:Virtual(1l_ClassC)
; r2:Label(1_ClassC__labell) ]

jmp r2 ; Make the Jump.

1_ClassC__labell:
code ( r0:1_ClassC ...)

Figure 9: Dynamic dispatch in JavaTAL

ascertain whether or not the receiver class in “r0”, (with type 1_InterfaceForC,) is a certain match
for the type of the jump address, (r0:1_ClassC). For example, if instructions were inserted just
before the jump to load r0 with a different object of another class that implements the interface,
it could be potentially disasterous, (certainly not type-sound,) for our program to make the jump
based on faith.

Our first design of type system used rules that were specifically setup to recognize the load-
load-jump pattern of a standard dynamic dispatch. While this would guarantee type-soundness, it
limits JavaTAL to a fixed sequence of instructions for every dynamic dispatch. In essence, it is like
having a macro instruction for dynamic dispatch, which is one of the failings of Java byte codes
we were trying to overcome in the first place. A fixed load-load-jump sequence would prevent any
attempts to reorder, regroup, or otherwise optimize the instructions involved. Furthermore, this
solution would not scale well in relation to other object-oriented problems; it appeared that we
would need to add additional macro instructions to JavaTAL to support many additional object-
oriented features in MiniJava. As the purpose of this work is to design a sufficiently low-level
language to allow aggressive optimization, each additional macro instruction in JavaTAL would be
a step away from our goal.

As we examined the Leap of Faith problem in greater depth, it became apparent that all the
type-checker needed to know at the jump point was that the two prerequisite loads had taken
place somewhere earlier, and that the destination registers had not been overwritten by intervening
instructions. The problem could be solved if the type system were somehow made aware of flow
information — the flow of data in and out of registers.

It is not difficult to design a flow analysis system that can determine whether or not the registers
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; Prepare for jump sequence to labell()
; Initial Types = [ r0:1_InterfaceForC ]

1d ri, r0[0] ; Load address of Virtual Table into temp.
; Types = [ r0:1_InterfaceForC
; ri1:Virtual (1_InterfaceForC) ]

1d r2, r1[0] ; Load address of Jump Vector into temp.
; Types = [ r0:1_InterfaceForC
; rl1:Virtual (InterfaceForC)
; r2:Label (InterfaceForC__labell) ]

jmp r2 ; Make the Jump.

1_ClassC__labell :
code ( r0:1_ClassC ; ’this’ pointer.
)

Figure 10: The Leap of Faith problem in JavaTAL

contain the proper “self” pointer and jump vector upon reaching a jump point. Furthermore, such
a system supports all manner of code motion, and places no undue restrictions on optimizations.
Unfortunately, it is extremely difficult to encode flow analysis into the rules of a type system. Our
initial attempts resulted in extremely cumbersome side-conditions on many of the typing rules.
Thus, while the notion of a type system super-charged with our particular style of flow analysis
was novel, it does not appear to be a practical solution to the Leap of Faith problem. We have
abandoned flow analysis rules in favor of pursuing a more elegant proof of type-soundness.

4.4 Bounded Existential Types to the Rescue

Our attempts to design a type system for JavaTALv0 revealed the many difficult sticking points
in typing objects in a low-level language. Armed with that knowledge, we looked to previous work
in the programming language community, to see how others had dealt with the problem at higher
level representations. This subsection covers what we found, and how it can be applied to the very
different representation of JavaTAL.

In Abadi and Cardelli’s work on encoding objects into variations of the lambda calculus, they
used bounded existential types to model abstraction [AC96]. Like the existential types discussed
earlier in the section on MTAL, bounded existential types hide information about an object through
abstractions. Unlike simple existential types, bounded existential types are able to advertise an
interface through a bound. By saying that an object has type “there exists some 8 such that § is
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less than or equal to I,” (3(8 < I).B), it is revealed that whatever mystery type § is, it must at
least implement all of interface I's proscribed methods.

The use of recursive, bounded existential types has been studied extensively in the context of
typed lambda calculi, such as “System F¥,”[BCP97], and “Ob;«.,”[AC96]. The bottom line is that
it is a clever way to package up a method with its environment in such a way as to prevent them
from being separated before the method is called.

Recursive, bounded existential types have several desirable properties for encoding objects. In
addition to supporting all of the operations normally performed on objects in MiniJava, these types
could allow method update, jump vector switching, multiple tiers of data abstraction, and other
object-oriented features.

First and foremost, we need to be able to solve the Leap of Faith problem. Figure 11 shows the
familiar JavaTAL dynamic dispatch, with a bounded existential type for the interface. Following
popular convention, (such as [BCP97],) we will use the syntax “Some (Beta<:I).Beta” to represent

“3(’8 S I)‘IB”.

; Prepare for jump sequence to labell()
; Initial Types = [ rO0:Some(Beta <: 1_InterfaceForC).Beta ]

unpack r0 ; Instantiate Existential
; Types = [ r0:Beta ]
; Ordering = < Beta <: 1l_InterfaceForC >
; Classes =
< Beta := Classes(1_InterfaceForC) [rO:Beta / rO:1_InterfaceForC] >

1d r3, r0[0] ; Load address of Virtual Table into temp.
; Types = [ rO:Beta
; r3:Virtual (Beta) ]

1d r4, r3[0] ; Load address of Jump Vector into temp.
; Types = [ rO:Beta
; r3:Virtual (Beta)
; r4:Code( r0:Beta ) ]

jmp r4 ; Make the Jump.

1_ClassC__labell :

code ( r0:1_ClassC ; ’this’ pointer.
)

Figure 11: The Leap of Faith with Bounded Existential types.
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The new JavaTAL instruction, “unpack” can be thought of as a type-checker directive, which
will generate no actual instructions when JavaTAL is mapped down to machine code. The unpack
instruction tells the type-checker to do several things. First, r0 is given a fresh type, which we call
“Beta” here. It is important to note that this type is “fresh”, that it does not occur anywhere else
in the program. Thus, in spite of the fact that there could be several existential types listed in the
program as Beta, the type-checker will differentiate each of these by their unpack instructions.

Next, the type-checker adds information about this new Beta into its environments for tracking
object types and subtyping relationships. More specifically, it makes note that this Beta is less than
or equal to (a subtype of) the type of its specified bound. In the environment for tracking object
types, a copy of the bounding interface is made, with “rO:Beta” substituted for each occurrence
of the original interface in the jump vectors.

In this way, when the type-checker reaches the jmp instruction, it sees that the desired type for
the jump address is an object of type Beta in r0. Because this Beta can only come from an unpacked
object, the type system ensures that the jump destination corresponds to the proper self-pointer in
r0. This fact, combined with lemmas about object well-formedness and proper construction of the
class hierarchy, will allow us to prove the type-soundness of this dynamic dispatch by concluding
that the variable Beta is really “1_ClassC”. Type-soundness removes the need for faith from the
Leap of Faith problem.

Another desirable property of bounded existential types is that they solve the Leap of Faith
problem without hindering the simpler optimizations in JavaTAL. For example, when a message
send is known to have only one possible destination, it is eminently desirable to eliminate the
overhead of the dynamic dispatch with a jmp directly to the address. (A comparable optimization
in C++ has been shown to improve overall execution speed by as much as 24% in some experi-
ments [CG94].) Our previous typing systems did not support this, because they needed to identify
components of the dynamic dispatch in order to allow any jump. Under the new type system, the
direct jump is trivial to type, as in Figure 12.

; Prepare for jump sequence to labell()
; Initial Types = [ r0:1_ClassC ]

jmp 1_ClassC__labell ; Make the Jump.

1_ClassC__labell :
code ( r0:1_ClassC ; 'this’ pointer.
)

Figure 12: Direct jump to a singleton receiver class.

At present, JavaTAL does not include primitive support for “instanceof” or type-casting, in
spite of the fact that MiniJava includes these object-oriented features. The instanceof operator
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can be transformed into a dynamic dispatch at the MiniJava level, and thus can be swept under
the carpet during one of the intermediate passes of our compiler. Type-casting can be handled
similarly, but both of these source-to-source transformations can theoretically generate additional
classes on the order of n?, where n is the number of classes in the original program. Ultimately,
we would like to have efficient support for these operations at the JavaTAL level. The “typecase”
construct in [AC96] is supported by bounded existential types, so it is very likely that it will not
be a problem to incorporate into later versions of JavaTAL.

4.5 The Trouble with Bounded Existentials

There are two important practical problems with bounded existential types, both of which remain
unsolved.

The first difficulty is in determining subtype information between bounded existential types with
different bounds, as noted by [GP98| and [Pie92]. These types support generic object encodings
to the point that undecidable problems can be encoded as subtyping statements. As it happens,
the algorithm only diverges in certain rare, pathological cases. However, it is extremely difficult to
prove indelible properties about a system as a whole when certain key components can conceivably
diverge.

Our solution to this quandary is to include conclusive, decidable subtyping information at the
top of our JavaTAL files. In the case of MiniJava, it is a trivial task to verify the integrity of the
static class hierarchy, and lookup subtyping relations in at most O(n) time during type-checking.
(This is because MiniJava inheritance trees can be represented as directed, acyclic graphs, with
each node having at most one parent.)

To support more general object-oriented languages, more elaborate methods will be required to
efficiently encode subtyping proof information at the head of our mobile code files. A major segment
of our future work will be to design a system for encoding class hierarchy information for general,
recursive, bounded existential object types, without the help of the restrictive Java class system.
This problem remains a major obstacle to building a general object-oriented Typed Assembly
Language, because it is not clear how to effectively encode subtype proofs in our JavaTAL files in
a compact, fully expressive manner. In the mean time, we cheat and rely on the Java name-based
type system.

The second problem with bounded existentials is a matter of efficiency. The simplified exis-
tential types presented in the previous section are an abbreviated version of bounded existentials,
adapted to the Java name-based type system. While these “demi-existentials” are sufficient to
solve the Leap of Faith problem, they are much weaker cousins to the real bounded existential-
s presented in [AC96] and [BCP97]. The full-blown bounded existentials would have the form,
“UB < I).(B{T0,...,Tp)71,...,7m))”. The two-level vector representation of an object becomes a
three-level vector, with the first level of the vector containing a pointer to the head of the structure,
and a pointer to the second level vector.

While this extra level of indirection in the type system solves many otherwise intractable prob-
lems with encoding general objects, it adds an extra level of indirection to every dynamic dispatch
at runtime. Even worse, it adds an extra level of indirection when accessing any member variable
of an object. In short, the price we pay for general, flexible object support is a huge hit in runtime
speed, as well as increased memory overhead in every runtime object.

As one of the goals of this work is to optimize object-oriented programs at a lower level, the
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addition of an extra level of indirection to every operation is an unacceptable backward step.
Unfortunately, the three-level vector scheme is the only type-sound method that theoreticians have
found for encoding general objects. For this reason, JavaTALv1 uses only the “demi-existentials”
described in the previous section. One of the primary goals of the JavaTAL project is to overcome
this limitation in future versions of our system, in order to provide efficient support for general
object types.

4.6 Design for JavaTALv1

The Leap of Faith problem is under control with the help of demi-existentials, but there remain
many design issues to be resolved before full-blown bounded existential types can be employed
in JavaTAL. In order to better understand the obstacles presented by bounded existential types,
we have pressed ahead with the design of a type system for JavaTALv1, even though this is only
an intermediate milestone in the life of the JavaTAL project. This subsection deals with the
improvements that must be made to the TAL system in order to accommodate JavaTAL.

Morrisett’s TAL type-checker [MWCGY97] maintains three separate environments while verifying
a TAL program. The first of these is “¥”, which maps labels to heap types, where heap types are
either code blocks or tuple types. The second of these is “A”, which keeps track of type contexts,
the lists of type variables currently in use. The third of these is “I'”, which can be thought of as
the current register types.

Our JavaTALv1 design adds two additional environment variables to these. First, there must
be an ordering environment to encode the class subtyping information listed at the top of the
JavaTAL file. We call this environment “©Q2”, (“Omega” is for “Ordering”,) and define it to contain
entries of the form “C<:I” to explicitly list valid subtype relationships. When program verification
begins, 2 is built up from the static class hierarchy information listed at the top of the program;
however, 2 may be extended with fresh subtyping relationships by unpack instructions for bounded
existentials during the type-check process.

Secondly, we add a label lookup environment, “A”. (“Lambda” is for “Label Lookup”.) The A
environment maps class and interface label names to actual tuple types. A is not strictly necessary,
because the type system could eliminate class names altogether, and use the actual tuple types
where ever the names occur. This is quite cumbersome in practice, however, and keeping the
original class and interface names around is helpful for debugging. When program verification
begins, A is constructed from the hierarchy information at the top of the JavaTAL file, but A
serves an additional purpose when unpacking bounded existential types. The type-checker can
extend A with a tuple type for the new, fresh type variable it is instantiating, and thereby make
available to subsequent steps the information represented by the bounded existential’s interface
bound.

Class types in JavaTALv1 will be represented in the same fashion as the initial version. All
classes are a tuple of members, (the data vector,) with the first position containing a tuple of jump
addresses representing methods, (the jump vector.)

The structures of interfaces are specified at the head of the JavaTAL file in the same way as the
initial version. However, all items of interface type will be given bounded existential types, where
the bound is the interface. Thus, member variables that start out as interface I in MiniJava will
become 3(S < I).3, which is spelled out in printable characters as “Some (Beta<:I) .Beta”.

Appendix B contains the current draft of the grammar for parsing JavaTAL version 1 files. The
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grammar remains a draft because the proof of type-soundness for JavaTALv1 is not yet complete.
It is possible that unforeseen developments during the proof phase of the project could require
changes to the JavaTAL grammar or JavaTAL file format.

The JavaTAL draft grammar is capable of accepting more general JavaTAL files than have
been described in this paper. For example, there are provisions in the grammar for “flagged types”,
as used by Morrisett to track tuple initialization. While our type-checker will track initialization
information in the same way as the TAL compiler [MWCGY7], such types only appear in the
middle of basic block analysis for our system. However, as we add optimizations to our compiler,
it is likely that we will want to break up basic blocks in a manner that exposes type information
that is currently available only at intermediate steps. For that reason, our grammar is designed to
accept more detailed JavaTAL files than our current prototype compiler ever generates.

Appendix C contains the current draft of the type rules for JavaTAL version 1. These rules
are a draft for two important reasons. First, time constraints and a rapidly improving design have
prevented us from completing the proof of type-soundness. While these type rules are based on other
type-sound systems, we have not yet shown conclusively that our new system is sound. The final
proof may require alterations to the draft rules presented here. Secondly, this entire design remains
extremely Java-centric. Given our goal of developing a general system for supporting object-oriented
languages, there is much work that remains to be done for this system to be disentangled from the
particulars of MiniJava.

For example, many traces of MiniJava’s name-based class system remain evident in JavaTALv1’s
label system. A class specifies its parent by name, a jump vector is tied to its class by name, specific
basic blocks are tied to their jump vectors by name. This greatly reduces the overall expressiveness
of the current JavaTAL system, preventing such things as mode-switching and structural subtyping.
Recursive, bounded existential types have the power to encode many features not present in Java
[AC96], when not hamstrung by Java’s name-based type system.

4.7 Summary and Future Work

The current JavaTALvl system requires only a type-soundness proof to demonstrate that Java
programs can be encoded in a very low-level, type-sound language with the help of recursive,
bounded existential types. Therefore our most immediate plan for future work is to complete a
Subject Reduction proof for JavaTAL, in much the same style as Morrisett et al’s Subject Reduction
proof for TALIMWCGY7].

The JavaTALv1 design is only the beginnings of a real Typed Assembly Language for object-
oriented programs. Once version 1 is complete, there are many more challenges to be pursued
even before arriving at a sufficiently general system to begin testing with real programs. When
the crutch of Java’s named-based class hierarchy has been removed, the bounded existential type
system acquires theoretically undecidable subtyping relationships in the general case. In place of
Java’s class system, a more general (yet still decidable) system for expressing class information
must be devised. Furthermore, this new class system must be compact, easy to encode and decode,
and capable of supporting a wide variety of high-level, object-oriented languages besides Java.

Many features must be added to the JavaTAL design before it will be ready for full-scale
testing. Visibility modifiers, exceptions, mode-switching, explicit memory management, multiple
inheritance, arbitrarily long inheritance chains, and structural subtyping are but a few possible
features that have yet to be incorporated into any type-sound, low-level system such as this.
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Most importantly, the questions still remains whether or not this system can actually offer an
improvement over current mobile code schemes. At the time of writing, there is no real data on the
overhead our type of system incurs in downloading, verifying, or running mobile code. It remains
to be seen whether or not type-safe mobile code is capable of performing real, useful tasks.

Much has been said, in this paper and elsewhere, on the optimizability of Typed Assembly
Language. Yet, no such optimizing, type-sound compilers are available. The key question out of
this line of work that we would ultimately like to answer is, “Can we make type-sound Java programs
run faster than in the Java Virtual Machine?” While the Virtual Machine is not currently a very
challenging target to beat, there is a very real question of precisely what optimizations can be
applied in the framework of a Typed Assembly Language. Much of the compiler research of the
last two decades has gone into developing techniques for writing optimizing compilers that produce
fast code. The constricted nature of the platform-independent Java system baffles many of the
best speed-up techniques. Can JavaTAL allow us to once again take advantage of many of these
well-known optimizations? Will JavaTAL enable us to apply new optimizations, such as using flow
information to replace the types for single receiver class dynamic dispatches off of objects with
interface types?

Compilers continue to scale up to match the ever increasing complexity of computer hardware.
The additional structure provided by strong type systems such as JavaTAL’s may be the best
solution to prevent compiler complexity from spiraling out of control. In the end, the lessons we
hope to learn from the JavaTAL project may be applicable to all manner of future compilers.
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A Compiling Java into JavaTAL

Our current prototype compiler uses a small subset of Java as its source language. Called “Mini-
Java,” our language subset has been selected to exhibit all of the major object-oriented features of
Java, without the syntactic complexity that makes real Java compilers unwieldy test beds.

MiniJava contains interfaces and class, and allows single inheritance among interfaces. Classes
must inherit from a single interface. Base types include integer, boolean, and void. MiniJava
includes assignment statements, if-statements (with else clause,) message send (also called function
call,) and a print statement. Permissible expressions include addition, subtraction, comparison
(less-than only,) type-cast, and instanceof. MiniJava does not contain any visibility modifier other
than “public”, and methods have no local variables.

The code example in Figure 13 shows a small MiniJava program which calculates and prints
the integer “11”.

class Tel {
public static void main(String[] a)
{ System.out.println( new Ex1().m(5) ); }
}
interface Il { int m(int a); }
interface IC1 { int p(int b); }
class Exl1 implements I1
{
int x;
public int m(int a)
{
x=(new C1().p(a+1))+4;
return Xx;

}
}

class C1 implements IC1
{ public int p(int b) { return b+1; } }

Figure 13: Minijava class “Ex1”.

The first compilation step is to break the complex statements and expressions into smaller,
simpler chunks. The result of this is that each intermediate computation is named. For example,
the assignment statement

x=w* (y + 2);

(new NO .p(x));

becomes
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vl =y + z;
X =w *x vl;
v2 = new N(Q);
m = v2.p(x);

where “v1” and “v2” are automatically generated variable names of the correct type.

Next, all methods are converted to type “void”. In order to do this, an extra parameter is added
to each method; the parameter is used to store the return value of the original method. In Java,
all parameters are call-by-value, and thus cannot be changed at the top level. Thus, base return
types must be encapsulated in objects if the return value is to escape the scope of the method. The
example class “Ex1” from above now appears as below, in Figure 14.

interface Il

{

void m ( int a , Result result ) ;

}

class Ex1 implements Il
{
Result result ;
int x ;
Cl vb ;
int v3, v4, v6, v7 v8 ;
public void m ( int a , Result result )

{

v5 = new C1 () ;

v7i =1 ;

v = a + v7 ;

vb . p ( v6 , result ) ;
v4 = result . fint ;

v8 = 4 ;

v3 = v4 + v8 ;

x =v3 ;

result . fint = x ;

}

Figure 14: Class Ex1 in Intermediate Form #1.

Notice the manner in which an object “result” of type “Result” is used to transport return
values across methods. The Result class contains one field of each type in the program, both base
types and user-defined classes, in order to serve as the carrier for all return values.

Unfortunately, there is a problem with this naive approach. While this transformation appears
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intuitively to be sound, the use of a single object for returning values fails for certain kinds of
recursive methods when all variables are class members. There are two possible solutions. The
addition of local variables to methods would make it possible to properly preserve the return values
during recursion; however, we did not wish to add to JavaTAL the complications that accompany
local variables. (If the STAL [MCGW098] stack extensions were incorporated into JavaTAL, type-
sound local variables would take care of the whole matter.) The other solution is to create a
stack of results for recursive procedures, so that each result does not overwrite the result above
it before it is used. The resultant mechanism is rather inelegant, as it requires shuffling around
several pointers before and after each method call. While the current JavaTAL compiler invokes
the ResultStack mechanism for every call point, a clever compiler need only do this for certain
recursive functions. In addition, much of the inefficient or stylistic boilerplate that appears in the
intermediate representations can be optimized away at the JavaTAL level.

A.1 CPS Conversion

Like Morrisett et al.’s TAL compilerfMWCGY7], the next stage in compiling to JavaTAL is CPS
conversion.

In recent years, CPS conversion has become a controversial topic in the programming lan-
guage community. On the one hand, CPS is a well understood compiler technique[FWH92],
which has been employed in many successful optimizing compilers, such as the SML/NewJersey
compiler[App92]. While CPS had been accepted in the compiler community for years as nebulously
helpful, Sabry and Felleisen have shown that CPS-based program analysis does not provide any
more information for optimizations than can be had from sufficiently powerful direct analyses[SF94].
Furthermore, Diwan et al. have shown that the loss of locality caused by allocating all activation
records (continuations) on the heap can cause a serious degradation in memory-system perfor-
mance when compared with non-CPS, stack-based allocation[DTM95]. Modern architectures such
as the Intel Pentium II use pipeline stall-preventing branch prediction hardware that depends on
a call/return, stack-based execution model[Int97]. At best, CPS-converted programs fail to take
advantage of this hardware; at worst, CPS may actually hinder hardware optimizations like branch
prediction.

In the absence of a clear consensus on CPS conversion’s positive or negative effects on overall
program performance, we have elected to use CPS conversion in our prototype compiler for several
practical reasons. One of the most useful results of CPS conversion that everything ends up in
tail form. In other words, every intermediate control flow point becomes explicitly named. This
is especially helpful in the context of Typed Assembly Language, as it breaks the program into
non-nested methods with clearly specified interfaces. Each “basic block” in JavaTAL is a segment
of uninterrupted control flow; because each basic block will come from a MiniJava method, the
complete environment of the basic block is spelled out at the top of the corresponding method.

The second practical reason for choosing CPS is that all message sends will occur in tail position,
that is to say, at the end of a basic block. Without subsequent instructions to return to in the
basic block, there is no need to store a return address. Tail form calls can be mapped into jump
instructions, rather than call instructions, which are substantially cheaper[Int99]. CPS conversion
introduces additional method calls to the program, so the benefit of jump instructions versus call
instructions does not necessarily translate immediately into overall program speedup. However,
the presence of jump instructions is a valuable step toward our goal of optimizing certain dynamic
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dispatches to use direct jumps.

The use of CPS conversion also greatly simplifies memory management in our prototype system.
All data — activation records and user data alike — is allocated on the heap, so our programs need
not worry about deallocation. It is assumed that a trusted, conservative garbage collector will clean
up after our prototype programs. There do not appear to be any inherent barriers in our system
that would prevent using the region-based stack allocation technique used by STAL]MCGW98|.

Java’s class-based, object-oriented nature presents some interesting problems when it comes to
CPS conversion. The process of splitting complex methods into simpler, basic block-like methods
generates many additional methods; the first problem is determining where the newly generated
methods go in the class hierarchy. It would be helpful to have continuation methods added to
the original class from which they are spawned, as this would allow the code in the continuation
method to access all the member variables in the same object as the original method. However, it
is also the nature of continuations to be anonymous to the methods in which they are invoked. The
most natural invocation for a continuation is “k.apply()”, where “k” is the continuation object, and
“apply” is the method containing the actual continuation code. In Java, this constraint implies
that all continuations inherit from a uniform continuation interface, and that a given object can
contain at most one continuation.

It would be possible to design an intermediate representation for the CPS programs that
sidesteps the limitations of Java. However, we wanted this prototype compiler design to use Mini-
Java in all of its intermediate forms leading to JavaTAL, in order to make use of the existing Java
type-checker. Also, our intermediate translations could then be compiled and run at any stage to
check correctness. As a result, each continuation generated during CPS conversion causes the cre-
ation of a new class. At runtime, continuations will be passed around as actual objects instantiated
from the continuation classes.

Continuation classes all inherit from a uniform interface, called “ContinuationInterface”. This
interface contains one method, “apply()”, which allows any continuation object to be applied
anonymously at any tail point in the program.

Actual Continuation classes, which our compiler automatically names using the original class
name, original method name, and a unique number, contain two methods. The first method is
the apply() method, which contains a basic block of code lifted from the original complex method.
The second method, the setContinuation() method, is tailored to be called from the point just
after a continuation is created. SetContinuation() is used to initialize all of the data fields in
the continuation class to point to the appropriate fields in the original class. In this way, code
executing in the scope of the continuation class can access and modify the member variables of the
original class — the environment in which the continuation code would have executed in prior to
CPS conversion.

The example code in Figures 15 and 16 is the CPS version of the example from above, along
with the recursive “stack hack”. Note the use of the “that” pointer in the ContinuationFor_Ex1_m_2
class to access the member variables of class Ex1, where the instructions originally resided before
CPS conversion.

At first glance, it appears that our initial attempt to optimize dynamic dispatches has resulted
in at least twice as many dynamic dispatches. However, it should be noted that all setContinua-
tion() methods can be immediately inlined in the resulting JavaTAL code, because they represent
the normal parameter shuffling that takes place before a normal procedure call is executed. The set-
Continuation() methods remain in place (un-inlined) for the MiniJava intermediate representations
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interface Il

{ void m ( int a , ResultStack resstack ,

ContinuationInterface ContinuationX ) ; }
class Exl1 implements Il

{

ResultStack rstack, tempstack ;

int x ;

Cl vb ;

int v7, v6, v4, v8, v3 ;

public void m ( int a , ResultStack resstack ,
ContinuationInterface ContinuationXK )
{
vb = new C1 () ;
v7i =1 ;
v6 = a + v7 ;
tempstack = new ResultStack ( ) ;
tempstack.tail = rstack ;
rstack = tempstack ;
Continuation K_Ex1 m 2 = new ContinuationFor Exim2 ( ) ;
Continuation K_Ex1 m 2.setContinuation ( this , v6 , v6 ,

rstack , a , resstack , ContinuationXK ) ;

}

ContinuationFor Exl m 2 Continuation K Exlm 2 ;

}

interface ContinuationInterface
{ void apply () ; }

Figure 15: CPS Converted class Ex1.

only to satisfy Java’s rigid object model.
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class ContinuationFor Exl m 2 implements ContinuationInterface

{

Ex1 that ;

int a ;

ResultStack resstack ;

ContinuationInterface Continuation XK ;

public void setContinuation ( Exl that , Cl MessageSend Target , int v6 ,
ResultStack rstack , int a , ResultStack resstack ,
ContinuationInterface ContinuationK )
{
this.that = that ;
this.a = a ;
this.resstack = resstack ;
this.Continuation K = Continuation K ;
MessageSend Target.p ( v6 , rstack , this ) ;
}

ResultStack rstack ;

public void apply ( )
{
this.rstack = that.rstack ;
that.v4 = rstack.fint ;
this.rstack = that.rstack ;
that.rstack = rstack.tail ;
that.v8 = 4 ;
that.v3 = that.v4 + that.v8 ;
that.x = that.v3 ;
resstack.fint = that.x ;
ContinuationK.apply ( ) ;

}

Figure 16: Continuation for class Ex1.

40



B JavaTAL Grammar

Figures 17 and 18 show the current draft of the grammar for parsing JavaTAL version 1 files.

Goal ::= ( TypeDeclaration )* ( HeapElement )* "main" ":"
CodeBody <EOF>
TypeDeclaration ::= InterfaceDeclaration
| InterfaceExtends
| ClassDeclaration
InterfaceDeclaration ::= "interface" ClassOrInterface SpecialTupleType
InterfaceExtends ::= "interface" ClassOrInterface "extends"
ClassOrInterface SpecialTupleType
ClassDeclaration ::= "class" ClassOrInterface "implements"
ClassOrInterface TupleType
Type ::= BooleanType
| IntegerType
| ClassOrInterface
| TupleType
| RegisterFileType
|  ExistType
BooleanType ::= "bool"
IntegerType ::= "int"
ClassOrInterface ::= Label
TupleType ::= "<" ( Type )* ">"
RegisterFileType ::= "(" ( RegisterDecl )* ")"
ExistType ::= "Some" " (" Label "<" ":" ClassOrInterface ")" Label
RegisterDecl ::= Register ":" Type
SpecialTupleType ::= "<" "<" ( RegisterFileType )* ">" ">"
HeapElement ::= VirtualTable
|  CodeBlock
VirtualTable ::= Label ":" "<" ( Label )* ">"
CodeBlock ::= Label ":" "code" RegisterFileType CodeBody
CodeBody ::= CodeSequence
| Jmp
| Halt

Figure 17: Draft of Grammar for JavaTAL version 1

41



CodeSequence ::=

Instruction

Add ::
Bnz ::
Cmp ::

Ld ::=
Malloc ::=
Mov ::=

Print ::

St

Sub ::

Jmp ::=
Halt ::=

Unpack ::
Value ::

Register

Label ::
JunkValue ::

IntegerLiteral ::=

TypedValue

TypedIntegerLiteral ::

Instruction CodeBody

Add

Bnz

Cmp

Ld

Malloc

Mov

Print

St

Sub

Unpack

"add" Register "," Register "," Value
"bnz" Register "," Value

"cmp" Register "," Register "," Value
"1d" Register "," Register "[" IntegerLiteral "]"
"malloc" Register "[" ClassOrInterface "]"
"mov" Register "," TypedValue

"print" Value

"st" Register "[" IntegerLiteral "]" "," Register
"sub" Register "," Register "," Value
"jmp" Value

"halt"

"unpack" Register

Register

Label

JunkValue

IntegerLiteral

"r" IntegerLiteral

<IDENTIFIER>

"?" Type

<INTEGER_LITERAL>

Register

Label

JunkValue

TypedIntegerLiteral
<INTEGER_LITERAL> "[" Type "]1"

Figure 18: Draft of Grammar for JavaTAL version 1(continued)
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C JavaTALv1 Type Rules

The following type rules represent our current draft for the type system of JavaTAL version 1. At
the time of this writing, the required proof for type-soundness has not yet been completed. We
present these draft rules to give the reader a flavor of what we believe the type system will be like
for JavaTAL version 1 when completed.

These rules are based heavily upon Morrisett et al.’s TAL type system [MWCG97], which has
been proven type-sound. They also draw upon Abadi and Cardelli’s typed object lambda, calculus
variants [AC96], which are also type-sound.

Judgement Meaning

FT'1 = I's codetype I'y and I'y are the same, except possibly for r0.

F 1 C 7 jvector 71 i8 a jump vector subtype of 1o

[ F T rOtype I" contains rq of type [

ANQFD D is a well-formed declaration of class hierarchy information.
AFTy <T5 rftype I’y is a register file subtype of I’y

AF T type 7 is a well-formed type

A F ¥ htype U is a well-formed heap type

A F T rftype I" is a well-formed register file type

AU - w: T wval w is a well-formed word value of type 7

AU Faw: 7% fwval | w is a well-formed word value of flagged type 7%

(i.e., w has type 7, or w is 77 and ¢ is 0)

A Q0 - tw s T twval tw is a well-formed typed word value of type 7

A; QU - tw - 7% ftwval | tw is a well-formed typed word value of flagged type 7%
(i.e., tw has type 7, or tw is 77 and ¢ is 0)

AU T Fo: 1 val v is a well-formed small value of type 7

AU T w1 tval | to is a well-formed typed small value of type 7

A; QU F A7 hval h is a well-formed heap value of type 7

A; Q- H U heap H is a well-formed heap of heap type ¥

A; Q0 F R :T regfile R is a well-formed register file of register file type I'
AT ES S is a well-formed instruction sequence

P P is a well-formed program

Figure 19: Static semantic judgments

‘I— =~y codetype‘

— !
F{ro: 70,71 :T1yeeeyTn 7o} ={r0: 79,71 : T1,--.,Tn : Tn} codetype

‘I— 71 C 7o jvector‘

[; =T} codetype
F(To...Tpm) C(T§...TL) jvector

[T rOtype

IE{ro:l,r1:71,...,m : T} TOtype

0<i<n) (m>n)
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ALz ((Tg, s Ta) 1 Q F D

Afly = ()} B T rftype
l1 + T'; rOtype

i<m)

AQE

interface | <<TI'y,...,I';,>>; D

AFly:<<T§,...,TL >>

F(To, ..., [n) C (T4, ..., L) jvector
Al = ()} F T rftype

l1 - T; rOtype

A{ly = ((Top -, Ta)) 1l < Do} D

AQE

interface [ extends lo<<Iy,...,I'y>>; D

AFly << T}, ....,TL >>
F(To,...,[n) C (T4, ..., TL) jvector
Al = ()} F T rftype

Al ()} F 7 type

[ - T; r0type (m <n),
Al = (Lo, s Tn)m1, o1p) 1 {ls <L} ED

AQF

class /1 implements lo<<Dy,...,I'y,>7,...7,>; D

AFt:<<Tg,...,Tp >>
Ay :To, .0l : T} QD

ANQFT i< Iy, .y ly>; D

|AFTy < T rftype]

AF 7 type (1 <i<m)

AF{ri:m,...;rm T} <A{r1:7,...,m : 7o} rftype

A F 7 type

A+ U htype

A F T rftype

AF1l:7" (for all [ occurring in 7)
A F 7 type
A+ 7 type }
<
AF{li:7m,...,l, : 7} htype ( i<n)
A F 7 type ( i<n)

AE{ry:m,...,r : 7} rftype

44



A Q0w T wval

A Q= ¥(l) <7 type A QF¥(l) <7 type

AW i Int wval 1;; Qv l(—)l :_T W\}I,Ei A; Q;\,IJ Hil: 5(|(),3_S T)y,g wval
|A; Q0 Fw: 7% fwval |

AU Fw: T wval AT type

A; Q0 Faw: 7% fwval A; Q0 77 2 70 fwval
‘A;Q;KII Ftw:T twval‘

A BT Fifr]: 7 twval jx,%j_‘lf‘ljl—(ll) gTZVE}\,IET A; Q,A\ilglz—: :Pffé)ﬁgﬁi;.};pfwval
‘A;Q;\I/ Fitw: ¥ ftwval‘

AU Ftw: 7 wval A QF 7 type

AU Ftw : 7¥ ftwval A; 0 F?27 0 70 ftwval

‘A;Q;KIJ;FI—U:Tval‘

A Q0w T wval

AU T Erirval (T(r)=1) AT T w 7~ val

‘A;Q;\IJ;TI—t'U:Ttval‘

A; QU Ftw = T twval

AU T Er:7tval (T(r) =17) AU TE tw r tval

‘A;Q;\Ill—h:Thva,l‘

A; Q0 Fw; s 17 fwval
A Q0 (woy e ey wn—1) : (78, ..., 72 T") hval

v In—1

AFL:T AQFT rftype A;Q;0;TFS
A QU F “l:code ' S 7 : T hval

|A;Q+ H : U heap|

A; QU htype A; QU F h; @ 7; hval
ANQF{ly = hi,...,lp — hy} : ¥ heap

(T ={ly:71,..,ln:Tn})

[A; ;0 - R: T regfile |

A; U Fw; o1 wval
NGO E{r = wy,...,rp = wp}:{r1:71,...,m : T} regfile
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AT ES

AT Ergrint val A Q0T Fo:int val A Q0T {rg :int} - S
A Q0T Fop rg,rs,v S

op € {add, sub}

A Q0T Fr:bool val A; 0T Fo:TY val A;QFT < TV rftype A;Q;9;T{r; : int} - S
A; Q0T+ bne r,v S

A QU T Froint val A; Q0T Fo: T val A;QFT <TVrftype A;Q; ;T {ry: int} - S
A Q0T Fbnz rv S

AU T Erg:rval A0 T Fo:rval A; Q0T {rg:bool} F S
A; Q0T Fcmp g, 75,0 S

A QT Erg s (780, .. 2y val AT {ry: 7} E S

n—1

A Q0T F1d rg, 7s[i]) S

Able: (g, ..., 1") AT {rg: (15,...,70_1)} F §

> 'n—1

A; Q0T Fmalloc g, [lg] S

AU T Fiv:rtval A Q0T {rg:7}F S
A; QU T Fmov rg, tv S

A QU T Fweint val AT F S
AU T Fprint v S

AT F g (70, ., 7oy val A3 Q05T 7y 2 7y val
A Q0T {rg = (7°,. --aTz’%flaTl Tzﬁfl’ " ’fnll)}l_ (0<i<mn)

AU TF st rgli],ry S

AU T o : T val A;QFT <TYrftype
A Q0T F jmp v

A; Q;0; T halt

AU T Er:3(B<1).val AMa:A(T)[r0:a\r0: 7]} UHa <I}hHY;T{r:a}+ S
A; Q;U: T + unpack r S

(a ¢ A)
NQOFD AQFH: U heap A QU FR:T regfile A;QU:T'FS

l_ (D’ H’ R’ S)
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D Type Systems Explicated for Non-Theoriticians

For computer scientists such as myself, who have not come from a strong theory background, the
preceeding Appendices can appear to have no data content. Indeed, unless one is accustomed to
the notation commonly used by theorists in the language-typing community, the equations appear
very difficult to decipher. In reality, it is very easy to transform type-judgements into a form readily
understood by mainstream computer scientists and software engineers.

The very highest level overview of this project is that we want to create two important new
things: 1) a platform-independant, assembly-like language for compiling programs from any object-
oriented language, transporting them from a source machine to a destination machine; 2) a program
that quickly and flawlessly reads in one of our mobile code files, and decides it is “safe” according
to a certain set of definitions.

The equations in the previous Appendix are a high-level description of the second item — a
totally reliable verification program. Each equation, called a “type judgement,” describes a boolean
function in the verifier. For example, the top-level function is described by the equation:

(prog) ANQFD AQFH: U heap AU FR:Tregfile A Q0T HS
e ~(D,H,R,S)

What this says is that we have a boolean function that takes four parameters. We will call it
“Prog”, as this particular type judgement defines well-formed programs. The four parameters to
the program are defined below the line, “(D, H, R, S)”. Information elsewhere in the paper reveals
that “D” is all of the declarations in the mobile code file. “H” describes the heap memory — all of
the heap-allocated data structures, and the code blocks. “R” describes the set of registers on our
virtual processor. “S” is the sequence of instructions to be executed. The four bunches of symbols
above the line describe the simple body of the Prog function. Prog returns true if and only if all
four of the boolean functions it calls return true. Each of those four functions are defined by other
type judgements earlier in the Appendix. They are:

AQFD Are the class declarations complete and correct?
A;Q+ H : U heap Is the description of the Heap sensible?

A;Q; ¥ F R:T regfile Is the description of the registers sensible?
AT S Does the instruction sequence make sense?

Naturally, there are very rigorous definitions of “sensible” in this context, but that is the general
idea. Thus, this entire rule would look something like the following in C:

BOOLEAN prog (struct decls D, struct heaps H, struct regs R, struct code S)
{ return (DeclsOK(D) & HeapsOK(H) & RegsOK(R) & SequenceOK(S));}

Close inspection of the rules for the verifier should convince the reader that this is, indeed, a
description of a program that detects and rejects any malformed JavaTAL file. However, we seek
to prove the verifier is completely trustworthy with mathematical rigor, and that proof has not yet
been constructed for this particular system.
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