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ABSTRACT

Brylow, Dennis W. Ph.D., Purdue University, August, 2003. Stati
 Che
king of

Interrupt-Driven Software. Major Professor: Jens Palsberg.

Stati
 
he
king 
an provide safe and tight bounds on sta
k usage and exe
ution

times in interrupt-driven systems. This dissertation presents stati
 analysis algo-

rithms and a prototype implementation of those algorithms for stati
ally 
omputing

resour
e bounds in interrupt-driven systems. Advan
ed knowledge of resour
e bounds

enables real-time system designers to eliminate whole 
lasses of errors from their soft-

ware before testing begins, thereby redu
ing the testing e�ort ne
essary to a
hieve


on�den
e in their system.

Despite the ubiquity of hardware interrupts in real-time systems, little prior re-

sear
h has dealt with interrupt-driven software. The ben
hmark suite of 
ommer
ially-

deployed, interrupt-driven systems examined here in
ludes proprietary Z86-based mi-


ro
ontrollers programmed in assembly language with multiple ve
tored interrupt

sour
es, a shared system sta
k, extensive use of unstru
tured loops, and no formal

loop annotations.

The sta
k analysis bounds the maximum sta
k size to within one byte of the

true maximum in all but one of the programs in the ben
hmark suite. The deadline

analysis found �rm worst-
ase laten
ies in 30% of the 
ases; in the remaining 70% of

the ben
hmarks, the prototype redu
ed the size of the testing problem by an average

of 98%. While the testing e�ort still required for these systems is large, it is several

orders of magnitude smaller than the testing problem without deadline analysis.

This dissertation presents novel algorithms for stati
 analysis in the 
ontext of

interrupt-driven assembly 
ode. The prototype implementation is one of the �rst

tools to in
orporate stati
 analysis with testing ora
les in an intera
tive fashion.
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1 INTRODUCTION

1.1 Thesis Statement

Stati
 
he
king 
an be employed to provide safe and tight bounds on sta
k usage

and exe
ution times in interrupt-driven systems.

1.2 Overview

It was the goal of this resear
h to �nd a balan
e between stati
 analyses and de-

sign spe
i�
ations for the purpose of 
onstru
ting pra
ti
al development tools in the

area of real-time, interrupt-driven software. This e�ort has been su

essful; the pro-

totype tool, 
alled \ZARBI" (Zilog Ar
hite
ture Resour
e-Bounding Infrastru
ture),

implements novel stati
 analysis algorithms for �nding safe and tight bounds on both

sta
k usage and worst-
ase interrupt laten
y in the analyzed systems.

The systems analyzed in this dissertation exemplify a 
lass of interrupt-driven

software with ve
tored interrupt handling, unstru
tured and unbounded loops, limited

indire
t addressing and limited indire
t pro
edure 
alls. The ben
hmark suite in
ludes

seven 
ommer
ial mi
ro
ontroller systems available to the author, as well as many

smaller example programs that demonstrate other interesting real-time programming

idioms.

The stru
ture of this dissertation follows the outline below.

� Chapter 1 presents introdu
tory material, the thesis statement, and outlines


ontributions.

� Chapter 2 des
ribes related work.

� Chapter 3 de�nes terms and explains 
on
epts that are used throughout later


hapters.

� Chapter 4 presents the sta
k size 
he
king algorithm [14℄, demonstrating that a


ontrol-
ow representation 
ontaining a program 
ounter, interrupt mask regis-

ter, and the top sta
k element at ea
h node is suÆ
ient to bound sta
k usage in

many interrupt-driven systems, as well as 
he
k several other safety properties.

� Chapter 5 presents the deadline analysis algorithm used to bound interrupt

laten
y [15℄. The ZARBI implementation of the algorithm 
olors 
ontrol 
ow

graphs based on interrupt laten
y, in
orporating external timing information

into the stati
 analysis in order to bound maximum laten
ies.
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(2)

Power
Pulse

(1)

(3)
Network

Microcontroller Fan

Figure 1.1. Example of an Interrupt-Driven System

� Chapter 6 des
ribes the infrastru
ture of the prototype system, detailing design


hoi
es, algorithmi
 details, and experien
es relevant to building this stati



he
king tool.

� Chapter 7 summarizes and 
on
ludes with a dis
ussion of future resear
h dire
-

tions.

1.3 Embedded Systems

Real-time, rea
tive and embedded systems are used in appli
ations su
h as 
ight


ontrol, vehi
le management systems, tele
ommuni
ations, home ele
troni
s and med-

i
al devi
es [25, 31, 40, 92℄. Many su
h appli
ations are long lived, intera
t with their

environment 
ontinuously, and operate under important real-time 
onstraints. The

systems analyzed in this dissertation were designed and marketed with the expe
ta-

tion that they would run for months or years without down time. They are expe
ted

to 
ontinuously rea
t to input, and failures 
an potentially 
ause tangible monetary

loss. As the deployment of su
h embedded systems grows, the need for 
ost-e�e
tive

software assuran
e te
hniques grows 
orrespondingly.

1.3.1 Interrupt-Driven Software

This dissertation fo
uses on a 
ommon 
lass of real-time systems known as interrupt-

driven systems. Interrupts and interrupt handlers are used in systems where fast re-

sponse to an event is essential. Interrupt-driven systems are those in whi
h signi�
ant

portions of the overall 
omputation rely on interrupts and their handlers.
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For example, Figure 1.1, illustrates the operation of one of the mi
ro
ontroller

systems analyzed in later 
hapters. The example mi
ro
ontroller has three interrupt

sour
es whi
h intera
t in a 
omplex fashion. The �rst interrupt sour
e is an internal

timer, used to generate the waveform that 
ontrols a bank of variable speed ventilation

fans. The interrupt handler regularly re
al
ulates the timer interval to maintain the

desired waveform. The se
ond interrupt sour
e is a 60Hz power pulse, whi
h enables

the mi
ro
ontroller to syn
hronize the waveform output with the fan power sour
e.

The �rst and se
ond interrupt handlers must 
oordinate with one another in order to


orre
t for phase 
hanges in the fan power, or drift in the internal timer 
al
ulations.

The third interrupt sour
e is a network 
ommuni
ation 
hannel via RS-485 long-haul

modem, used by a 
entral network 
ontroller to poll status, examine sensor readings,

and even reprogram the remote mi
ro
ontrollers. Network 
ommuni
ation interrupts


an 
ome at virtually any time, and must be given highest priority when they arrive.

(The pro
essor manually sequen
es the RS-485 pa
kets, bit by bit, at the proper baud

rate.) If the pro
essing of network traÆ
 takes too long, proper 
ontrol of the fans


annot be maintained. The full version of the mi
ro
ontroller system shown here is

part of a ventilation system used in an agri
ultural setting; fan lo
kup 
an result in

danger to livesto
k from heatstroke, pneumonia, or deleterious levels of ammonia and

methane.

Testing of real-time embedded systems like the example in Figure 1.1 is diÆ
ult.

While powerful pro
essors 
an be used for embedded systems, the demand for 
ost-

e�e
tive 
omputation results in the use of smaller, resour
e-
onstrained devi
es in

far greater numbers [92℄. For developers, the reality of resour
e-
onstrained devi
es


an mean that the use of 
onvenient, high-level abstra
tions (e.g., real-time operat-

ing systems whi
h provide 
ertain guarantees) is not an option. Software in rea
tive

and real-time embedded systems is often programmed by hand in low-level languages

like C and assembly [25℄. Real-time software 
an rely heavily on hardware interrupt

handling, have no high-level pro
ess model, and leverage little or no 
ompiler assis-

tan
e { all fa
tors whi
h 
an make analysis of the software more diÆ
ult. Without

the high-level abstra
tions most software analysis te
hniques depend upon, su
h sys-

tems are often evaluated for safety and 
orre
tness only through extensive testing or

simulation.

1.3.2 Testing

Component and integration testing of embedded systems 
an be intensely time-


onsuming, prohibitively expensive, and is often less than 
omprehensive. Unlike

software on general purpose 
omputing platforms, embedded systems are hard to in-

strument. Embedded systems have narrow information 
hannels: internal register

states are diÆ
ult to a

ess externally without altering the system; hardware inter-

a
tions are diÆ
ult to manipulate without distorting key timing properties of the

system; and �nally, resour
e 
onstraints usually render on-
hip monitoring infeasi-

ble [42℄.
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Testing of real-time embedded systems is even more diÆ
ult than embedded sys-

tems, be
ause the real-time 
omponents of the software add nondeterminism to the

system. Small variations in the interrupt requests 
aused by external triggers and

internal timers 
an result in di�erent behavior between runs even if the 
ontroller is

exe
uting the same 
omputation on the same data.

Furthermore, even if it were pra
ti
al to as
ertain pre
ise ma
hine state from

embedded systems, the number of possible exe
ution paths in
reases 
ombinatorially

in a interrupt-driven system. For any given ma
hine instru
tion in a segment of


ode where interrupts are enabled, 
ontrol 
ould potentially pass either to the next

instru
tion, or to any of the enabled interrupt handlers. In this way, the number

of transitions in an equivalent state ma
hine for a interrupt-driven system in
reases

exponentially in the number of available interrupts. Traditional 
overage testing

qui
kly be
omes intra
table in this setting.

Consider the example system from Figure 1.1: assume that the �rst interrupt

sour
e (internal timer) is triggered 180 times per se
ond, with the handler exe
uting

for 100 mi
rose
onds; the se
ond interrupt sour
e (power pulse) o

urs 60 times per

se
ond, with the handler exe
uting for 10 mi
rose
onds; and the third interrupt sour
e

(network traÆ
) o

urs on
e per se
ond, and takes 100 mi
rose
onds to handle. If

these events take pla
e 
ompletely independently, then the odds of observing all

three handlers 
onjun
tively 
ontributing to the maximum sta
k height in any given

mi
rose
ond time-sli
e are roughly 1 � 10

�9

. This worst 
ase behavior 
ould be

expe
ted on
e in a billion observations, assuming it was even possible to gather sta
k

height data from the embedded system and that normal test inputs would even explore

that 
orner of the problem spa
e. Nevertheless, if 1000 su
h systems are deployed and

operated for years, it is a near-
ertainty that this unusual worst-
ase behavior will

o

ur in the �eld. Further note that these probabilities are for a greatly simpli�ed

example system.

While it is unlikely that the need for full-s
ale testing will ever be 
ompletely

supplanted by any other methodology, there is great potential for software veri�
ation

tools to substantially de
rease both the time and e�ort for testing real-time systems.

For example, stati
 analysis of timing properties in real-time systems 
ould eliminate

whole 
lasses of errors prior to testing.

1.3.3 Pra
ti
al Challenges

The example in Figure 1.1 is a simpli�
ation of a real-time system a
tually in

produ
tion; the pro
essor is an 8-bit Z86 mi
ro
ontroller, with 256 bytes of RAM,

4K of program ROM, and a 12MHz 
lo
k [100℄. The software for the example system

was written by hand, in Z86 assembly language, and is about 2500 lines of 
ode, with


omments. The prototypes of this parti
ular system underwent months of testing

prior to a
tual produ
tion. The �nal produ
tion model did not in
lude the RS-

485 network hardware; even though the software was written to handle the network
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onne
tion, produ
tion deadlines did not allow suÆ
ient testing to determine what

adverse impa
ts, if any, 
ould be expe
ted when the interrupts intera
ted.

Several pressing questions prevented the deployment of the network fun
tionality

for the example 
ontroller.

� How high would the sta
k grow if the 
ontroller's network 
ommuni
ation han-

dlers were triggered during normal operating modes? The memory layout of

the Z86 does not o�er hardware prote
tion for global data registers from the

system sta
k; if the sta
k grew larger than the designers had anti
ipated, it

would overwrite other data registers.

� How would the network 
ommuni
ation handlers interfere with the other in-

terrupts in the system? Could a network pa
ket 
ause the 
ontroller to miss

one of its deadlines for generating the proper 
ontrol signals? Could the other

interrupts 
ause the network 
ommuni
ation interrupt to miss its deadline for

properly interpreting a network pa
ket?

Worse yet, even without the network interrupts enabled, it was not 
lear that the


ontroller would ne
essarily meet all of its deadlines.

The ZARBI tool was designed to help address questions like the ones above when

analyzing interrupt-driven systems. The stati
 analyses presented later in this disser-

tation produ
e safe, tight bounds on sta
k usage and interrupt laten
y. With these

bounds in hand, system designers 
an avoid mu
h of the 
ostly testing e�ort that

would otherwise be required to determine whether or not the system has suÆ
ient

resour
es.

1.4 Contributions

The produ
tion mi
ro
ontrollers studied in this dissertation rely on ve
tored, asyn-


hronous interrupt handling to a

omplish their work. They use a limited form of in-

dire
t pro
edure 
all, extensive goto-like \JMP" instru
tions, and have no formally an-

notated loop bounds. The goal of this resear
h proje
t was to devise automated te
h-

niques for produ
ing a

urate bounds on resour
e 
onsumption in interrupt-driven

systems. A side bene�t of the resear
h was the 
onstru
tion of a prototype tool


apable of providing resour
e bounds for the kinds of systems exempli�ed by the


hara
teristi
s above.

The primary 
ontribution of this work is ZARBI, the Zilog Ar
hite
ture Resour
e-

Bounding Infrastru
ture. The prototype tool 
omputes 
onservative, tight bounds on

sta
k usage and worst-
ase interrupt laten
y for interrupt-driven systems written in

Z86 assembly language. These bounds allow the system designer to eliminate whole


lasses of errors from the software before testing even begins, thereby redu
ing the

testing e�ort ne
essary to a
hieve 
on�den
e in the system.

Se
ondary 
ontributions of this work in
lude novel algorithms used in the 
ore

of ZARBI to bound sta
k height and maximum interrupt laten
y, respe
tively. This
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is the �rst su
h work on tra
table 
ontrol-
ow analysis in the presen
e of ve
tored

interrupt handling.

Additional analyses also 
he
k for several 
lasses of semanti
 errors in the Z86 pro-

gram, in
luding using simple types to dete
t sta
k manipulation errors. In addition,

ZARBI 
ontains 
omponents for enhan
ed visualization and debugging of 
ontrol-
ow

graph 
y
les during the intera
tive pro
ess of interrupt laten
y analysis.
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2 RELATED WORK

In the general 
ase, the problem of bounding sta
k sizes and maximum exe
ution

times is equivalent to the halting problem [84℄; it is a basi
 theorem of 
omputer

s
ien
e that these questions are unde
idable. Mu
h work has been done on tools

that operate on de
idable subsets of programming languages, for example, Berkeley

Pa
ket Filters [56℄, or Agere Systems' C-NP language [1℄ for programming network

pro
essors, whi
h do not allow ba
kward bran
hing.

Most resear
h in the area of 
al
ulating real-time software resour
e bounds stems

from Pus
hner and Koza's work [80℄, whi
h uses the following 
onditions to guarantee

de
idability:

� No asyn
hronous interrupts

� No re
ursion

� No indire
t 
alls

� No goto instru
tions

� Stri
tly bounded loops

In the 1990's, resear
hers have worked to relax several of these restri
tions, with

a variety of trade-o�s. However, despite the fa
t that asyn
hronous interrupts are

the most salient feature of a
tual real-time systems, they remain the least resear
hed

topi
 on the above list.

2.1 Sour
e-Level Timing S
hemas

In 1989, Alan Shaw wrote, \When interrupts are permitted and both interrupt

handling times and frequen
ies are bounded, the e�e
ts of pro
essor sharing between

a user pro
ess and one or more interrupt handlers 
an be in
luded in a timing analy-

sis," [89℄. While this is 
ertainly true, it remains very diÆ
ult in pra
ti
e to automat-

i
ally as
ertain interrupt handling times. Interrupt frequen
ies are entirely beyond

the s
ope of automated program analysis, and generally fall under the 
ategory of

design 
riteria for a given system. Shaw's timing s
hema for high-level languages,

(by whi
h he meant Algol,) has served as the basis for over a de
ade of subsequent

resear
h on analyzing maximum exe
ution time for software. On the topi
 of inter-

rupts, Shaw indi
ated that the system 
ould be extended to a

ount for interrupts

using the equation,
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t

0

max

(S) = t

max

(S)=(1� f

max

� t

max

(IH))

where t

max

(S) if the uninterrupted, straightline maximum exe
ution time for state-

ment S, t

0

max

(S) will be the maximum exe
ution time of statement S taking interrupts

into a

ount, and f

max

and t

max

(IH) are the known interrupt frequen
y and interrupt

handler exe
ution time. Shaw 
on
luded that, \timing predi
tability seems impra
-

ti
al when a pro
ess 
an be preempted at arbitrary points in its 
ode," and left the

matter at that. A large body of work has stemmed from this original premise, as

exempli�ed by papers like Lim et al. [48℄, whi
h extend Shaw's basi
 timing s
hema

to a

ount for features of modern pro
essors su
h as pipeline, data 
a
he, and instru
-

tion 
a
he e�e
ts. Engblom et al. [28℄ 
on
entrate on 
o-transformation of sour
e-level

s
hema in order to inform analysis of 
ompiler-optimized obje
t 
ode. All of the work

listed above assumes an absen
e of interrupts, or trivially isolatable interrupt behav-

ior, in spite of the fa
t that virtually all modern pro
essors used in real-time systems

have ve
tored interrupt handling fa
ilities, and all real-time systems known to the

author have made use of those fa
ilities.

2.2 The False Path Problem

In 1996, Altenbernd identi�ed that a key issue in a

urate worst-
ase exe
ution

time (WCET) analysis is the False Path Problem [4℄. In 
onstru
ting a 
ontrol-
ow

graph, the abstra
tion often 
ontains paths that 
annot a
tually take pla
e in a real

program exe
ution { bran
hes that aren't taken, interrupt handlers that aren't yet

enabled, et
. In order to 
al
ulate tight bounds on exe
ution time, the algorithm

must sear
h for the longest exe
utable path in the graph, rather than the longest

stru
tural path in the graph. This is equivalent to an NP-
omplete problem that

exists in hardware design; �nding the longest exe
utable path in a network of logi


gates is substantially more diÆ
ult than �nding the longest stru
turally 
onne
ted

path [54℄. Altenbernd used symboli
 exe
ution to tra
k possible values of key 
on-

ditional variables, and thereby pruned infeasible paths out of the 
ontrol-
ow graph.

This is essentially the same te
hnique used by ZARBI to prune away a substantial

number of infeasible interrupt handler paths from the 
ontrol-
ow graphs.

2.3 Higher-Level Languages

Liu and G�omez [50℄ automati
ally transformed S
heme 
ode dire
tly into time-

bound fun
tions, based upon partially-known input stru
tures. They then plugged in

numbers gleaned from intensive pro�ling to approximate the a
tual exe
ution time

of the 
ompiled 
ode. Their method has fared well initially, yielding exe
ution time

estimates very 
lose to measured exe
ution times. However, the sour
e language and

its a

ompanying transformations have no provisions for ve
tored interrupts, and the
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te
hnique glosses over issues 
on
erning a

urate low-level timing of primitives by

averaging together tens of millions of runs of representative 
ode. It remains to be

seen whether the need for �rst-
lass lambda expressions will outweigh the need for

a

urate low-level timing in the 
ommunity of real-time system designers.

Applying essentially the same 
on
ept as [50℄, but at a lower level, Lundqvist

and Stenstrom [51℄ augmented a PowerPC simulator to use an \unknown" value.

The unknown value allows a variant of instru
tion-level simulation, without having

to know pre
ise input. In addition, they used path-merging heuristi
s to maintain a

tra
table number of paths. Their work does not 
onsider ve
tored interrupt handling,

although their path-merging te
hnique may be generalizable to assist in keeping paths


aused by interrupt handlers to a manageable number.

Resear
h on Real-Time Java [12℄ aims to make Java a legitimate language 
hoi
e

for real-time programmers. While the obje
t-oriented programming model has little

in 
ommon with Z86 assembly language, work on RTJ addresses many of the same

problems as this dissertation. Implementation of s
opedmemory for RTJ [9℄ addresses

issues of bounding memory allo
ation, and more importantly, bounding exe
ution

time impa
ts of memory management. Others have worked on WCET analysis for

Java Byte Code [8℄ and portable WCET annotations for Java Byte Code [10℄. How-

ever, the very abstra
tions that make Java an attra
tive development environment

hamper a

urate analyses; just getting ba
k the gain time lost to overestimation of

WCET due to dynami
 dispat
h is a diÆ
ult problem [43℄.

2.4 Spe
ial-Purpose Languages

Many spe
ial-purpose languages have been 
reated for use in real-time systems.

Real-Time Eu
lid [46℄ has provisions for s
hedulability analysis built in { all loops

have a bounded number of iterations or exe
ution time.

ESTEREL [11℄ is a prime example of a syn
hronous language that 
an be used for

programming rea
tive systems. Syn
hronous languages use instant broad
ast between

pro
esses, whi
h means that interpro
ess 
ommuni
ation and other data handling

take an irrelevantly small amount of exe
ution time. While syn
hronous languages

are well-suited to purely rea
tive systems, they are not as well-suited to intera
tive

or transformational systems. The embedded systems examined in this dissertation

exhibit 
hara
teristi
s of all three kinds of systems: rea
tive, intera
tive, and trans-

formational.

Like syn
hronous programming languages, the Giotto proje
t [40℄ seeks to provide

a platform-independent abstra
tion for programming real-time systems. Giotto pro-

grams are 
on
erned with fun
tionality and timing properties of the system. Tasks are

organized into modes, and 
ommuni
ate with one another through drivers { underly-

ing 
ode for transporting data between pro
esses, sensors, and a
tuators. The a
tual

tasks and drivers are not implemented in Giotto; they are exe
uted in a platform-

dependent fashion using 
ompilers that must 
onform to Giotto's 
onstraints in order

to guarantee that the �nal system meets the properties promised by the Giotto model.
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Extending the Giotto proje
t, the E-Ma
hine [41℄ is a platform-independent virtual

ma
hine that supervises the timing of a real-time system with respe
t to the external

environment.

2.5 Pre
onditions for Su

ess

As mentioned in the previous se
tion, Pus
hner and Koza 
odi�ed the standard


onditions for making WCET analysis tra
table in 1989 [80℄. These limitations were

no interrupts, re
ursion, indire
t 
alls, or goto's, with a-priori bounds on all loops.

Nine years later, a survey paper on te
hniques for stati
 analysis of embedded

software [52℄ assumes all of these pre
onditions ex
ept for the goto rule. The brunt

of work in the WCET area 
ontinues to revolve around timing e�e
ts 
aused by 
a
he

misses. Ca
he e�e
t analysis is not appli
able to many real-time systems, like the

Z86 family of pro
essors, whi
h do not even have 
a
he memory.

Li and Malik's Cinderella proje
t [47℄, so named for the �
titious girl's hard real-

time 
onstraint with respe
t to midnight and pumpkins, automati
ally formulates

WCET analysis as an integer linear programming problem. Their tool analyzes sour
e


ode for the Intel i960KB pro
essor, and lo
ates 
riti
al variables with respe
t to the

timing analysis. The user then manually assigns bounds to the 
riti
al variables, and

the analysis 
al
ulates �nal exe
ution times. Cinderella operates under the standard

Pus
hner and Koza assumptions, and does not allow interrupts.

Work in automati
 dete
tion of indu
tion variables [62℄, and bounding of unnat-

ural loops in low-level languages [38℄ is appli
able to loops present in the 
ommer-


ial mi
ro
ontroller systems examined later in this dissertation. Healy and Whal-

ley's approa
h [39℄ 
on
entrates on the bran
h instru
tions themselves. By sear
hing

ba
kward to �nd all of the assignments that in
uen
e registers used in the bran
h


omparison, they are able to 
lassify all jumps as one of unknown, fall-through, or

jump. The sear
h 
ontinues until all registers in the expression 
an be repla
ed by

immediate values, or a 
ontrol-
ow merge point is en
ountered. This intra-pro
edural

analysis allows tighter bounds to be 
al
ulated for many loops.

2.6 Call Graphs and Model Che
king

A stati
 analysis of assembly 
ode may attempt to approximate the values in

spe
i�
 registers or on the sta
k. This problem is 
losely related to the problems of


all-graph 
onstru
tion and points-to analysis for obje
t-oriented programs. A

u-

rate, s
alable analyses for these purposes exist in the programming languages 
om-

munity [75, 95℄.

The FLAVERS system at University of Massa
husetts, (FLow Analysis for VER-

ifying Spe
i�
ations), is a 
exible framework for 
ow analysis of 
on
urrent pro-

grams [23,65℄. FLAVERS has even been extended to analyze in�nite exe
utions [66℄,

whi
h are 
ommon in embedded systems. However, the FLAVERS system has a mu
h
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higher-level abstra
tion of 
on
urrent tasks; separate tasks do not have 
ompletely

shared sta
k and data registers. Su
h a high-level analysis thrives on a more rigidly

spe
i�ed interfa
e between tasks than 
an exist at the Z86 mi
ro
ontroller level.

The sta
k-size 
he
king algorithm in ZARBI 
an be seen as a demand-driven

version of an algorithm for model 
he
king of pushdown systems like Podelski [79℄.

The algorithm presented later in this dissertation di�ers from Podelski [79℄ in that

it generates edges on demand, thereby ensuring that many unrea
hable nodes are

automati
ally pruned away. This demand-driven quality, 
ombined with tight ap-

proximation of feasible IMR values, prevents the exponential state-spa
e explosion

that would o

ur in more na��ve analyses.

Analysis of partially-implemented real-time systems [7℄ is tangentially related to

this dissertation, in that the Z86 simulator in ZARBI models the unimplemented

portions of systems for test purposes, and stati
 analysis of timing bounds may involve

modeling external inputs in a similar fashion.

Resear
h at University of Wis
onsin has used graph rea
hability [83℄ as a me
ha-

nism for program analysis. Context-sensitive analysis of the sort employed by ZARBI

has been shown to be unde
idable in the general 
ase [84℄, as it is equivalent to Post's

Corresponden
e Problem. Fortunately, the straightforward heuristi
 that sta
k sizes

in Z86E30 software 
an be no larger than the meager 256 bytes of total RAM gives

the ZARBI algorithm de
idability.

Maximum exe
ution time is formulated as a graph theoreti
 problem in Pus
hner

and S
hedl [81℄, using T-graphs. T-graphs are substantially similar to the 
ontrol


ow graphs used in ZARBI with edges weighted by exe
ution times. Relative 
a-

pa
ity 
onstraints provide information about infeasible paths in the T-graphs using

information provided by the user. When the T-graph 
onstru
tion is 
omplete, the

sear
h problem is passed on to an integer linear programming (ILP) solver. The T-

graph approa
h allows goto statements and 
an provide pre
ise maximum exe
ution

time { rather than exe
ution time bounds { in 
ases where every instru
tion takes an

invariable amount of time to exe
ute under all 
ir
umstan
es.

Like Brylow et al. [14℄, Wegener and Mueller [98℄ shows that stati
 analysis and

evolutionary testing 
an be used su

essfully in 
on
ert to seek both upper and lower

bounds on worst-
ase exe
ution time.

2.7 Type Theory

Advan
es in the stati
 analysis of programs have addressed a plethora of safety

issues, in
luding bounding resour
es like sta
k size.

Palsberg and O'Keefe [74℄, and Palsberg and S
hwartzba
h [76℄ present and prove

soundness for a type system that 
he
ks the safety of a 
al
ulus with untyped lambda

terms. This is essentially the same kind of safety problem as type 
he
king the basi


sta
k operations in Z86 programs, and a similar type system is used by the ZARBI

sta
k-bounding analysis to 
at
h several 
lasses of potential errors.
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In 1996, Ne
ula and Lee proposed a te
hnique for embedding a formal proof of


orre
tness in 
ode [69℄. In 1997, Ne
ula re�ned his Proof-Carrying Code me
ha-

nism [67℄, and showed what su
h a framework might look like. In 1998, Ne
ula and

Lee revealed a working, non-trivial implementation of the PCC 
on
ept [68℄. The

proof-
arrying 
ode 
on
ept in
ludes annotations for loop invariants, whi
h 
ould

ultimately be helpful in WCET analysis of loops.

Morrisett's TAL [59℄ is a RISC-like assembly language, with annotations at basi


blo
k and allo
ation points that allow the 
ode to be proven type-safe. In this way,

typed assembly language is a parti
ular kind of proof-
arrying 
ode, with the overhead

of the proof being dramati
ally redu
ed. Extensions to TAL in
lude type-safe sta
k

management [58℄ for a substantial subset of the Intel x86 instru
tion set [57℄. Another

extension to the TAL system is Crary and Weiri
h's type system for bounding resour
e


onsumption, parti
ularly time bounds [22℄.

The tool presented in [99℄ 
he
ks SPARC ma
hine 
ode for memory safety using

type state 
he
king and input annotations. This approa
h has bene�ts similar to [68℄

and [59℄, in that safety 
he
king is done at the lowest level, and does not entail trusting

an optimizing 
ompiler. Also like [68℄ and [59℄, the systems presented in [99℄ was not

designed with analysis of timing properties in mind.

While all of the papers above present valuable te
hniques for stati
 analysis of

low-level programs, none allow for preemptive interrupts of any kind.

2.8 Tools

The Advan
ed Software Te
hnology (ASTEC) group 
entered at Uppsala Uni-

versity has built a substantial infrastru
ture for analysis of WCET in real-time sys-

tems [29℄. The ASTEC group represents 
ontrol 
ow using a basi
 unit 
alled a s
ope,

whi
h is intuitively a looping 
onstru
t. All s
opes have an iteration 
ounts asso
i-

ated with them; non-looping 
ode is a s
ope with zero or one iteration. S
opes are

assembled into a s
ope tree, whi
h impli
itly represents all possible 
ontrol 
ow in the

program. S
opes are a very general 
on
ept, to whi
h a wide variety of exe
ution fa
ts


an be atta
hed, in
luding 
ow information fa
ts [27℄ to des
ribe feasible exe
ution

paths, or fa
ts about low-level fa
tors like pipeline e�e
ts on the exe
ution time [30℄.

S
ope trees are pro
essed into a system of 
onstraints using an impli
it path enumer-

ation te
hnique (IPET) analysis to determine the maximum exe
ution 
ount for ea
h

point in the program. WCET 
an then be estimated using the fun
tion

WCET = maximize(

X

8entity

x

entity

� t

entity

)

where x

entity

is the exe
ution 
ount for ea
h entity, t

entity

is the known exe
ution time

of ea
h entity, and 
ow 
onstraints ensure that the system examines only feasible

paths [27℄. The resear
h at ASTEC is in 
on
ert with IAR Systems, and therefore

has been tested at several points against realisti
 real-time systems. Work on the
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ASTEC infrastru
ture 
ontinues, with support now in
luded for 
ow analysis of C

programs [35℄.

The University of Saarland Embedded Systems (USES) group has used abstra
t

interpretation [21,70℄ and ILP solvers to extensively model the Motorola \ColdFire"

MCF 5307 pro
essor [31℄. Their modular ar
hite
ture breaks down the overall WCET

problem into smaller parts: a value analysis approximates possible addresses of mem-

ory a

esses; a 
a
he analysis 
hara
terizes all memory a

esses as hits or possible

misses; a pipeline analysis takes into a

ount the speedup 
aused by subsequent in-

stru
tions passing through the pipeline in su

ession; a �nal path analysis 
al
ulates

the WCET of the program. Ea
h analysis 
an make use of information provided by

the previous analysis in the 
hain. The USES group's tool has been applied to test

programs supplied by AIRBUS [31℄.

Commer
ial ILP solvers like CPLEX [44℄ and lp solve [72℄ have been employed

to analyze advan
ed pro
essor features like 
a
he and pipeline analysis [3, 32℄, and

bran
h predi
tion [55℄.

2.9 Summary of Related Work

Mu
h work has been done on timing s
hema for high-level languages, and on mit-

igating the timing e�e
ts of pipelines and 
a
hes in modern pro
essors. Symboli


exe
ution and impli
it path merging are among several te
hniques intended to elimi-

nate false paths in representative 
ontrol-
ow graphs in order to keep stati
 analysis

tra
table in size. Model 
he
king and type system advan
es have been used to verify

many useful software properties. Nevertheless, previous work in the area of bounding

resour
es for real-time software 
an be separated into two 
ategories:

� Work that ignores preemptive interrupts altogether, and

� Work that assumes interrupt handlers are trivially isolatable from the main

pro
ess.

All of the real-time systems examined in this dissertation have interrupt handlers

heavily integrated with the main program; they share the same system sta
k, op-

erate on the same relatively small set of registers, and in many 
ases a�e
t 
ontrol


ow within the main program. Prior resear
h does not attempt analysis of interrupt

handlers as an integral part of the real-time system, and thus 
annot provide useful

bounds on interrupt-driven systems. Furthermore, for most prior work, the expo-

nential in
rease in state-spa
e that o

urs when taking interrupt-handler 
ontrol-
ow

into a

ount would make analysis largely intra
table.

Chapters 4 and 5 present te
hniques for analysis of interrupt-driven programs that

mitigate mu
h of the exponential in
rease in state-spa
e during analysis.
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3 FRAMEWORK

The next several 
hapters present the stati
 analysis te
hniques used to bound sta
k

size (Chapter 4) and exe
ution time (Chapter 5) in interrupt-driven software. This


hapter de�nes 
ommon 
on
epts and abstra
tions used throughout 
hapters 4 and 5,

as well as in the 
hapter on implementation details (Chapter 6).

3.1 Control Flow Graphs

The algorithms presented in this dissertation operate on an abstra
tion of pro-

gram states known as a 
ontrol 
ow graph [2℄. This se
tion de�nes 
ow graphs and

terminology that will be used in subsequent dis
ussions of the algorithms.

A 
ontrol 
ow graph is an abstra
tion of program states and the transitions be-

tween them. Details and examples of 
ontrol 
ow graph 
onstru
tion are given in

se
tions 4.2, 5.2, and 6.1.

A 
ontrol 
ow graph G is de�ned as the tuple hV;Ei, 
onsisting of a �nite set of

verti
es V and edges E � V � V . A vertex is also sometimes 
alled a node. For the

analysis algorithms presented later in this 
hapter, a 
ontrol 
ow graph (abbreviated

hereafter as CFG) is the �rst 
omponent of a tuple hG;w; terminusi, where w is a

weight fun
tion that maps edges e 2 E to integers (w : E 7! Z) and terminus is the

designated vertex (terminus 2 V ) to be the starting or ending point of a sear
h.

A 
ontrol 
ow graph, (abbreviated hereafter as CFG,) is a digraph [87℄, meaning

that all edges e 2 E are dire
ted, or one-way; the �rst vertex in e is the sour
e, and

the se
ond vertex is the destination. Let A(v) be the set of edges e 2 E su
h that

v is the destination vertex for e. Let 
(v) be the set of edges e 2 E su
h that v is

the sour
e vertex for e. A(v) is vertex v's in
oming edge set, and 
(v) is v's outgoing

edge set. A vertex v

0

is upstream of v

k

if there exists a path from v

0

to v

k

, but not

vi
e-versa.

Resour
e-bounding algorithms deal extensively with paths in the CFG. A path �

is a sequen
e of verti
es v

0

; :::; v

k

su
h that 8i 2 f0; :::; k�1g : hv

i

; v

i+1

i 2 E. A simple

path is a path in whi
h ea
h v

i

in � is distin
t. A 
y
le [87℄ 
onsists of a simple path

from v

0

to v

k

, with an additional edge from v

k

ba
k to v

0

. A vertex v

k

is rea
hable

from vertex v

0

if there exists a path from v

0

to v

k

.

The resour
es to be analyzed in a CFG are represented as edge weights. The weight

fun
tion w maps ea
h edge to an integer 
ost. G is therefore a weighted digraph, or

network [87℄. Every path � has a path weight or 
ost C(�) =

P

i2f0;:::;k�1g

w(v

i

; v

i+1

).

Let a null path be a path in whi
h 8i 2 f0; :::; k � 1g : w(v

i

; v

i+1

) = 0.

Many of the algorithmi
 details of resour
e bound analysis in this dissertation

deal with the di�erent types of 
y
les in CFG's. A negative 
y
le refers to a 
y
le �
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in whi
h C(�) < 0. A 
y
le is said to be positive if C(�) > 0. A zero-weight 
y
le is

one in whi
h C(�) = 0. A zero-weight 
y
le whi
h is also a null path is a null 
y
le.

The longest path problem is a 
lassi
al graph problem [87℄ equivalent to many

problems in stati
 analysis. The longest path in the graph is de�ned as the path with

the largest 
ost, whi
h is not ne
essarily the path with the largest number of edges.

3.2 Sta
k Size Analysis

This se
tion presents properties that a CFG may possess. Later 
hapters will

show how a sta
k size analysis algorithm 
an take advantage of these properties. For

sta
k analysis, the weight fun
tion w is de�ned to asso
iate ea
h edge in the graph

with an integer 
hange in sta
k height. In the resulting weighted digraph, sta
k size

analysis is equivalent to the sear
h for a longest path rooted at vertex terminus.

In the general 
ase, the longest path problem is known to be NP-hard and thus

is 
onsidered intra
table [87℄. However, the 
ontrol 
ow graphs examined here have

additional stru
ture that 
an be exploited to provide a more eÆ
ient analysis. The

next several subse
tions outline properties that make a CFG more amenable to sta
k

size analysis.

3.2.1 Negative Cy
les

In the algorithms presented later, the longest path in a graph is unde�ned if the

graph 
ontains negative 
y
les. While it is possible to 
onstru
t a
tual programs

that result in negative 
y
les in CFG's, su
h programs are not dealt with in this

dissertation. Negative 
y
les 
an be dete
ted in O(V

3

) using Floyd's Algorithm [87℄.

3.2.2 Summary Edge Closure

Later algorithms will use the 
on
ept of summary edges, as de�ned below. A

summary edge e

�

has weight zero, a sour
e vertex v

0

, and a destination vertex v

k

su
h that there exists a path �

�

from v

0

to v

k

in whi
h the edge e

+

= (v

0

; v

1

) has a

positive weight, edge e

�

= (v

k�1

; v

k

) has an equal but opposite negative weight, and

the subpath from v

1

to v

k�1

is a null path. An example summary edge is shown in

Figure 3.1. The �rst and last edges in �

�

are said to be mat
hed, sin
e they have

the same absolute value of weight, with opposite polarity. Be
ause �

�


onsists of two

mat
hed edges and a null path, the total 
ost of �

�

is zero.

A graph is said to be 
losed with respe
t to summary edges if and only if every

non-zero-weighted edge is part of a zero-weighted path �

�

, and thus asso
iated with

a summary edge e

�

. Closed graphs 
annot 
ontain a negative edge e

�

that does not

have a mat
hing e

+

. Likewise, a 
losed CFG 
annot 
ontain an e

+

that does not

have a mat
hing e

�

, or a summary edge e

�

with a non-zero weight. These 
onditions
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0v

v 1 v 2 v k−2 v k−1

v k

0 0...0 0

Σe  = 0

+
−e  = +2

e  = −2

Figure 3.1. Summary Edge Closure


orrespond to the type-
he
king of sta
k elements spe
i�ed in Se
tion 4.3.4, whi
h

ensure that pushes mat
h pops, pro
edure 
alls mat
h returns, et
.

Summary edges summarize well-stru
tured zero-weight paths in su
h a way that

all negative-weighted edges 
an be deleted from the graph without altering the length

of the longest paths. In a summary edge 
losed graph, any path from terminus

through a negative-weighted edge must pass through an equal and opposite positive-

weighted edge. If a longest path passes through a negative-weighted edge, then there

exists another path of equal length passing through the asso
iated summary edge

instead. If a longest path does not pass through a negative-weighted edge, then again

no negative-weighted edges were required. Summary edge 
losure is a key property

that allows all negative-weighted edges to be removed from the graph without altering

the length of any longest paths. Constru
tion of summary edges is explored in greater

depth in Se
tion 4.3.

A graph with no negative 
y
les 
an be 
losed with respe
t to summary edges in

time polynomial in V [53℄.

3.2.3 Positive Cy
les

In this dissertation, the longest path in a CFG is not de�ned for graphs with

positive 
y
les. If a positive 
y
le exists in the graph, a path 
an be
ome arbitrarily

long by passing through the 
y
le multiple times. A graph with neither negative nor

positive 
y
les is bounded. Given a graph G that has no negative edges, positive 
y
les


an be 
he
ked for by a bounded depth-�rst sear
h, in whi
h a graph is not bounded

if the 
ost of a path ex
eeds a given boundary, m. For sta
k size analysis it is assumed
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that there is a known bound on allowable sta
k size for the program; the maximum

allowable size is used as m when 
he
king for positive 
y
les in the graph. This 
he
k


an be performed in time O(V �m), whi
h is linear in V when m is 
onstant.

3.2.4 Null Cy
les

A graph with no negative edges and no positive 
y
les 
annot 
ontain any 
y-


les ex
ept those that are zero-weight 
y
les. Zero-weight 
y
les without negative-

weighted edges 
an only be null 
y
les. Null 
y
les 
annot 
ontribute to the longest

path, and thus 
an be 
ollapsed into a single vertex without 
hanging the 
ost of the

longest path. Null 
y
les 
an be dete
ted in a graph with no negative edges and no

positive 
y
les in at worst O(V

2

) time [87℄.

A digraph with no 
y
les is a dire
ted, a
y
li
 graph, or DAG. For DAG's, the

longest path problem 
an be solved in linear time, O(V ) [87℄.

3.3 Sta
ks and Contexts

Some of the algorithms and te
hniques presented later in this dissertation 
annot

be understood solely in the 
ontext of 
ontrol 
ow graphs without additional pro-

gram analysis 
on
epts. This se
tion de�nes terminology that will be used in later

dis
ussions.

A sta
k is a last-in, �rst-out data stru
ture [71℄. The sta
k has at least two

operations de�ned, push and pop. An element x pushed onto a sta
k � results in a

new sta
k, x�. The pop operation on a sta
k x� returns element x and sta
k �. Let

the pop operation be unde�ned for an empty sta
k, written \fg".

An abstra
tion used in many programs is the pro
edure 
all, in whi
h a 
ommon

segment of 
ode is fa
tored out into a pro
edure or subroutine, whi
h 
an then be 
alled

from multiple program lo
ations [2℄. The program points from whi
h pro
edures are


alled are termed 
all sites.

A CFG that di�erentiates the verti
es for the same pro
edure when 
alled from

di�erent 
all sites is 
ontext sensitive [70℄. Context sensitivity ne
essitates represent-

ing additional state information at verti
es in the graph. Be
ause a pro
edure A 
an


all another pro
edure B before 
ompleting, the 
ontext required to distinguish two

states in the program may require more than one 
all site. Context represented as a

sta
k of 
all sites is a 
all string [70, 88℄.

With 
all strings 
omes a notion of valid or realizable paths in the CFG. Realizable

paths �

real

2 G are those in whi
h the sequen
e of program states 
orresponding to

verti
es along �

real

preserve the pro
edure 
all semanti
s of the original program.

That is, for all �

real

outgoing from vertex v


all

, �

real

returns from the pro
edure

subgraph to 
all site v


all

, rather than some other 
all site.
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3.4 Re�nements

Con
eptually, there are two mappings required to get from a raw program to

resour
e bounds. The �rst mapping is from the program to the CFG. The se
ond

mapping is from the CFG to the resour
e bounds. The previous se
tions in this


hapter have 
on
entrated on the se
ond mapping. This se
tion 
on
entrates on the

�rst mapping { translating a raw program into a pre
ise and 
ompa
t CFG.

The next several subse
tions present 
on
epts underlying the 
onstru
tion of 
om-

pa
t and pre
ise graphs for resour
e bounding analysis. Further details 
an be found

in [2, 70℄.

3.4.1 Graph Building

Na��ve CFG 
onstru
tion algorithms 
an result in a 
ombinatorial explosion of the

vertex state spa
e. It will be important later to optimize the size and 
omplexity of

the graphs.

At one end of the spe
trum, 
onsider a CFG representation where every vertex

in the graph 
ontains the values of every binary digit of state stored in any variable

used in the program. The pre
ision of this representation is very good, be
ause every

possible state of the program 
an be unambiguously di�erentiated from every other.

However, the size of the state spa
e for verti
es in the CFG is exponential in the

number of bits of storage, resulting in very large graphs even with small programs.

At the other end of the spe
trum, 
onsider a CFG representation where ea
h

vertex of the graph represents a parti
ular exe
utable instru
tion in the program.

Su
h a representation is 
ompa
t, being linear in the size of the program. However,

be
ause su
h a CFG la
ks 
ontext sensitivity, it may 
ontain many unrealizable paths,

and thus la
ks the pre
ision required to give useful resour
e bounds for any of the

programs examined in this dissertation. Se
tion 4.1.1 revisits this dis
ussion in the


ontext of a spe
i�
 hardware ar
hite
ture.

Later 
hapters will show that for pra
ti
al reasons, an implementation must �nd a

middle ground where the CFG has enough pre
ision to a

urately model the resour
es

that must be bounded, without the size of the graph be
oming unmanageable.

3.4.2 Demand-Driven Constru
tion

For the algorithms presented in this dissertation, there is no need to represent

program points that 
annot be rea
hed by any exe
ution path. Unne
essary expansion

of the CFG 
an be avoided by 
onstru
ting the graph in a demand-driven fashion,

where portions of the graph will only be 
onstru
ted when they are known to be

needed a

ording to a given 
riteria. An example of this is to build only the CFG


ontaining program states that are rea
hable from the terminus vertex.
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The algorithms presented in later 
hapters also do not need CFG's to represent un-

realizable interrupt paths. Abstra
t interpretation 
an be used to approximate values

without 
ompletely simulating a program [21℄. Later 
hapters show that by approx-

imating the 
ontents of 
ertain 
ontrol values in the hardware, many unrealizable

interrupt paths 
an be omitted from the CFG's.

3.4.3 Avoiding False Paths

As alluded to in Se
tion 2.2, model pre
ision 
an be in
reased by avoiding false

paths in the CFG. A false path �

false

is de�ned as a path for whi
h the sequen
e

of verti
es 
orresponds to a sequen
e of states that 
annot o

ur, either be
ause the

sequen
e would violate the semanti
s of the program, or does not 
orrespond to what

the hardware does.

One of the te
hniques available for 
urtailing false paths is to model only realiz-

able paths using 
all strings [88℄. Call strings introdu
e 
ontext-sensitivity to CFG


onstru
tion, whi
h is both more pre
ise and more expensive to 
al
ulate [70℄. The

disadvantage of this te
hnique is that the allowable state spa
e of verti
es in the graph

in
reases exponentially in the number of bits required for the 
all strings.

3.4.4 Adaptive sli
ing

While arbitrary length 
all strings add pre
ision to CFG's, the size penalty 
an

greatly in
rease the 
omplexity of building the graph. A trade-o� 
an be made be-

tween pre
ision and size by using 
all string suÆxes [88℄, with whi
h only the topmost

n elements of the 
all string are stored, for some limiting value of n.

Varying the value of n in the CFG allows the degree of sta
k 
ontext to be adjusted

for the pre
ision required for analysis. In this way, additional 
ontext 
an be stored in

verti
es that are otherwise diÆ
ult to analyze, while more 
ompa
t 
all string suÆxes


an be used in graph segments requiring less pre
ision.

A graph with variable length 
all string suÆxes is multi-resolution, indi
ating

that the amount of 
ontext at verti
es 
an be varied a

ording to spa
e and pre
ision


on
erns. The te
hnique of adding more detail to a stati
 analysis only where it is

required to rea
h desired pre
ision is des
ribed in [78℄.

CFG 
y
les 
aused by insuÆ
iently long 
all string suÆxes 
an be dete
ted in

time polynomial in V , as des
ribed in Se
tion 6.3.2. Se
tions 5.2.4 and 6.3.2 present

the adaptive sli
ing te
hnique used for 
onstru
ting multi-resolution CFG's, and Se
-

tion 5.3.2 dis
usses the pre
ision/spa
e trade-o� of multi-resolution analysis.

3.5 Deadline Analysis

Deadline analysis of CFG's is similar to sta
k size analysis, but the CFG's have

di�erent properties. The weight fun
tion w is de�ned to asso
iate ea
h edge in the
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graph with a positive integer exe
ution time 
ount. Like sta
k analysis, the �nal

deadline analysis graphs do not 
ontain 
y
les. Unlike sta
k size analysis, deadline

analysis CFG's are sear
hed ba
kward for longest paths ending at vertex terminus,

rather than starting at terminus. Deadline analysis graphs do not need to be 
losed

with respe
t to summary edges be
ause w is de�ned to provide only positive, non-zero

edge weights.

The problem of sear
hing for longest paths ending at a given destination vertex

in a digraph is the multi-sour
e longest path problem and 
an be solved for a
y
li


digraphs in linear time [87℄.

Chapter 5 presents methods for identifying, bounding, and eliminating positive


y
les in the initial deadline analysis 
ontrol 
ow graphs.

3.5.1 Time Summary Edges

A key problem in deadline analysis is that many programs do not naturally 
or-

respond to an a
y
li
 CFG. In the experiments presented later in this dissertation,

none of the ben
hmark suite of test programs 
orresponded to an a
y
li
 initial CFG.

Cy
les are 
ommon in deadline analysis CFG's be
ause positive 
y
les 
orrespond

to the iterative 
ontrol 
ow produ
ed by looping 
onstru
ts. Positive 
y
les must

be removed from the graphs before deadline analysis 
an take pla
e, be
ause the

algorithms shown later do not de�ne the longest path in CFG's with positive 
y
les.

Loops that produ
e positive 
y
les in CFG's may have bounds that 
an be deter-

mined by other types of analysis. Se
tion 5.4 gives examples of loop 
onstru
ts in

real programs that 
an be bounded through methods other than stati
 analysis.

Given a positive 
y
le �


y
le

and a maximum 
ost bound C

max

that has been

determined by other methods to be the maximum 
ost of any path along �


y
le

, the


y
le 
an be repla
ed with a time summary edge of weight C

max

as shown in Figure 3.2.

In order for the deadline analysis algorithm to remain 
onservative, time summary

edges must be admissible [86℄. That is, a time summary edge 
an overestimate the

true exe
ution time of the loop it summarizes, but it 
annot underestimate. If un-

derestimated time summary edges exist in a graph, the deadline analysis algorithm

is not guaranteed to arrive at 
orre
t bounds.

Time summary edges 
annot be used to summarize 
y
les in all 
ases; later 
hap-

ters will dis
uss the types of program loops that 
an be eliminated with time summary

edges. Se
tion 5.2.3 des
ribes the use of time summary edges in CFG 
onstru
tion,

and Se
tion 5.3.2 presents results of an empiri
al study of time summary edges re-

quired for real programs.
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Figure 3.2. Time Summary Edge
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4 STACK SIZE ANALYSIS

Stati
 analysis 
an provide safe and tight bounds on sta
k usage for interrupt-driven

systems implemented on the Zilog Z86 platform.

This 
hapter presents in detail the overall problem of sta
k-size analysis in su
h

systems, the algorithm used in ZARBI's analysis, and the results of applying this tool

to a suite of 
ommer
ial embedded systems.

After a brief overview in se
tion 4.1, se
tion 4.2 presents a small example of an

interrupt-driven program and its 
ow graph. Se
tion 4.3 des
ribes the algorithms used

in this dissertation to �nd bounds on sta
k sizes, and se
tion 4.4 shows experimental

results produ
ed with ZARBI. Se
tion 4.5 summarizes the 
hapter and evaluates the

prospe
ts for s
aling up these te
hniques to other pro
essors, su
h as the Motorola

68000 family.

4.1 Overview

As mentioned earlier, resour
e-
onstrained devi
es are used in many appli
ations.

Examples in
lude 
ell phones, personal digital assistants, digital thermostats, and

many others. While larger pro
essors 
an be employed to 
omfortably implement

embedded systems, e
onomi
 realities result in the deployment of 
heaper pro
essors

with tighter resour
e 
onstraints. It 
an be diÆ
ult to �t required fun
tionality into

su
h a devi
e without sa
ri�
ing the simpli
ity and 
larity of the software.

The fo
us of this dissertation is on small, interrupt-driven devi
es based on the

Z86E30 pro
essor [100℄, a des
endant of Zilog's Z8 pro
essor. The Z86 features 256

8-bit registers, 4K of instru
tion ROM, and 24 I/O lines organized into three 8-bit

ports. In addition, the Z86 has six levels of ve
tored interrupt pro
essing, and two

internal timers. Despite the Z86's limited resour
es, it is deployed in many elaborate

systems where larger, more powerful pro
essors are not 
ost e�e
tive. In many su
h

systems, the Z86's RAM spa
e, ROM spa
e, and I/O lines are pushed to the limit.

One of the proprietary embedded systems we have examined has a single Z86 phase-


ontrolling three variable speed fans, operating �ve heating/
ooling units, wat
hing

four temperature sensors, monitoring 60{
y
le power for brown-outs, networking with

a system overseer via RS{485 serial port, and displaying all of its readings on an

intelligent LCD unit, all in real time. In su
h appli
ations, the software is often

manually optimized in assembly language, to squeeze every byte out of the ROM,

and to use every available register of RAM.

Other pro
essors used for embedded appli
ations 
omparable to the Z86 in
lude

derivatives of the Motorola 68000 series [60℄. For example, Palm Pilots and their


lones are based on the Motorola DragonBall CPUs (MC68328 [61℄), and some 
ell
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phones are based on the same ar
hite
ture family. These pro
essors have maskable,

ve
tored interrupt handling mu
h like the Z86. Devi
es su
h as Palm Pilots and


ell phones, whi
h fun
tion primarily by pro
essing external inputs, 
an use ve
tored

interrupt handling to provide prompt responses.

Compared with the 68000's, the Z86 has a mu
h smaller instru
tion set and fewer

interrupts (6 interrupts versus 18 in the 
ase of DragonBall MC68EZ328). Yet the Z86

is 
apable of ve
tored interrupt handling, making it attra
tive for rapid prototyping

of programming tools.

The dissertation presents algorithms that have been designed and implemented to

assist developers with three tasks that 
an 
onsume a signi�
ant part of a real-time

system programmer's time:

� Sta
k-Size Analysis: On the Z86, the sta
k exists in the 256 bytes of register

spa
e, and it is 
riti
al that the sta
k does not over
ow into other reserved

registers, 
orrupting data used elsewhere in the program. At the same time,

overestimating the sta
k requirements takes away badly needed registers. The

algorithm given later in this 
hapter �nds safe and tight upper and lower bounds

on the maximum sta
k size for all but one of the test programs examined.

� Type Che
king of Sta
k Elements: Items are taken o� the sta
k either with a

POP instru
tion, or when returning from a pro
edure or an interrupt handler.

The analysis presented in this dissertation uses an impli
it type system with just

four types { interrupt information, 
ode address, interrupt mask, unknown {

and 
he
ks that the data on top of the sta
k has the right type at the appropriate

time.

� Interrupt-Laten
y Analysis: The mi
ro
ontroller systems examined need to han-

dle interrupts within hard real-time bounds. Chapter 5 presents te
hniques for

�nding upper bounds on interrupt laten
ies.

While the overall analysis of these embedded systems requires domain-spe
i�


knowledge about the appli
ations, the tools presented in this dissertation a

ept as

input the bare, unannotated Z86 assembly 
ode.

ZARBI's sta
k size bounding fun
tionality is based on a known algorithm for

model 
he
king of pushdown systems [79℄. That algorithm is 
losely related to the

style of interpro
edural analysis for C that has been studied by Reps [83℄. However,

the presen
e of ve
tored interrupt handling 
reates additional 
hallenges, as explained

next.

4.1.1 The Sta
k Size Problem

Given a program in Z86 assembly language, the sta
k size 
he
king algorithm �rst

builds a 
ontrol 
ow graph (as previously de�ned in Se
tion 3.1), and then runs the

desired analyses on the CFG. The key question in this 
on
erns the way to abstra
t

a Z86-ma
hine state into a node in the CFG:
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How mu
h of a Z86-ma
hine state should be represented in a CFG node?

In one extreme, a node 
ontains the whole Z86-ma
hine state. Su
h a 
ow graph

would be huge, that is, in the worst 
ase, about 2

256�8

= 2

2048

nodes. It is beyond


urrent means to represent that many nodes.

In the other extreme, a node represents just the program 
ounter (PC). Su
h 
ow

graphs are useful for interpro
edural analysis of C programs [83℄, yet they are of little

value in the presen
e of ve
tored interrupts. When 
ontrol transfers to an interrupt

handler, the 
urrent address is pla
ed on the sta
k, and all interrupts are disabled. If

one does not model the interrupt mask register (IMR) in whi
h it is re
orded whether

interrupts are enabled or disabled, then the analysis is led to believe that a new

interrupt 
an o

ur as soon as 
ontrol has arrived at the handler. This pro
ess 
an

be repeated, with the result that the sta
k, seen from the analysis's point of view,


an grow without bounds.

There is another 
onsequen
e of not modeling the IMR; if an interrupt request

arrives at a given exe
ution point it 
annot be guaranteed that the request will be

handled within a �nite amount of time. The 
ore of the problem is that false interrupt

handler paths may appear in the graph if the IMR value is not approximated.

The above observation makes it 
lear that the sta
k size 
he
king algorithm needs

to model at least some of the IMR. On the Z86, the IMR 
onsists of seven bits, of

whi
h one is the master bit whi
h enables or disables all interrupt pro
essing, and six

others enable or disable individual interrupts [100℄. An interrupt will only be handled

if both the master bit and its own bit are set. When an interrupt handler is 
alled,

the master bit is automati
ally turned o�. If an interrupt is not handled as soon as

it arrives, it will wait (in the IRQ register) until the IMR 
hanges to a value that

entails that the interrupt 
an be handled.

One 
ould 
onsider modeling the PC and the master bit of the IMR. However, this

is just as troublesome as modeling only the PC, as one of the tasks of an interrupt

handler often is to re-enable interrupts by turning on the master bit. When this

happens in the interrupt handler itself, the analysis is led to believe that an interrupt

for that same handler 
an now o

ur exa
tly at the point of setting the master bit,

leading to a sta
k growing without bounds, as above.

The CFG used for sta
k size analysis therefore models the PC and the IMR in

their entirety. A Z86-assembly program is typi
ally on the order of 2

10

lines of 
ode

(be
ause there is 4K of instru
tion ROM), and the IMR is seven bits, so an upper

bound on the number of nodes is 2

10+7

= 2

17

. Be
ause of the six interrupt sour
es,

ea
h node in the 
ow graph 
an have up to six edges going to interrupt handlers, and

one or more edges 
orresponding to non-interrupt operation. This means that the

graph is likely to be less sparse than often seen in program analysis of C programs. It

may be possible to model some abstra
tion of the PC and the IMR, thereby redu
ing

the overall size of the state spa
e, but this idea is not explored by this dissertation.

The CFG 
an model more than the PC and the IMR, but it is not 
lear in general

whi
h other registers it would be bene�
ial to model. Chapter 5 des
ribes the addition
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of sta
k information to ea
h node in order to re�ne the model. The next key question

is:

Can modeling just the PC and the IMR be suÆ
ient for a useful program-

ming tool?

In other words, 
an the modeling of the PC and the IMR be a good middle

ground between modeling the whole ma
hine and modeling the PC? The 
riteria for

usefulness in this 
ontext are given by

� the degree to whi
h the resultant CFG is a good basis for the three kinds of


he
ks that the tool should support: sta
k-size analysis, type-
he
king of sta
k

elements, and interrupt-laten
y analysis; and

� the amount of time and spa
e it takes to build the CFG and perform the 
he
ks.

The remainder of this 
hapter presents an experimental evaluation of the above ques-

tion.

4.1.2 Results

The sta
k size 
he
king algorithm presented here is able to produ
e tight, safe

bounds on maximum sta
k usage for six of the seven proprietary embedded systems, as

well as a number of other interesting test inputs. In addition, the CFG's 
onstru
ted

are annotated with information about time, spa
e, safety, and liveness, whi
h allows

veri�
ation of several 
ode safety properties. The sta
k size estimation te
hnique

presented in this 
hapter is one of the �rst to give an eÆ
ient and useful stati


analysis of assembly 
ode, and appears to be the �rst to use symboli
 exe
ution

over an interrupt mask register to produ
e a tra
table 
ow graph in the presen
e of

ve
tored interrupts.

The prototype implementation in
ludes a Z86 simulator, whi
h has provided lower

bounds on the maximum sta
k sizes, against whi
h the upper bounds 
an be 
om-

pared.

In six of the seven 
ommer
ial 
ases, and for all of the additional test input 
ases,

the algorithm gives an ex
ellent estimate of the maximum sta
k size. In all 
ases,

this estimate was either exa
t (that is, equal to the lower bound that we found via

simulation), or at most two bytes more than the lower bound.

For the seventh 
ommer
ial 
ase, the sta
k size 
annot be bounded without a

more detailed analysis in
luding either expli
it loop bounds, or enough data 
ow

information to infer loop bounds.

Also in six of the seven 
ommer
ial 
ases, the type-
he
king algorithm was able to


he
k the types used in all sta
k manipulations, and found no errors. The seventh 
ase


ould not be 
he
ked, be
ause the sta
k bound must be known for the type-
he
king

algorithm to su

eed. Several additional test inputs were 
reated with deliberate
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; Constant Pool (Symbol Table).

; Bit Flags for IMR and IRQ.

IRQ0 .EQU #00000001b

; Bit Flags for external devi
es

; on Port 0 and Port 3.

DEV2 .EQU #00010000b

; Interrupt Ve
tors.

.ORG %00h

.WORD #HANDLER ; Devi
e 0

; Main Program Code.

.ORG %0Ch

INIT: ; Initialization se
tion.

0C LD SPL, #0F0h ; Initialize Sta
k Pointer.

0F LD RP, #10h ; Work in register bank 1.

12 LD P2M, #00h ; Set Port 2 lines to

; all outputs.

15 LD IRQ, #00h ; Clear IRQ.

18 LD IMR, #IRQ0

1B EI ; Enable Interrupt 0.

Figure 4.1. Example Program (part 1)

sta
k manipulation errors; all errors were 
aught by the prototype implementation of

the algorithm.

In summary, by modeling only the PC and IMR registers, the sta
k size 
he
king

algorithm is able to provide solid sta
k-usage bounds for six out of the seven real-time

systems. The analysis is suÆ
iently fast and pre
ise to be useful in pra
ti
e. However,

providing sta
k-usage bounds for the seventh system, and exe
ution time bounds in

general, requires modeling of additional information, as dis
ussed in 
hapter 5.

4.2 Model Building

This se
tion gives an informal presentation of 
on
epts that will be rigorously

de�ned in se
tion 4.3. Figures 4.1 and 4.2 show a small Z86 program featuring a

main program loop, and a single interrupt handler, both of whi
h 
an 
all a shared

pro
edure. Figure 4.3 shows the 
orresponding 
ow graph.
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START: ; Start of main program loop.

1C DJNZ r2, START ; If our 
ounter expires,

1E LD r1, P3 ; send this sensor's reading

20 CALL SEND ; to the output devi
e.

23 JP START

SEND: ; Send Data to Devi
e 2.

26 PUSH IMR ; Remember what IMR was.

DELAY:

28 DI ; Mustn't be interrupted

; during pulse.

29 LD P0, #DEV2 ; Sele
t 
ontrol line

; for Devi
e 2.

2C DJNZ r3, DELAY ; Short delay.

2E CLR P0

30 POP IMR ; Rea
tivate interrupts.

32 RET

HANDLER: ; Interrupt for Devi
e 0.

33 LD r2, #00h ; Reset 
ounter in main loop.

35 CALL SEND

38 IRET ; Interrupt Handler is done.

.END

Figure 4.2. Example Program (part 2)

Ea
h node in the 
all graph 
ontains two pie
es of information. The �rst is the

value of the program 
ounter, and the se
ond is the value of the IMR. For this diagram,

representation of the IMR has been simpli�ed to two bits; the �rst represents the

master mask bit, and the se
ond represents the IRQ0 mask bit. (The example only

makes use of interrupt zero.)

Control 
ow begins in the upper left 
orner of the graph, at the label \INIT".

At this time, the program 
ounter is 0C, and the IMR is 
leared. A
ross the top of

Figure 4.3, straight line initialization 
ode is exe
uted, with no interrupt enabled. At

the node labeled \START", the PC has value 1C, and both the IRQ0 and master

IMR bits have been set. From this point on, all nodes with an IMR of 11 have an

outgoing edge leading to the interrupt handler.
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Figure 4.3. Example Program Flow Graph

Edges labeled with \!" or \?" 
orrespond to pushing and popping operations,

respe
tively. The number following the pun
tuation on these edges indi
ates the

number of bytes involved in the sta
k operation. The PUSH instru
tion pushes one

byte on the sta
k, while CALL pushes two, and an interrupt pushes three. Pop edges

are distinguished with dashed lines. Additional \summary" edges generated by the

analysis are labeled \e

�

", and will be explained in a later se
tion.

In order to 
al
ulate maximum possible sta
k size, a depth-�rst traversal of the

graph is made, totaling up the push values of all the edges along ea
h path. Pop

edges are not traversed, but the summary edges are. In the �gure, this means that

the dashed edges are not 
onsidered during the sear
h for the longest possible sta
k

length. From this, a path with maximal sta
k size is found.

For the example program, the maximum sta
k size 
an be seen to be nine bytes.

In short, the maximal path is to take an interrupt from node (28,11), where the size

is already three. The interrupt pushes three more bytes on the sta
k to get to the

handler, at (33,01). From there, the interrupt takes the edges to nodes (26,01) and

(28,01), adding three more bytes to the sta
k for a grand total of nine bytes.

All of the bold-edged nodes in the 
ow graph have a �nite worst-
ase path to rea
h

the interrupt handler. Nodes with thin edges, however, defy the analysis presented
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in this 
hapter when trying to 
al
ulate maximum interrupt laten
y. Chapter 5 will

present the modi�
ations ne
essary for the deadline analysis algorithm to bound

interrupt laten
y at these nodes.

4.3 Model Che
king

4.3.1 The Z86 Assembly Language

As alluded to earlier, the Z86 ar
hite
ture has several spe
ial registers that deal

with interrupts. The Interrupt Mask Register (IMR) 
ontains information about

whi
h interrupts are turned on. Six of the bits 
ontrol interrupts zero through �ve.

The Interrupt Request Register (IRQ) indi
ates whi
h interrupts have �red, but have

yet to be handled. A third register is used to set interrupt arrival tie-breaking prior-

ities, but tie-breaking does not 
ome into play for this analysis.

The Z86 ar
hite
ture supports an indire
t register addressing mode. The analysis

relies on the un
he
ked assumption that the spe
ial registers IMR, IRQ, and SP are

not altered indire
tly. Che
king the assumption would require further analysis of all

256 registers and is left to future work.

The analysis algorithms in this dissertation restri
t dire
t manipulation the IMR,

IRQ, and SP registers, as dis
ussed below. Other forms of use 
an be lo
ated easily,

and are expli
itly 
agged as errors by an early pass of the tool.

� IMR values are allowed to be pushed on the sta
k, popped from the sta
k,

or manipulated by any binary operation in whi
h one operand is a numeri



onstant, and the other is the IMR. While other operations on the IMR are 
er-

tainly possible to express in the Z86 assembly language, the analyses presented

here do not allow su
h operations. These 
onstraints on the expressiveness of

the language allow pre
ise sets of possible IMR values to be 
al
ulated for all

program points, and have proven to be suÆ
iently 
exible to admit all seven of

the 
ommer
ial ben
hmarks.

� IRQ is read only. The Z86 ar
hite
ture allows programs to write to the IRQ

register, essentially raising interrupt requests manually. There does not appear

to be an inherent barrier to analyzing programs that use this feature, but it was

not en
ountered in any of the ben
hmark programs, so it has not been modeled

in these analyses.

� SP is allowed to be manipulated impli
itly by sta
k-spe
i�
 instru
tions or

expli
itly by initialization instru
tions. In the 
ommer
ial ben
hmarks, it is

not unusual for the sta
k to be 
leared by an expli
it reloading of the initial

sta
k pointer, so this is admitted by the analysis, and is noted by a spe
ial

nuke sta
k edge in the 
ontrol 
ow graphs. However, the analysis algorithms

do not allow the sta
k pointer to be reinitialized to arbitrary values, and will

reje
t any program that loads more than one numeri
 
onstant into the sta
k
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pointer register. The nuke edge is a spe
ial 
ase, whi
h for simpli
ity will be

omitted from dis
ussion for the rest of the 
hapter; in the sta
k-size analysis, it

is treated like an e edge from the start node of the program to the destination

of the nuke edge.

There are other un
he
ked assumptions in this dissertation's sta
k-size analysis.

It is assumed that the system sta
k does not overlap with registers used for other

purposes, and therefore is not 
orrupted by other instru
tions. The very purpose of

this sta
k-size analysis is to help the system developer 
he
k this assumption.

It is also assumed that the Z86 wat
hdog timer fun
tionality does not interfere

with 
ontrol 
ow. The Z86 has a WDT op
ode, whi
h on
e exe
uted, will reset the

pro
essor if another WDT op
ode is not exe
uted within a programmable deadline.

This feature is intended to allow system designers to prevent the software from lo
king

up by entering an unintended in�nite loop or other unforeseen 
ontrol 
ow. Wat
hdog

timer reset therefore signals a serious error in the program, and the analyses 
urrently

assume that wat
hdog timer e�e
ts do not o

ur. Che
king this assumption is an

interesting problem all by itself, one for whi
h these analyses may be extended to

ta
kle in future work.

4.3.2 From Z86 Assembly Code to a Flow Graph

Given a Z86 assembly program, a CFG is 
onstru
ted in whi
h ea
h vertex is

labeled with a PC value and an IMR value. The start vertex is labeled with 1) the

PC value for the �rst line of the program, and 2) the IMR value where all bits are 0.

The graph is built in a demand-driven way su
h that only nodes that are rea
hable

from the start node are explored. Ea
h edge represents a possible step of 
omputation.

The 
ow graph is a 
onservative representation of the program: while ea
h possible


omputation at the program level is represented as a path in the graph, there may

be paths that do not 
orrespond to a 
omputation. (This is the False Path problem,

as mentioned earlier in Se
tions 2.2 and 3.4.3.)

There are ten kinds of edges, ea
h with a distin
tive label, as shown in Figure 4.4.

An edge label indi
ates how many elements are pla
ed on the sta
k (or removed

from the sta
k) by the 
orresponding step of 
omputation. An edge with label \e"

or \e

�

" has weight 0, an edge with label \!n . . . " has weight n, and an edge with

label \?n . . . " has weight �n. Label \unk" is used as an abbreviation of \unknown"

in 
onne
tion with edges of weight 1 that are unrelated to IMR. Some of the labels

also 
ontain the a
tual values pla
ed on the sta
k. Many instru
tions do not 
hange

the sta
k; they are represented rather anonymously with an edge labeled \e", whi
h

stands for an \epsilon transition" in the equivalent automaton. Two kinds of edges

do not 
orrespond to any instru
tion: the edges for impli
it interrupt 
alls, and the

summary edges, \e

�

", whi
h are a spe
ial 
lass of the epsilon edges.

Con
eptually, the graph is built in three passes. First, the edges for the normal,

non-interrupt 
ode are inserted. This in
ludes all instru
tions that pla
e values on
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instru
tion format edge label 
omputation step

hvariousi e Epsilon edge { no sta
k 
hange.

hsummaryi e

�

Epsilon summary edge { no sta
k 
hange.

PUSH IMR !1 the value of the IMR is pla
ed on the sta
k.

PUSH hnot IMRi !1 some value (not IMR) is pla
ed on the sta
k.

CALL hlabeli !2 pro
edure 
all. (return address saved)

hinterrupt 
alli !3 impli
it interrupt 
all. (return + 
ags saved)

POP IMR ?1 the IMR is assigned the value on top of sta
k.

POP hnot IMRi ?1 some register (not the IMR) is assigned

the value on top of the sta
k.

RET ?2 return from pro
edure 
all.

IRET ?3 return from an interrupt handler.

Figure 4.4. Instru
tions and the 
orresponding edge labels

-
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�
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IRET
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Figure 4.5. Rules for Inserting Summary Edges

the sta
k, or do not 
hange the sta
k; instru
tions that pop values from the sta
k are

not yet 
onsidered. Se
ond, impli
it interrupt 
all edges are inserted from all program

points, based upon the set of possible IMR values already known from the �rst pass.

Finally, the graph is 
losed under the four rules shown in Figure 4.5 and the rule that

the epsilon edges, (labeled \e" or \e

�

",) form a transitive relation. In ea
h of the four

rules, the intention is that if the solid edges are present, then the dashed edges must

also be present.
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The four rules illustrated in Figure 4.5 govern the generation of 1) pop edges that


orrespond to removing values from the sta
k, and 2) epsilon summary edges with

label \e

�

" that 
onne
t the point where values are pla
ed on the sta
k to the point

where the same values are removed.

Pop edges are not used in this 
hapter's sta
k-size analysis, but matter in later


hapters. The e

�

edges summarize a net sta
k size 
hange of zero a
ross a segment

of 
ode with both push and pop edges.

For example, 
onsider in detail the �rst rule in the upper left of Figure 4.5. The

node n is for an instru
tion \PUSH IMR", and there is an edge from n to m that

models the IMR being pla
ed on the sta
k. Moreover, there is an edge labeled \e"

from the node m to a node p. The node p is for an instru
tion \POP IMR". There


ould be an arbitrary number of instru
tions between m and p with a net sta
k 
hange

of zero, but be
ause epsilon edges are transitive, these 
ases are the same as the single

edge 
ase. It is now straightforward to 
al
ulate the label of a node q that will be

the target of an edge (a pop edge) from p. The pop edge represents removing the

IMR value from the sta
k and assigning it to the IMR register. The epsilon summary

edge, labeled \e

�

", is inserted from n to q. The epsilon summary edge re
e
ts that

the sta
k size is the same at n and q, so it is warranted to allow a short
ut.

Noti
e that there 
an be more than one outgoing edge from a node for an instru
-

tion that removes elements from the sta
k.

The sta
k size analysis algorithm 
an be understood as a demand-driven version

of an algorithm for model 
he
king of pushdown systems [79℄. Unlike [79℄, this algo-

rithm generates pop edges on demand, thereby ensuring that only rea
hable nodes

are 
onsidered. The 
losure pro
ess 
an be done in O(n

3

) time where n is the number

of nodes in the �nal 
ow graph [53℄.

4.3.3 Sta
k-Size Analysis

To 
al
ulate a sta
k-size estimate, it is suÆ
ient to 
onsider only edges with

weights 0 or higher. This is a fundamental property of all graphs that have been


losed in the sense explained earlier in Se
tion 3.2.2. The analysis 
an now 
al
ulate

a sta
k-size estimate by a straightforward depth-�rst traversal. For all paths from the

start node of the graph, the traversal 
al
ulates the sum of the weights of the edges

on the path. The maximum number found in this way is the estimated sta
k size. In


ase the traversal en
ounters a loop with at least one edge of weight 1 or more, then

the sta
k-size estimate is \in�nite." Su
h a loop indi
ates a possibly in�nite loop in

the program where the sta
k grows ea
h time around the loop. Su
h a situation may

signify a programming error.
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4.3.4 Type Che
king of Sta
k Elements

The goal of the type 
he
k is to ensure that various instru
tions are exe
uted in a

ma
hine state where the top of the sta
k is of the expe
ted type. The type-
he
king

algorithm uses an impli
it type system with just four types:

type ::= !1 \IMR" j !1 \unk" j !2 j !3:

Edge labels 
an be mapped to types in the obvious way.

The type 
he
k ensures that for every path of the form

n

!. . .

������! m

e

! p

where p models one of \POP IMR", \POP hnot IMRi", \RET", \IRET", we have

one of the four situations

n

!1 (IMR)

������! m

e

! p and p models \POP IMR"

n

!1 \unk"

������! m

e

! p and p models \POP hnot IMRi"

n

!2 (a)

������! m

e

! p and p models \RET"

n

!3 (r,a)

������! m

e

! p and p models \IRET".

Su
h 
he
ks 
orrespond to the safety 
he
ks of Palsberg and S
hwartzba
h [74, 76℄,

and 
an be implemented eÆ
iently as outlined in Se
tion 3.2.2.

4.4 Experimental Results

4.4.1 Ben
hmarks

The seven proprietary mi
ro
ontroller systems used for these experiments are

provided by Greenhill Manufa
turing, Ltd. (http://www.greenhillmfg.
om/). Three

of the 
ontrollers, \ZTurk", \GTurk" and \CTurk", drive multiple-zone evaporative


ooling systems, often present in poultry barns, parti
ularly for turkeys. \Fan" and

\Serial" run variable speed 
ooling fans for for
ed ventilation stru
tures, su
h as

modern swine barns. \Rop" and \DRop" handle a water quality / reverse-osmosis

�ltering system 
ommonly used in 
ar washes.

In addition to the 
ommer
ial systems, test results are in
luded for a smaller test

program written to display more interesting interrupt behavior than the 
ommer
ial

ben
hmarks. This ben
hmark is labeled \Mi
ro00", and its full text 
an be found in

Appendix A.
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4.4.2 Infrastru
ture

The Zilog Ar
hite
ture Resour
e-Bounding Infrastru
ture in
ludes an instru
tion


y
le-level simulator for the Z86C30 ar
hite
ture, in order to more 
losely examine

the exe
ution of programs. The spe
i�
ations for the simulator are taken from the

Zilog produ
t spe
i�
ation available for this ar
hite
ture, [100℄. Where the spe
i�-


ations have been found to be ambiguous, worst-
ase assumptions have been made.

Simulation has been 
hosen be
ause the a
tual Z86 
hips do not 
ontain hardware

provisions for pro�ling, and be
ause running software on the Z86C30 requires per-

manently burning a parti
ular program into a \one-time programmable" 
hip, whi
h

would qui
kly be
ome 
ost-prohibitive in a resear
h setting. The 
ommer
ially avail-

able development emulator for this ar
hite
ture has very limited support for timing

analysis, and does not allow single-step examination of interrupt behavior.

All of the mi
ro
ontroller systems available to us from Greenhill have the Z86

pro
essors built into a 
ir
uit board with several other peripheral 
hips, and the

software for the systems re
e
ts this fa
t. The simulator must therefore in
lude

models of this external hardware in order to properly simulate the environment of

the program. Simple state ma
hines provide the minimal intera
tion ne
essary to

simulate the normal exe
ution paths of the systems. These state ma
hine models

are generally 
onstru
ted from the hardware manufa
turers' spe
i�
ations for the

individual 
omponents, and assume worst-
ase delays wherever possible.

It appears to be a fundamental property of the examined embedded systems that

o�-
hip resour
es must be 
onsidered in order to undertake any 
omprehensive mod-

eling of the system. While this kind of information should be readily available to the

system designer in a produ
tion environment, it means that tools like the prototype

presented here are less likely to be able to be applied to new systems \out of the

box."

ZARBI in
ludes pilot s
ripts that drive the simulator using a geneti
 algorithm

to sear
h for interrupt 
onditions that lead to large sta
k heights. (See Se
tion 6.2.4

for details.) Be
ause these 
onditions yield a
tual exe
utable paths in the software,

(rather than \false paths",) they provide realisti
 lower bounds for maximal sta
k

height, against whi
h stati
 analysis results 
an be 
ompared.

4.4.3 Building the graph

This se
tion displays results taken from running the sta
k-
he
king algorithm on

the test suite of programs.

All algorithms presented in this 
hapter are implemented in Java, and run on the

IBM Java2 SDK 1.3. Runs were made on a 500 MHz Pentium3-based laptop.

The sta
k-
he
king implementation has been optimized for speed, but avenues

for further optimization remain. Spa
e usage has not been optimized, and 
ould be

redu
ed signi�
antly with further e�ort. However, the 
urrent prototype implemen-

tation is suÆ
iently fast (most runs take a few se
onds) and suÆ
iently 
ompa
t (at
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Building the graph

Program Nodes Edges Time Spa
e

CTurk 1,209 2,316 4.01 s 31.6 MB

GTurk 1,581 3,101 4.20 s 32.2 MB

ZTurk 1,493 2,885 4.12 s 32.1 MB

DRop 1,138 2,043 4.02 s 31.1 MB

Rop 1,217 2,278 4.08 s 31.7 MB

Fan 5,149 17,195 5.13 s 39.3 MB

Serial 394 1,082 3.78 s 31.0 MB

Mi
ro00 148 222 3.16 s 34.9 MB

Figure 4.6. Graph size and resour
e usage for ben
hmarks

most 40 MB) for experimentation. Naturally, both speed and spa
e usage 
ould be

improved if implemented in C.

All time measurements are averages over 10 runs. To prevent external fa
tors su
h

as hard disk speed or 
a
he behavior from in
uen
ing the simulator results, several

\warm-up" runs are made prior to the re
orded runs. The reported time usage is the

real time elapsed for the run from start to �nish.

The spa
e measurements were made with top. The spa
e reported is the maximum

total size during the run, in
luding spa
e taken by the Java virtual ma
hine, garbage


olle
tor, and JIT. Measured spa
e usage was deterministi
 (the same for ea
h run of

the same program).

Roughly half of the time and spa
e usage reported in Figure 4.6 is spent building

the graph; the rest is spent starting the Java virtual ma
hine and parsing the Z86

assembler �le. The parser uses the tools JavaCC [96℄ and JTB [91℄ for parser generation

and syntax tree manipulation.

4.4.4 Sta
k-Size Analysis

The upper bounds on the sta
k sizes found by the analysis are reported in Fig-

ure 4.7, in the 
olumn labeled \Upper Bound". The lower bounds reported in Fig-

ure 4.7 are from the geneti
 algorithm sear
h with the simulator; be
ause these repre-

sent sta
k heights from known exe
ution tra
es, the true maximum sta
k height must

be no less than these lower bounds.

The sta
k-size analysis typi
ally takes around 0.1 se
onds, and takes little extra

memory beyond the base size of the Java virtual ma
hine. Note that the 
olumns
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Sta
k-size analysis

Program Lower Upper Total Total

Bound Bound Time Spa
e

CTurk 17 18 4.11 s 31.6 MB

GTurk 16 17 4.31 s 32.2 MB

ZTurk 16 17 4.22 s 32.1 MB

DRop 12 14 4.14 s 31.1 MB

Rop 12 14 4.18 s 31.8 MB

Fan 11 N/A N/A N/A

Serial 10 10 3.87 s 31.0 MB

Mi
ro00 37 37 3.21 s 34.9 MB

Figure 4.7. Sta
k size results

Total Time and Total Spa
e in
lude the 
ost of building the graph, as well as the

sta
k size analysis.

The analysis presented here is unable to as
ertain an upper bound on the program

\Fan" be
ause it has the assembler equivalent of a for loop with a PUSH in the

body. This 
orresponds to a positive 
y
le in the CFG (see Se
tion 3.2.3). While it is

obvious to a programmer that the number of loop iterations (and therefore the sta
k

size) is bounded for this parti
ular loop, the analysis algorithm 
annot see the bound

based solely on the PC and IMR registers. The prototype implementation in
ludes

provisions in its data stru
tures to model this kind of 
ontrol 
ow, but the analysis

extensions have not been implemented at this time.

Despite e�orts to limit unrealizable 
ontrol 
ow paths in the graphs, the upper

bounds presented in Figure 4.7 may not 
orrespond to genuine exe
ution paths in the

running mi
ro
ontroller programs. The following approa
h is used to evaluate the

pre
ision of the upper bounds by �nding lower bounds in a
tual program runs.

ZARBI's 
y
le-level simulator for the Z86E30 ar
hite
ture in
ludes all but a few

obs
ure pro
essor features that are not used by the ben
hmark programs. The simula-

tor 
an intera
t with state ma
hine models of external devi
es, in
luding an intelligent

LCD display, an 8-bit Analog-to-Digital 
onverter, a 9600-baud RS-485 serial port,

and a 64-byte EEPROM 
hip. The simulator 
an monitor sta
k size, and re
ords the

maximal value together with the 
orresponding program path. Any run of one of the

ben
hmark programs with some interrupt s
hedule will generate a lower bound on

the sta
k height; a geneti
 algorithm dire
ts the evolution of interrupt s
hedules to

sear
h for a tight lower bound.

The input to the simulator is an assembly program and an interrupt s
hedule.

The s
hedule 
onsists of a number of interrupt request sequen
es that should be �red
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during the run in order to test the assembly program. The format of the interrupt

s
hedules supports both single-point interrupts and periodi
 interrupts. A full de-

s
ription of the interrupt s
hedule �le format 
an be found in Appendix C.

For 
ompleteness, the experiments presented above used several strategies to

sear
h for an interrupt s
hedule that gave as tight a lower bound as possible. These

strategies in
luded simulation with 1) an \expert" interrupt s
hedule written by a per-

son familiar with the Greenhill mi
ro
ontroller systems, 2) 1,000 randomized s
hed-

ules, and 3) 1,000 s
hedules generated by the geneti
 algorithm. The geneti
 algorithm


onsistently mat
hed or outperformed the results of the other two approa
hes. The

lower bounds found by the simulator with the winning interrupt s
hedule are reported

in Figure 4.7.

4.4.5 Type Che
king of Sta
k Elements

For the six ben
hmark programs for whi
h the analysis produ
ed a �nite sta
k

size, all sta
k operations type 
he
k. This was also true for all additional test inputs

that were not written with deliberate sta
k manipulation errors. All of the test inputs

with intentionally broken sta
k operations were dete
ted and properly 
agged. The

tool 
arries out the 
he
ks while exe
uting the 
losure rules that insert pop edges.

The algorithm for type 
he
king does not apply to programs with unbounded

sta
k size. Intuitively, this is be
ause in su
h programs, it is not possible to mat
h

the push and pop operations \one to one."

4.5 Summary

The experiments shown in this 
hapter were designed to explore the question,

\Can modeling just the program 
ounter and interrupt mask registers lead to a useful

programming tool?" The answer is 
ertainly yes.

The sta
k size 
he
king algorithm was able to provide tight upper bounds on six

of the seven proprietary programs. Furthermore, it e�e
tively type 
he
ked the sta
k

operations on those six programs.

The seventh program de�es analysis only be
ause of a single loop whi
h depends on

other registers to determine sta
k size. While this kind of limitation is symptomati


of the unde
idability of this problem in the general 
ase, mu
h work has been done

in the past on handling simple instan
es, as are likely to o

ur in assembly programs

of this type. Identi�
ation of indu
tion variables and loop unrolling [62℄, and loop-

invariant spe
i�
ation [67, 68℄ are su

essful te
hniques that may be 
ombined with

the analyses presented here to ta
kle the upper bounds on the seventh program.

As for 
al
ulating maximum interrupt laten
y, PC and IMR values alone are not

suÆ
iently pre
ise to di�erentiate nodes with disparate laten
ies; laten
y analysis will

be 
overed in depth in Chapter 5.
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This work has the potential to impa
t far more assembly languages than that of

the Z86. The maskable, ve
tored interrupt ar
hite
ture present on the Z86 is very

similar to many other pro
essors, su
h as the Motorola 68000 family, and many RISC

DSP 
hips. Palm Pilots, handheld digital phones, and many other interrupt-oriented

appli
ations use software that 
ould be amenable to analysis along the lines presented

in this dissertation. While the Z86 programs examined here are on the order of 4K in

size, average Palm Pilot programs are 100K in size, with about three times as many

interrupt ve
tors. Estimating based upon 
urrent results, this would result in graphs

with a few hundred thousand nodes, and a few million edges { still within grasp of


urrent ma
hine power for analysis. The larger instru
tion sets and register sets of

these pro
essors are a largely orthogonal issue to the 
omplexity of the analysis, and

only add details to the 
omplexity of the implementation.

A key di�eren
e between the Z86 and larger interrupt-oriented pro
essors is the

issue of program progress. With 
ode in ROM, and no 
apa
ity for bus errors,

the Z86 pro
essor is guaranteed to always pro
eed in its 
omputation, regardless of

what garbage instru
tions it might be for
ed to exe
ute. (It is possible for a poorly-

written Z86 program to jump to data 
onstants stored in ROM, whi
h would result

in \garbage" being exe
uted.) In short, at least one of the edges leaving ea
h node

in the graph is guaranteed to be taken upon exe
ution. Not so with more 
omplex

pro
essors, where a badly formed jump address 
ould 
ause 
omputation to stop,

due to a bus error, a prote
tion error, or a misaligned memory address. For these

reasons, additional safeguards, like Typed Assembly Language [59℄ would be required

in order to provide the ne
essary stru
ture to guarantee program progress in su
h a

s
aled-up framework. As an added bonus, su
h typing annotations may assist in elim-

inating \yellow" laten
y ambiguity in the graph, as will be explained in Chapter 5,

by providing mu
h-needed limits on the 
ow of 
riti
al data. Finally, type systems


ould enfor
e the safety 
he
ks on indire
t addressing modes and dire
t addressing

instru
tions that the 
urrent implementation negle
ts.

The sta
k size estimation te
hnique presented in this 
hapter is one of the �rst to

give an eÆ
ient and useful stati
 analysis of assembly 
ode. It employs stati
 analysis

to provide safe, tight bounds on sta
k size for interrupt-driven Z86 mi
ro
ontroller

systems.

The next 
hapter will present te
hniques for bounding interrupt laten
y in interrupt-

driven systems.
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5 DEADLINE ANALYSIS

The deadline analysis algorithm presented in this 
hapter 
ombines timing ora
les

with stati
 analysis to provide safe bounds on interrupt laten
y for real-time systems

implemented on the Z86 platform.

This 
hapter presents the diÆ
ulties of deadline analysis in su
h systems, the

algorithm used for deadline analysis in this dissertation, and the results of applying

the prototype implementation to a suite of 
ommer
ial embedded systems.

After a brief overview in Se
tion 5.1, Se
tion 5.2 presents a program whi
h will

be used as a running example throughout rest of the 
hapter. Se
tion 5.2.3 presents

the 
on
ept of ora
les, and Se
tion 5.2.4 presents multi-resolution stati
 analysis.

In Se
tion 5.3, experimental results are given, and Se
tion 5.4 walks through an

intera
tive deadline-analysis session with ZARBI.

5.1 Overview

Corre
tness of real-time software 
an be thought of as having two parts. The �rst

issue is 
orre
tness of input-output behavior, and the se
ond is timeliness of that be-

havior. Veri�
ation and validation of input-output behavior has been widely studied;

there are many stati
-
he
king tools available, in
luding type 
he
kers [17℄, byte
ode

veri�ers [49℄, and model 
he
kers [19℄, as well as numerous tools for supporting the

test pro
ess. Veri�
ation of timing properties is more diÆ
ult, but progress has been

made toward understanding the foundations of 
he
king the timing properties of real-

time software in work su
h as [5℄ and [6℄. Major open issues still remain, due to the

low-level nature of real-time systems. Many are still implemented either in assembly

language or at lower levels, su
h as FPGAs or 
ustom-built ASICs. Even when real-

time software is written in a higher-level language su
h as C, it is desirable to 
he
k

the real-time properties of the 
ompiled 
ode be
ause it 
an be diÆ
ult to predi
t the

e�e
ts of the 
ompiler. Most previous work on analysis of assembly 
ode [99℄ is not


on
erned with timing properties.

5.1.1 The Deadline Analysis Problem

The analysis presented later in this 
hapter 
he
ks timing properties of real-time

assembly 
ode. A prototype tool has been 
onstru
ted as a demonstration of the

pra
ti
al bene�ts of these te
hniques. This work fo
uses on interrupt-driven software,

where a signal from a sour
e outside the dire
t 
ontrol of the software 
an 
ause


omputation to be interrupted by 
ontrol being transferred to an interrupt handler.
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Typi
al interrupts in the systems analyzed in this dissertation 
an o

ur be
ause new

sensor data is available, a signal pulse arrives at the 
ontroller, an internal timer

goes o�, or for many other reasons. The spe
i�
ation of an interrupt-driven system

will usually list deadlines for the handling of ea
h type of interrupt. It is part of

the 
orre
tness of the system that all deadlines are met. Reasoning about the timing

behavior of interrupt-driven software is 
ompli
ated be
ause interrupts 
an be enabled

and disabled by the software itself, an interrupt handler 
an be interrupted, and

interrupts 
an arrive in a myriad of di�erent s
enarios. It is 
riti
al to know whether

an interrupt arrives at a point where it is enabled and 
an be handled right away,

or whether it arrives 50 
lo
k 
y
les later, when, for example, the system has just

disabled interrupt handling and will be doing other work for the next two million


lo
k 
y
les. Deadline analysis seeks to answer the following question.

Deadline Analysis: Will every interrupt be handled before the deadline?

One 
an approa
h this question in a testing-based manner, by trying a suite of in-

terrupt s
hedules and measuring whether all deadlines are met. Developing a good

suite of interrupt s
hedules is a diÆ
ult problem be
ause of the �ne granularity of the

timing domain. Even if a 
lo
k 
y
le is as long as one mi
rose
ond, it is very diÆ
ult

to engineer or dis
over interrupt s
hedules that lead to any reasonable 
overage of

the program. Statement 
overage would be easy in this setting, but is not a useful


overage 
riteria be
ause it does not take into a

ount the interplay of di�erent in-

terrupts and the times when they o

ur. Bran
h 
overage is more a

urate but far

more expensive; at every program point where an interrupt is enabled, there is an

impli
it bran
h to the handler. Covering all bran
hes 
an therefore be a 
ombinatori-

ally explosive problem. In summary, the problem with a test-based approa
h is that

it is diÆ
ult to test a suÆ
iently wide variety of s
hedules to gain 
on�den
e in the

software.

An alternative is a stati
-analysis-based approa
h to deadline veri�
ation. As

shown in Chapter 4, stati
 analysis 
an be su

essfully employed to bound sta
k

usage in interrupt-driven systems. However, when timing analysis was applied to the

model presented in Chapter 4, worst-
ase exe
ution time 
ould not be estimated for

most of the paths in the program.

Stati
 timing analysis for embedded systems 
annot su

eed without information

about the behavior of external devi
es that interfa
e with the embedded pro
essor.

For example, if the pro
essor uses a loop to busy-wait on a new value from a port,

stati
 analysis will view it as an in�nite loop, even if the programmer knows that

an external devi
e will deliver a new value every 100 millise
onds. On
e the stati


analysis has dete
ted that there is an in�nite loop on the path from A to B, it will

determine that if an interrupt o

urs when the exe
ution is at program point A and

the handler for the interrupt has exit point B, the handling may never terminate,

let alone meet its deadline. In summary, the stati
 analysis approa
h presented in

Chapter 4 fails to perform useful deadline analysis.

This 
hapter explores the thesis that better results 
an be obtained by 
ombining

stati
 analysis and testing. In pra
ti
al terms, the fundamental 
hallenge is:



41

Challenge: Can stati
 analysis signi�
antly de
rease the required testing

e�ort?

There are previous su

ess stories of 
ombining stati
 analysis and testing. For ex-

ample, in the area of regression testing, rather than re-running the software on the

whole test suite every time a 
hange has been made, one 
an use stati
 analysis to


onservatively estimate whi
h test inputs must be tried again [37℄. In the deadline

analysis setting, stati
 analysis 
an redu
e the required testing e�ort, allowing the

testing e�ort to be more fo
used on key areas of the 
ode that a�e
t deadlines.

The deadline analysis presented here uses test ora
les [85℄ to answer 
ertain worst-


ase exe
ution time (WCET) questions that 
annot possibly or easily be answered

by stati
 analysis. An ora
le asserts to the stati
 analysis that if exe
ution rea
hes

program point A, then it will rea
h program point B at most t mi
rose
onds later.

Returning brie
y to the high-level CFG abstra
tions of Chapter 3, ora
le assertions

are expressed in the CFG's as time summary edges (Se
tion 3.5.1). When A and

B are 
lose, then a mu
h smaller testing e�ort is required to verify su
h an ora
le

assertion than to do the entire deadline analysis. Moreover, if more than one ora
le

assertion is needed for a program, the work of validating ea
h assertion 
an be done

in parallel. The goal is to 
ombine stati
 analysis with timing ora
les to improve the

pre
ision of the deadline analysis.

Deadline analysis 
annot be performed without WCET analysis. However, most

resear
h on deadline analysis assumes that WCET analysis has already been su
-


essfully performed, and most published papers on WCET analysis do not 
onsider

the needs of deadline analysis. Many papers in this area 
on
entrate on estimat-

ing the exe
ution time from one program point to another, usually from start to

�nish, sometimes even fo
using on a parti
ular input, and they rarely handle inter-

rupts [10, 20, 27, 30, 77, 93, 97℄. Deadline analysis is more 
ompli
ated than simple

WCET analysis be
ause the interrupts 
an o

ur at any time and their handlers 
an

be enabled or disabled at any program point. In deadline analysis, the starting point

for the analysis is not given. It is a task of the analysis to identify the worst-
ase

program point at whi
h an interrupt 
an o

ur and then estimate the WCET to the

exit point of the handler for that interrupt.

In summary, deadline analysis for interrupt-driven assembly 
ode remains a diÆ-


ult and little-studied problem.

5.1.2 Results

ZARBI has been designed and implemented to be used as a tool for integrated

deadline andWCET analysis of interrupt-driven assembly 
ode. Expressed in simplest

terms, the ZARBI methodology is:

deadline analysis = stati
 analysis + testing ora
les.

For six 
ommer
ial mi
ro
ontroller programs, ea
h on the order of 1000 lines

of 
ode, less than 17 ora
les were suÆ
ient to 
omplete deadline analysis. In the
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Handler
other

Blue
Green

Magenta

Handler

Figure 5.1. Coloring a Flow Graph

experimental session presented in Se
tion 5.4, an expert user was able to intera
tively

add all of the required ora
les for one of the 
ommer
ial ben
hmarks in less than an

hour.

The te
hnique presented here uses a multi-resolution analysis (Se
tion 3.4.4),

whi
h allows exploration of diÆ
ult segments of the 
ontrol 
ow graph in suÆ
ient

depth to bound the laten
y while avoiding the intra
table 
omplexity that would arise

from using su
h �ne-grained analysis over the whole program.

The stati
 analysis pro
eeds by building and 
oloring a 
ow graph. Ea
h node is

given one of �ve 
olors: Green, Magenta, Blue, Yellow, and Red. Intuitively, Green

means that WCET 
an be estimated, Magenta means that starvation is possible,

Blue means that starvation is possible at a later node, Yellow means that the analysis

thinks that the deadline might not be met, and Red means that the analysis is 
ertain

that the deadline 
annot be met. For the test suite, no red nodes were found, the

analysis was able to eliminate all yellow nodes with the addition of ora
les, and very

few nodes were magenta.

Figure 5.1 illustrates a 
ow graph at the time the deadline analysis is 
omplete,

that is, when all yellow nodes have been eliminated. Noti
e that \other Handler" 
an

starve an interrupt that is to be handled by \Handler".

The deadline analysis presented here is intended to be used as part of a three step

pro
ess. For a given interrupt, (1) add ora
les until all nodes are green, magenta,
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or blue, (2) use simulation and testing to �nd a WCET for the magenta 
louds, and

(3) 
ombine the WCET's from the green, blue, and magenta 
louds to 
ompute the

WCET for handling the interrupt.

5.2 Example Analysis

5.2.1 A Program and its Flow Graph

The example program shown in Figure 5.2 is a short ex
erpt of Z86 assembly 
ode

designed to exhibit interrupt laten
y 
hara
teristi
s hostile to stati
 analysis. There

are two ve
tored interrupt handlers, IRQVC0 and IRQVC1, both of whi
h do nothing

but exe
ute the return-from-interrupt instru
tion, IRET. The pro
edure PROC pushes

a value from a register onto the sta
k, pops it o�, and returns. The main loop, LOOP

bran
hes to itself in�nitely. The OUTLP loop outputs the bytes 255 through 1 to an

external data port and terminates, while the BSYLP loop waits until data from an

external port arrives with 0 as the most signi�
ant bit.

The two-digit hexade
imal numbers along the leftmost 
olumn of the �gure are the

ROM addresses that would be generated for this program if it were a
tually 
ompiled

into ma
hine 
ode. These addresses will be used throughout the rest of this se
tion

to refer to spe
i�
 lines of the example.

Figure 5.3 shows the 
ow graph 
onstru
ted for the example program in Figure

5.2. Ea
h node in the graph has three pie
es of information:

� Code address { the value of the instru
tion pointer when the pro
essor begins

exe
uting the instru
tion. The upper leftmost node in the graph (\INIT") 
on-

tains address \0C", whi
h is the �rst instru
tion exe
uted by the Z86 pro
essor

on powerup.

� IMR value { the bits in the Interrupt Mask Register 
ontrol ve
tored interrupt

handling by the Z86 pro
essor. The layout of the IMR is \M.543210", where bit

\M" 
ontrols global interrupt handling, and the lower order bits enable the six


orrespondingly-numbered interrupt sour
es. The seventh bit is reserved. The

node at INIT has IMR value \00", indi
ating that all interrupts are turned o�,

while the node at LOOP has IMR value \83", indi
ating that ve
tored interrupt

handling is turned on and the handlers for interrupts 1 and 0 are enabled.

� Sta
k 
ontext { initially, this �eld 
ontains the top element on the system sta
k,

\fg" for an empty sta
k, or \?" when the exa
t value on the top of the sta
k is

irrelevant. As shown later, multi-resolution analysis may add additional items

of sta
k 
ontext to nodes as needed.

Solid arrows in the graph represent possible 
ontrol 
ow between nodes. When

the transition between two nodes involves a 
hange in the sta
k, the edges have been

annotated with \!" and \?". The notation \!3" indi
ates an operation that pushes

three bytes onto the sta
k { an interrupt. (When an interrupt handler is invoked,
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.ORG %00h ;INTERRUPT VECTOR TABLE

.WORD #IRQVC0 ; Ve
tor IRQ0

.WORD #IRQVC1 ; Ve
tor IRQ1

.ORG %0Ch

INIT: ;INITIALIZATION

0C CALL PROC ; Call a little pro
edure.

0F CALL PROC ; Call it a se
ond time to introdu
e

; an artifi
ial yellow 
y
le.

12 LD IMR, #81h ; Enable global interrupts and IRQ handler 0.

OUTLOOP: ;OUTPUT LOOP

15 LD P3, r1 ; Send the 
ontents of r1 out data port 3.

17 DJNZ r1, OUTLOOP ; De
 r1, jump to top of loop if not zero.

19 CLR IMR ; Disable interrupts.

BSYLOOP: ;INPUT LOOP

1B TM P2, #80h ; Che
k the high bit on data port 2.

1E JR NZ, BSYLOOP ; If the bit is 1, 
ontinue looping.

20 LD IMR, #83h ; Enable global interrupt handling,

; and both handlers 0 and 1.

LOOP: ;MAIN PROGAM

23 JP LOOP ; An infinite loop.

;SUBROUTINES

PROC: ; This subroutine just pushes and value

26 PUSH r0 ; onto the sta
k, and then pops it ba
k

28 POP r0 ; off before returning. Its sole purpose

2A RET ; is to 
onfuse the analysis tool and

; demonstrate the benefits of adaptive

; sli
ing.

;INTERRUPT HANDLERS

IRQVC0: ; Both of these handlers do nothing ex
ept

2B IRET ; exe
ute the return from interrupt

IRQVC1: ; instru
tion. Even so, the 
omplexity

2C IRET ; that arises from having both in play

.END ; at the same time 
auses all five 
olors

; from our analysis to appear.

Figure 5.2. Example Program

the Z86 pushes two bytes of return address and one byte of 
ondition 
ode bits onto
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0C

0F

12

26

2A

26

2A

00

00

00

00

00

00

00

{}

{}

{}

{0F}

{0F}

{12}

{12}

0028 {?}

15 81 012B {15}{}

17 81 {}

19 81 {}

2B 01 {17}

2B 01 {19}

1B 00 {}

1E 00 {}

23 83 {}

20 00 {}

2B 03 {23}

{23}032C

!3

!3

!3

!3

!3

!2

!2

!1

!1

?3

?3

?3

?3

?3

?2

?2

?1

?1

INIT:

LOOP:

BSYLP:

OUTLP:

Figure 5.3. Example Program Flow Graph

the sta
k.) The notation \?2" indi
ates two bytes being popped o� of the sta
k { a

return from a pro
edure 
all. Dashed arrows in the graph represent sta
k summary

edges, as de�ned earlier in Chapter 4.
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5.2.2 Initial Coloring of the Example Graph

The designer of the example program in Figure 5.2 would like to know if the

tasks 
orresponding to interrupts 0 and 1 will meet their deadlines. This requires

information about the minimum inter-arrival time for ea
h interrupt sour
e. But even

before that kind of data 
an be 
onsidered, there is another key pie
e of information

that any su
h analysis must have: the WCET of the program with respe
t to interrupt

laten
y. The maximum possible delay between the arrival of an interrupt request and

subsequent handling of that request must be known in order to make any a

urate

statement about the system's ability to meet deadlines.

In order to perform deadline analysis for a given interrupt, the algorithm 
lassi�es

the nodes in the 
ow graph into �ve 
olors. Three of those 
olors will be explained

here; two more will be 
overed in Se
tion 5.2.4.

� Green nodes in the graph are those from whi
h 
omputation will inevitably

rea
h the handler of interest. For a green node, the analysis 
an 
ompute the

WCET from the node to the handler in linear time (see Se
tion 3.5).

� Red nodes are those from whi
h it is impossible to rea
h the handler of interest.

In ZARBI's model of 
omputation, this would be a signi�
ant program error,

su
h as an in�nite loop with interrupt handling disabled. The test suite of

produ
tion mi
ro
ontroller software 
ontained no su
h errors, so red will not be

dis
ussed any further in this 
hapter.

� Yellow nodes are those whi
h 
ould not be de�nitively 
lassi�ed as green or red

for the handler of interest.

When the analysis 
olors the example system 
ow graph (Figure 5.3) with respe
t

to interrupt handler 1, the nodes with addresses 2C, 23, and 20 are 
olored green, as is

the node for the lowest instan
e of the interrupt zero handler, 2B, o� of the LOOP node.

Nodes 1B and 1E are 
olored yellow be
ause the analysis 
annot stati
ally determine

how long it will take to 
omplete the BSYLP loop. Finally, sin
e the remaining nodes

in the graph above BSYLP 
an rea
h interrupt handler 1 only through BSYLP, they too

will be 
olored yellow in the initial round.

Eliminating all yellow nodes in the graph would allow the analysis to give �rm

bounds on the exe
ution time of any path in the program leading to the interrupt

handler. The yellow nodes fall into �ve basi
 
ategories:

� External Yellow nodes 
omprise a 
y
le that depends on external input. These


annot be resolved through stati
 analysis, and will require some form of ad-

ditional information about the external environment of the 
ontroller. (For

example, the node with PC value 1B in Figure 5.3 is part of an external yellow


y
le.)

� Ultra Yellow nodes 
omprise a 
y
le in the graph 
orresponding to some kind

of unbounded loop.
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� Starvation Yellow nodes are yellow be
ause the interrupt handler of interest


an be starved (delayed inde�nitely [16℄) by another interrupt sour
e 
alling its

own handler frequently enough to prevent the pro
essor from making progress

toward the handler of interest. (Nodes 15, 17, and 19 in the example 
an be

starved by the handler starting at 2B.)

� Arti�
ial Yellow nodes 
omprise unrealizable 
y
les that appear in the graph

as a result of impli
it path merging. (The 
y
le of 0F, 26, 28, and 2A in the

example is an arti�
ial yellow 
y
le.)

� Upstream Yellow nodes are yellow only be
ause they are upstream of other

yellow nodes. (Nodes 0C and 12 in the example are upstream yellow.)

Intuitively, yellow represents a \don't know" 
ategory of nodes whi
h lie along pos-

itive 
y
les in the CFG. External and ultra yellow nodes 
an be dealt with through

the use of ora
les, as explained in the next se
tion. Arti�
ial yellow nodes are elim-

inated using adaptive sli
ing, as outlined in the se
tion on multi-resolution analysis.

Starvation yellow nodes will be assigned a new 
olor, to be dealt with by simulation

and testing. Finally, upstream yellow nodes will disappear when the other four 
lasses

of yellow nodes are eliminated.

5.2.3 Testing Ora
les

Real-time, interrupt-driven software 
an 
ontain loops that 
annot be bounded

through stati
 analysis. Syn
hronous 
ommuni
ation with o�-
hip resour
es, de
i-

sions predi
ated on external data, or intera
tion with the user 
an be expressed as

loops whose bounds depend on additional information outside the realm of the system

sour
e 
ode.

The BSYLP area of the example system is su
h a loop. It is a simpli�ed version of a

busy-wait loop found in several of the produ
tion mi
ro
ontroller systems. Typi
ally,

su
h a loop 
ould be waiting for a peripheral devi
e to signal that it has re
eived the

last 
ommand, and 
an be issued further 
ommands. The designers of the system

would know that the manufa
turer of the devi
e guarantees the maximum response

time for this operation will be, for example, 40mS, a fa
t that 
annot be as
ertained

from the sour
e 
ode. In order to take advantage of this external information the

analysis uses an ora
le, an entity that answers questions about laten
y that 
annot

be answered by stati
 analysis.

An ora
le gives an assertion of the form:

Address

1

! Address

2

= Laten
y

whi
h says that the program will take at most Laten
y ma
hine 
y
les to get from

Address

1

to Address

2

.

When 
onstru
ting the initial 
ontrol 
ow graph, information provided by the

ora
le is used to insert time summary edges from a node N in the graph with address
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1B 00 {}

1E 00 {}

20 00 {}

BSYLOOP: 1B 00 {}

1E 00 {}

20 00 {}

BSYLOOP:

Time =
320000

(a) before (b) after

Figure 5.4. Time Summary Ora
le in the Example

Address

1

to a node M in the graph with address Address

2

su
h that M and N have

the same IMR value and sta
k 
ontext. It was initially anti
ipated that the analysis

would need more 
omplex syntax for spe
ifying ora
le edges, su
h as pattern mat
hing

on IMR values or sta
k arithmeti
. However, in the six produ
tion mi
ro
ontroller

systems examined, the address-mat
hing-only edges have proven suÆ
ient to bound

all of the external yellow loops.

The semanti
s of these time summary edges is su
h that the 
olor of the destination

node 
an be safely extended ba
kward to the sour
e node of the summary edge. This

does not in itself imply anything about maximum laten
y between nodes that lie

along a path from the sour
e to the destination. The time summary applies stri
tly

to the maximum laten
y between two nodes tou
hed by the time summary edge.

For the example program, a time summary ora
le spe
i�es that the BSYLP loop

takes at most 320,000 ma
hine 
y
les (40mS on the example ar
hite
ture). The input

to the ora
le is:

[0x001B℄ -> [0x0020℄ = 320000

The resulting 
hange to the graph is shown in Figure 5.4. The time summary edge

from 1B to 20 (whi
h is already a green node) allows 1B to be re
olored green. This in

turn 
auses 1E to be re
olored green as well, so this ora
le edge has eliminated BSYLP

as an obsta
le to determining maximum interrupt laten
y for the entire program.

This dissertation uses ora
les in three ways:
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� External event delays { bounds for loops that rely on data external to the

system, su
h as bytes arriving on the input ports of the pro
essor.

� Internal loop bounds { many of the for-loop style 
onstru
ts 
ould be bounded

using well-known stati
 analysis te
hniques [27,62℄. However, implementing the

proper stru
tural loop analysis for assembly language sour
e, without any an-

notations from the programmer, 
ould be far more expensive than as
ertaining

the loop bounds manually. Many of the loops found in the ben
hmarks are

trivially bounded by 
asual examination of the 
ode, and the time summary

ora
le 
onstru
t is suÆ
iently general to bound the maximum loop exe
ution

time. This would not be a preferred use of the tool in pra
ti
e. An industrial

strength version of ZARBI would infer these bounds stati
ally, or intera
tively

assist the programmer in annotating the 
ode with proper bounds. The 
urrent

tool leaves this for future work.

� Internal data dependent loop bounds { a small number of loops in the test suite

relied not on immediate 
onstants near the top of the loop, but rather on data

elsewhere in the program. The most 
ommon example of this was a display

routine that iterated over a zero-terminated ASCII string. Te
hniques exist to

automati
ally infer these kinds of bounds, but for simpli
ity of implementa-

tion, these were not employed. Instead, bounds on these loops were manually

as
ertained, and equivalent time summary edges were inserted.

Fully two thirds of the input provided to the time summary ora
le for these ex-

periments were loop bounds that 
ould either be stati
ally 
he
ked as annotations or

stati
ally inferred by other means. The remaining third of the input was for external

event delays of the kind that 
ould not possibly be determined stati
ally. A very

small number of the input items were for loops dependent on internal data, whi
h


ould probably be determined with a very thorough 
ow analysis of all registers in

the program.

The interfa
e provided to assist the user in giving these assertions to the ora
le

is quite straightforward. After initial 
oloring of the graph, the tool produ
es a list

of border yellow nodes { yellow nodes that are one edge away from green nodes.

Typi
ally, these will be bran
h or jump instru
tions that 
omprise the bottom of a

loop. In the 
ase of the example program, the prototype tool would produ
e the

result,

Border Yellow instru
tions:

L001E: JR NZ, L001B

dire
ting the user to the BSYLP loop.

The 
orre
tness of assertions made by the user to the ora
le are taken for granted

by the 
urrent system. Assertions must be admissible (Se
tion 3.5.1) for the overall

analysis to produ
e 
orre
t results. In pra
ti
e, one would want to 
on
entrate system

testing or simulation on these areas to gain 
on�den
e in the validity of the assertions.
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However, the key point to be made is that the stati
 analysis has greatly redu
ed

the sheer volume of program states that must be tested. In ea
h of the produ
tion

mi
ro
ontrollers analyzed, there were fewer than 20 overall assertions to the ora
le,

ea
h of whi
h 
overed only a handful of nodes in the graph, out of tens or hundreds

of thousands of nodes in the graph overall.

Stati
 analysis 
an redu
e the size of the laten
y testing problem from an utterly

intra
table s
ale down to a subset of the program small enough that one 
ould 
on-


eivably use exhaustive simulation to as
ertain the remaining WCET information, or

apply other �ner-grained and less-s
alable analyses.

5.2.4 Multi-Resolution Analysis

Initial 
onstru
tion of the 
ontrol 
ow graph in
ludes estimates of the possible

IMR values and top sta
k elements for ea
h node. Abstra
ting away the rest of the

ma
hine state impli
itly merges 
ontrol 
ow paths, thereby allowing the size of the

graph to remain tra
table { typi
ally mu
h less than a million nodes, rather than the

2

27

nodes whi
h is the worst 
ase for this model. (7 bits of IMR, 10 bits of sta
k

element, and 10 bits of PC = 27 bits per node.) However, the impre
ision of having

nodes distinguished by only one element of sta
k 
ontext (analogous to 1-CFA in 
ow

analysis parlan
e [90℄), 
an result in arti�
ial 
y
les appearing in the 
ontrol 
ow

graph.

Su
h is the 
ase in the example program, where pro
edure PROC is 
alled twi
e

within a segment where interrupt handling is disabled. Ignoring for a moment the

question of how to bound laten
y from node 12, the INIT segment of the graph

would still be 
olored yellow be
ause of the path [0F,00,fg℄, [26,00,f12g℄, [28,00,f?g℄,

[2A,00,f0Fg℄, and ba
k to [0F,00,fg℄. This is a false path [4℄, whi
h does not 
orre-

spond to genuine 
ontrol 
ow { the se
ond 
all to PROC will return to the originating


all site, not the previous 
all site.

The approa
h to multi-resolution analysis shown here improves the 
ontrol 
ow

graph by eliminating many unrealizable paths.

False paths are a well known problem in 
ontrol 
ow analysis, (see Se
tion 2.2); one

solution is to employ k-CFA with larger values of k. However, it 
ould be expensive to

re
ompute the entire 
ontrol 
ow graph with a higher value of k, as this qui
kly 
auses

a 
ombinatorial explosion in graph size for interrupt-driven software. The CFG is


onstru
ted using multi-resolution analysis, where the value of k (the amount of sta
k


ontext used to distinguish nodes) is in
reased only in the areas of the graph where it

is ne
essary to alleviate ambiguity in laten
y analysis. Thus, nodes like [28,00,f?g℄ in

the example are adaptively sli
ed into non-yellow nodes with greater sta
k 
ontext,

[28,00,f?,0Fg℄ and [28,00,f?,12g℄, as shown in Figure 5.5. This approa
h is inspired

by Plevyak and Chien [78℄. Independently of our work, Guyer and Lin [36℄ have also

used multi-resolution analysis.

Multi-resolution analysis takes pla
e automati
ally; the algorithm (shown in Se
-

tion 6.3.2) iteratively identi�es nodes that are both border yellow and sta
k popping
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26

2A

26

2A

00

00

00

00

{0F}

{0F}

{12}

{12}

28 00 {?,0F}

28 00 {?,12}
?1

!1

?1

!126

2A

26

2A

00

00

00

00

{0F}

{0F}

{12}

{12}

0028 {?}

!1

!1

?1

?1

(a) before (b) after

Figure 5.5. Example Program Adaptive Sli
ing

instru
tions (POP, RET, and IRET), and adaptively sli
es these nodes and their asso
i-

ated graph segments to the ne
essary depth. This te
hnique represents a substantial

savings in graph 
omplexity, redu
ing the size of the graph by 20% to 60% 
ompared

to running the analysis of the produ
tion programs with a �xed, non-adaptive k-CFA.

However, the redu
tion in graph size 
an 
ome at the 
ost of in
reased analysis time,

as explained below.

While the multi-resolution analysis redu
es the number of nodes and edges in the

graphs in all 
ases, when 
ompared with the running time of straight k-CFA, it runs

faster in some 
ases, but slower in others. In two 
ases, the multi-resolution analysis is

an order of magnitude slower than straight k-CFA. This wide variation in relative run

times is highly dependent on the stru
ture of the program under analysis { the depth

that the adaptive sli
ing must go to in order to disambiguate laten
y, the number of


all sites involved, and the lengths of the subroutines being sli
ed are all fa
tors in

the 
ost of multi-resolution analysis. For this reason, the prototype tool in
ludes a


ommand-line option whi
h tells it to use straight k-CFA with a spe
i�
 k, rather than

automati
 multi-resolution analysis, so that the user 
an 
hoose whi
hever method

performs better for their given program input.

The multi-resolution analysis is guaranteed to terminate be
ause the 
ontrol 
ow

graphs have a bounded sta
k size, whi
h is veri�ed by a previous phase of the tool,

(see Chapter 4.) The full details of the adaptive sli
ing 
an be found in Chapter 6.

5.2.5 Magenta and Blue Nodes

Time summary ora
les allow the deadline analysis to resolve both external and

internal yellow loops. Multi-resolution analysis sli
es apart arti�
ial yellow nodes. Of
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the �ve types of yellow nodes, all that remain are starvation yellow and upstream

yellow.

Be
ause these nodes are yellow for a fundamentally di�erent reason than the other

nodes dealt with thus far, a new 
olor is designated for them.

� Magenta nodes are those whi
h are one edge away from either green or magenta

nodes in the graph, AND are one edge away from a non-green interrupt handler.

Magenta nodes are set aside as a spe
ial 
ase for whi
h maximum laten
y of

the green interrupt handler 
annot be bounded without additional, detailed meta-

knowledge about the 
hara
teristi
s of the other non-green interrupt handlers involved

(knowledge su
h as inter-arrival times of interrupts, jitter, et
). These nodes are also

di�erent in that the straightforward ora
le-inserted time summary edges 
annot help

render these nodes green, even if the ora
le provides bounds on the WCET of the

segment of magenta nodes. This is be
ause ea
h magenta node 
an be starved, sin
e

the non-green interrupt handler 
an in the worst 
ase exe
ute so frequently that the


omputation does not make progress from the magenta node. (This is a point on

whi
h the Z86E30 do
umentation is vague; it is not 
lear whether an interrupt 
an

o

ur frequently enough to 
ompletely halt progress in the non-interrupt 
ode. In the

absen
e of a 
lear answer, the worst 
ase is assumed.)

The WCET of 
ontiguous 
lusters, or 
louds, of magenta nodes 
annot be reasoned

about at the individual node level, unlike all of the other analyses presented here.

For this reason, the problem of bounding magenta 
louds is left as future work and is

beyond the s
ope of this dissertation. Fortunately, the 
urrent analysis has revealed

that on average, fewer than 2% of the nodes in the produ
tion mi
ro
ontroller suite

are magenta; in several 
ases, there are no magenta nodes at all.

Those yellow nodes whi
h are upstream of the newly designated magenta nodes

are also assigned a new 
olor.

� Blue nodes are those for whi
h the deadline analysis algorithm 
an pre
isely

bound the WCET to rea
h a 
loud of magenta nodes.

Intuitively, blue nodes are well-behaved segments of the graph whi
h would be

green if there were not a magenta 
loud of potential interrupt starvation between

them and the green handler, as suggested by Figure 5.1.

The algorithm for 
oloring the graph is summarized in Computation Tree Logi


[24℄ notation in Figure 5.6. H is a predi
ate that is true for a node when that

node is the �rst instru
tion of the interrupt handler of interest. In CTL nota-

tion, AF means \exists globally", whi
h 
an be thought of as \inevitable". So

Green � AF (UltraGreen) means that Green nodes are those for whi
h all outgoing

edges inevitably rea
h UltraGreen nodes. Notation EF means \exists eventually",

or \rea
hable". EX means that there is an outgoing edge that leads immediately

to the predi
ate. Thus, Magenta � EF (Green) ^ EX(handler 62 H) says that

a Magenta node has a path that eventually rea
hes Green, and a path that leads
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UltraGreen � H � Head of handler of interest.

Green � AF (UltraGreen) � Inevitable that 
omputation

will rea
h an UltraGreen node.

Magenta � EF (Green) � Path exists to Green, and

^ EX(handler 62 H) to non-Green IRQ handler.

Blue � AF (Magenta) � Inevitable that 
omputation

will rea
h a Magenta node.

Red � :EF (UltraGreen) � Not possible to rea
h

an UltraGreen node.

Y ellow � :(Red _Green � Don't Know.

_Magenta _ Blue)

Figure 5.6. Coloring Graph for Laten
y Analysis

in one edge to a non-Green interrupt handler. The ZARBI implementation of this


oloring algorithm is explored in Chapter 6.

Returning to the 
ontrol 
ow graph from Figure 5.3, the three nodes at 15, 17,

and 19 are 
olored magenta. The interrupt handler nodes, 2B, hanging o� of the

magenta se
tion are 
onsidered blue. The entire segment above OUTLP, with the help

of the sli
ing explained in the previous se
tion, is 
olored blue.

All edges in the CFG are annotated with exe
ution 
y
les; all timing information

is taken from the Z86 referen
e manual [100℄. The entire 
ow graph of the example

program is now green, blue, or magenta. The magenta 
y
les 
annot be stati
ally

bounded, but the green and blue nodes 
an be broken into dire
ted, a
y
li
 subgraphs,

ea
h of whi
h 
an be evaluated for WCET by a re
ursive traversal in whi
h

WCET (B) = max(WCET (A) + edge

AB

)

where A ranges over all nodes that 
onne
t dire
tly to node B, and edge

AB

is the 
ost

of the edge from A to B. Running this traversal over the green nodes in the example

program produ
es a WCET time of 320010 ma
hine 
y
les between the magenta node

at 19 and the interrupt handler at 2C. The same 
al
ulation over the blue subgraph

reveals a maximum WCET of 102 ma
hine 
y
les from the start of the program to

the start of the magenta nodes.

Combining this information with additional knowledge about the magenta se
tion,

su
h as, it will take at most 200 
y
les to get from 12 to 1B through the magenta

se
tion, bounds the maximum interrupt laten
y to be 320312 
y
les.
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Program Lines IRQs Purpose

CTurk 1367 2 Agri
ultural 
ontrol

GTurk 1687 2 Agri
ultural 
ontrol

ZTurk 1612 2 Agri
ultural 
ontrol

DRop 1162 3 Reverse osmosis 
ontrol

Rop 1172 3 Reverse osmosis 
ontrol

Serial 795 3 RS-485 network relay

Mi
ro00 84 2 Example from Chapter 4

ICSE01 55 1 Example from Chapter 4

FSE03 35 2 Example from Chapter 5

Figure 5.7. Ben
hmark Chara
teristi
s

5.3 Experimental Results

The following se
tions present experiments applying the prototype implementa-

tion of this analysis to the suite of 
ommer
ially available mi
ro
ontroller systems.

Following these results, Se
tion 5.4 presents a narrative of a representative session

with the tool, starting from a fresh program, and iterating the deadline analysis until

all nodes are either green, blue, or magenta.

5.3.1 Ben
hmark Chara
teristi
s

The ben
hmarks used for evaluating the deadline analysis (Figure 5.7) are the

same suite of test inputs used in Chapter 4 with the addition of the examples from

Figure 4.1 (\ICSE01") and Figure 5.2 (\FSE03"). The 
ommer
ial program \Fan"

has been omitted be
ause the sta
k size analysis presented in the previous 
hapter


annot bound its maximum sta
k height (due to both positive and negative 
y
les

in the 
orresponding CFG); bounded sta
k height is a pre
ondition to running the

deadline analysis algorithm.

Ea
h of the 
ommer
ial systems underwent months of testing prior to a
tual pro-

du
tion, but an overall deadline analysis of the systems was not performed be
ause

no su
h tools 
ould be found.

5.3.2 Measurements

The results shown in Figure 5.8 give the �nal per
entages of nodes by 
olor after


ompletion of the deadline analysis algorithm. For 
larity of presentation, interrupt
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Per
entage green

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 100% 5% .

GTurk 100% 2% .

ZTurk 100% 2% .

DRop 99% 62% 40%

Rop 99% 66% 37%

Serial 100% 54% 49%

Mi
ro00 56% 45% .

ICSE01 100% . .

FSE03 100% 28% .

Per
entage blue

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 0% 87% .

GTurk 0% 94% .

ZTurk 0% 94% .

DRop 1% 36% 58%

Rop 1% 32% 60%

Serial 0% 44% 49%

Mi
ro00 38% 49% .

ICSE01 0% . .

FSE03 0% 57% .

Per
entage magenta

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 0% 7% .

GTurk 0% 3% .

ZTurk 0% 3% .

DRop 1% 1% 1%

Rop 1% 1% 2%

Serial 0% 1% 1%

Mi
ro00 5% 5% .

ICSE01 0% . .

FSE03 0% 14% .

Per
entage yellow

Prog IRQ

1

IRQ

2

IRQ

3

CTurk 0% 0% .

GTurk 0% 0% .

ZTurk 0% 0% .

DRop 0% 0% 0%

Rop 0% 0% 0%

Serial 0% 0% 0%

Mi
ro00 0% 0% .

ICSE01 0% . .

FSE03 0% 0% .

Figure 5.8. Results With Completed Ora
les

sour
es in the tables are numbered as \IRQ

1

", \IRQ

2

", and IRQ

3

. This does not

imply any kind of priority relationship between the various interrupt sour
es, nor are

these the a
tual interrupt sour
e numbers from the Z86 pro
essor; they are merely

organized into 
olumns. (E.g., Cturk has interrupt handlers for Z86 IRQ3, IRQ4, and

IRQ5, and these are labeled 1st, 2nd, and 3rd IRQ respe
tively in the table.) Note

that the tool rounds per
entages down in most 
ases, or up in the 
ase of per
entages

less than 1%, so the tables in Figure 5.8 may not total pre
isely to 100%.

Yellow nodes were 
ompletely eliminated, and the per
entages of green and blue

were quite high. The amount of magenta present in the �nal graphs was uniformly

low, less than 2% of the overall graph size on average. Several of the ben
hmarks had

0% magenta for a given IRQ, whi
h means the analysis 
an safely and 
ompletely

bound interrupt laten
y for those parti
ular handlers from anywhere in the program.

The ZARBI deadline analysis tool is implemented in Java, and took less than the

128 Megabytes of available RAM to 
omplete the analysis in all 
ases. The running
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Adaptive Sli
ing �xed k-CFA

Program Max k Nodes Edges Nodes Edges

CTurk 9 35750 51329 63904 84594

GTurk 10 140817 184724 215603 272421

ZTurk 10 127892 168104 190813 241118

DRop 5 19206 25244 46246 58510

Rop 5 21837 28731 54900 69597

Serial 3 8158 10753 19352 24775

Mi
ro00 1 339 619 339 619

ICSE01 1 46 74 46 74

FSE03 2 18 33 21 33

Figure 5.9. Adaptive Sli
ing vs. Fixed k-CFA

time of the tool in
reases as the number of ora
le assertions allows the tool to sli
e

deeper into the graphs. Run-time varied from less than 2 se
onds up to an hour for

the largest ben
hmark (with full multi-resolution analysis), with an average run-time

of 15 minutes overall. The 
urrent implementation has been optimized toward rapid

prototyping and easy debugging of the tool, with little regard for running time and

spa
e requirements. It is expe
ted that an industrial-strength version of the tool


ould be 
onstru
ted to run more eÆ
iently.

Figure 5.9 shows the sizes of the graphs generated by the analysis, both with

adaptive sli
ing, and with a �xed k-CFA, where the value for k is �xed to the depth

needed by the adaptive sli
ing.

As mentioned earlier, employing multi-resolution analysis results in a substantial

savings in graph 
omplexity, with multi-resolution graphs 20% to 60% smaller than

the equivalent �xed k-CFA graphs. While the �xed k-CFA graphs 
an be 
onstru
ted

substantially faster in some 
ases, the redu
tion in yellow nodes o�ered by the multi-

resolution analysis is usually far more valuable. When using the tool to iteratively

dis
over time summary assertions for redu
ing yellow nodes, (as demonstrated in

Se
tion 5.4,) anything that 
auses larger graphs potentially 
reates more yellow nodes,

adding more data to the output of the tool, and making the entire pro
ess in
reasingly

diÆ
ult.

Figure 5.10 
hara
terizes the number and types of assertions that were provided

to the time summary ora
le in order to eliminate all yellow nodes in the test suite.

In all 
ases, there was only one 
ontiguous magenta 
loud for ea
h program that

had any magenta nodes.
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Number of Summary Edges

Program Total External Internal Data

CTurk 15 5 9 1

GTurk 17 5 11 1

ZTurk 17 5 11 1

DRop 16 6 9 1

Rop 16 6 9 1

Serial 2 1 1 0

Mi
ro00 0 0 0 0

ICSE01 1 0 1 0

FSE03 1 1 0 0

Figure 5.10. Ora
le Information Provided

5.3.3 Assessment

The 
omplete elimination of yellow nodes from the 
ontrol 
ow graphs of the 
om-

mer
ial mi
ro
ontrollers was the primary goal in the deadline analysis experiments,

and this was a

omplished by the algorithms presented.

The high per
entage of green and blue nodes makes it possible to 
ompletely

bound interrupt laten
y for some of the interrupt sour
es in some of the ben
hmarks,

and greatly de
reases the remaining work to be done in bounding the others.

The low per
entage of magenta nodes in the graphs, 
ombined with the fa
t that

magenta nodes are 
onstrained to a single, 
ontiguous 
loud in all of the ben
hmarks,

paves the way for being able to automati
ally bound these most troublesome parts

of the graph in the future. The only 
ase where magenta levels rea
hed a double

digit per
entage was the FSE03 example program, whi
h was 
onstru
ted to have a

prominent magenta segment. In many 
ases, the magenta se
tion is small enough

that the total uninterrupted WCET of the magenta 
loud 
ould be less than the

minimum period of the interfering interrupt handler(s), whi
h would make it possible

to reason about these se
tions with a �rst-orderworst-
ase response time analysis [94℄

or by detailed simulation and testing.

The number of time summary ora
le assertions ne
essary to eliminate yellow nodes

from the ben
hmarks is small and manageable. Well over half of the assertions are of

the type that 
ould be automati
ally inferred by lo
al data 
ow analysis.
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5.4 User Experien
e

This se
tion details the 
omplete pro
ess of starting with a raw program, and

iterating with the deadline analysis to add time summary ora
le assertions until all

yellow nodes are eliminated.

This example will use one of the medium sized ben
hmarks, Rop.

The initial run of the tool takes 23 se
onds and outputs:

Border Yellow instru
tions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354

L0396: PUSH %FBh

L04E6: DJNZ r14, L04E0

Edges = 24503 Green Yellow Magenta Blue

Nodes = 18559 12522 6029 2 6

Per
ent = 67% 32% 1% 1%

The list of potential yellow nodes is long for the initial run, be
ause it is not trivial

for the tool to distinguish between key yellow loops that must be broken and loop

instru
tions that happen to be on the yellow border for other reasons.

Looking through some of the tool's suggested lo
ations in the 
ode, the user's

attention is immediately drawn to a potential loop to bound { the DJNZ instru
tion

at L04E6 is part of a double loop that deboun
es the input from a me
hani
al swit
h

atta
hed to the system. The design of the system spe
i�es that this me
hani
al


onta
t should not boun
e for more than 10mS when in good working order.

The double loop is a
tually two intertwined loops (whi
h would be diÆ
ult to im-

plement in most higher level languages), but 
an be bounded with a pair of assertions

to the time summary ora
le:

[0x04E0℄->[0x04E8℄=80000 ; Deboun
e. (10mS) [E℄

[0x04DC℄->[0x04E8℄=80000 ; Deboun
e. (10mS) [E℄
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The syntax on the left des
ribes the sour
e and destination nodes, and the length

of time to assert. To the right of the semi-
olon, a 
omment do
uments the reason

for the assertion, and the time translated into se
onds. (80,000 ma
hine 
y
les equals

10 millise
onds with an 8MHz 
lo
k.) The full grammar of the time summary ora
le

�le format 
an be found in Appendix E.

The user reruns the tool, with the new ora
le assertions. After 31 se
onds, the

tool responds:

Border Yellow instru
tions:

L0667: JR ULT, L0680

L0675: JR ULT, L0680

L00D2: JR EQ, L00E3

L066C: JR UGT, L067C

L067A: JR ULE, L0681

L0312: JR C, L0308

L062D: JR ULE, L061C

L0268: JR UGE, L02B7

L0080: JR EQ, L00F2

L02BA: JR UGE, L02C3

L034C: JR EQ, L0354

L0396: PUSH %FBh

L04DA: JR NZ, L04D6

Edges = 24513 Green Yellow Magenta Blue

Nodes = 18559 12528 6023 2 6

Per
ent = 67% 32% 1% 1%

Note that the node total has remained the same, but six nodes that were yellow are

now green. The DJNZ instru
tion at L04E6 is no longer listed as a border yellow node,

and a new border node is listed in its pla
e. The tool also outputs the number of red

nodes in the graph, if any, but none of these graphs 
ontained red nodes.

The loop at L04DA is a holding pattern that waits for the human operator to

release one of the push buttons. The user interfa
e segments of this mi
ro
ontroller

system are only exe
uted when the system is in a programming mode, so attention

to interrupt handlers is not important here. The user assumes that no one is pushing

the button, and the bran
h will never be taken.

The loop at L0312 waits on an external devi
e that the mi
ro
ontroller has syn-


hronous 
ommuni
ation with. The manufa
turer guarantees a maximum 40mS delay

before the devi
e responds.

The loop at L062D has a visible bound, but 
alls several levels of 
omplex subrou-

tines. This is the sort of loop that would be extremely tedious to estimate by hand
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with any a

ura
y, but whi
h 
ould probably be automati
ally bounded by a lo
al

data 
ow analysis around the loop and its subroutines. For now, the user puts in an

outrageous overestimate of 3 full se
onds; this area should be simulated in depth in

order to tighten the estimate later.

The jump instru
tion JR EQ, L0354 at L034C is part of a loop that writes ASCII

strings to a 
onne
ted LCD panel one byte at a time. The number of iterations

for the loop is dependent upon the length of the string passed into the subroutine,

but the system is designed to have a 16 
hara
ter LCD display, and none of the zero-

terminated ASCII string 
onstants in the program are longer than 17 
hara
ters. The

subroutine 
alled from within the loop is green from some other 
all sites, so with

some work, the user 
an 
onservatively bound the loop to be 17 
hara
ters times at

most 40mS, for a total of 680 mS.

The ora
le is provided with the next set of assertions. The bra
keted letters on

the far right of the 
omment are personal notes about the type of assertion. An \[E℄"

indi
ates \external delay loops," whi
h are impossible to stati
ally bound. An \[A℄"

indi
ates loops dependent on internal data, and the letter \[D℄" indi
ates a more

diÆ
ult 
lass of internal data-dependent loops.

[0x04D6℄->[0x04DC℄=30 ; No button press. [E℄

[0x061C℄->[0x062F℄=24000000 ; Punt. (3se
) [A℄

[0x0308℄->[0x0314℄=320000 ; Display. (40mS) [E℄

[0x033D℄->[0x0354℄=5440000 ; 17 
har (680mS) [D℄

This run takes 36 se
onds, and has redu
ed the number of suggested border nodes

to look at. The PUSH instru
tion 
ontinues to appear in the list only be
ause some

other yellow obsta
le is preventing the sli
er from identifying the 
orre
t segment to

whi
h additional sta
k 
ontext should be added.

Border Yellow instru
tions:

L0396: PUSH %FBh

L0608: DJNZ r12, L0601

L0650: JR ULE, L063F

L042A: JR Z, L041C

Edges = 25044 Green Yellow Magenta Blue

Nodes = 18992 16470 2431 2 89

Per
ent = 86% 12% 1% 1%

The loop at L042A is part of another software deboun
ing area. The user will

assume no button press.



61

The loop at L0650 is a twin to the loop at L062D above, so the user dupli
ates

the assertion edge with new sour
e and destination addresses.

The DJNZ instru
tion at L0608 is part of a nested loop that was designed to wait

20mS before sending more data to a peripheral 
hip.

More assertions are added, and the tool is rerun.

[0x0420℄->[0x0427℄=46 ; No button press. [E℄

[0x0420℄->[0x042C℄=66 ; No button press. [E℄

[0x063F℄->[0x0652℄=24000000 ; Punt. (3se
) [A℄

[0x0601℄->[0x060A℄=166086 ; EEPROM write (20mS) [A℄

[0x0603℄->[0x060A℄=166086 ; EEPROM write (20mS) [A℄

Border Yellow instru
tions:

L0396: PUSH %FBh

L05E5: DJNZ r13, L05D8

L05F6: DJNZ r13, L05EA

Edges = 25088 Green Yellow Magenta Blue

Nodes = 19020 17562 1367 2 89

Per
ent = 92% 7% 1% 1%

After 39 se
onds of analysis, the per
entage of green nodes has topped 90%, and

the remaining yellow nodes are in the single digit range. The user is in the home

stret
h now.

Both of the suggested DJNZ instru
tions belong to loops with obvious bounds.

While somewhat tedious, the user is able to total up the exe
ution time of the dozen

instru
tions in the bodies of the loops, and multiply them by the bounds.

[0x05EA℄->[0x05F8℄=144 ; RDLP1 (8*18
y
=18uS) [A℄

[0x05D8℄->[0x05E7℄=1200 ; SENDBF (8*150
 =150uS) [A℄

Border Yellow instru
tions:

L0396: PUSH %FBh

L0490: DJNZ r14, L048D

Edges = 28728 Green Yellow Magenta Blue

Nodes = 21837 21242 504 2 89

Per
ent = 97% 2% 1% 1%

After a 1 minute, 19 se
ond analysis, the program has 97% green nodes.
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The next border node belongs to a loop with obvious bounds 
alling a 40mS

subroutine. There are two very similar loops with slightly di�erent bounds on the

page above L0490. The user adds assertions for all three.

[0x048D℄->[0x0492℄=1601000 ; DSPBCK 5x (201mS) [A℄

[0x046C℄->[0x0471℄=1601000 ; DSPBCK 5x (201mS) [A℄

[0x0445℄->[0x044A℄=1280800 ; DSPBCK 4x (161mS) [A℄

The �nal run of the tool takes 1 minute, 26 se
onds, but produ
es zero yellow

nodes.
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Edges = 28731 Green Yellow Magenta Blue

Nodes = 21837 21746 0 2 89

Per
ent = 99% 0% 1% 1%

There is still mu
h testing to be done for this embedded system. The user has

presented 16 assertions to the ora
le, 10 of those based upon manual inspe
tion of

the 
ode, rather than external design 
riteria. Simulation and testing of the system

should aim to validate and/or tighten these un
he
ked assertions.

While the two magenta nodes in the system seem to be a small window of op-

portunity for interrupt starvation, they 
omprise an in�nite loop with a non-green

interrupt sour
e turned on. In other words, the system turns o� all other interrupts,

and waits for a parti
ular, di�erent interrupt to o

ur before returning to normal op-

eration. Thus, deadline analysis for this system and this parti
ular interrupt handler

depends ultimately upon knowing the upper bound on the time the system will have

to wait for this other interrupt sour
e to be triggered.

Overall understanding of the example system's timing behavior has in
reased as

a result of the deadline analysis. Testing and simulation 
an 
on
entrate on the lines

of 
ode for whi
h assertions have been provided, and on the magenta nodes, both of

whi
h 
omprise a tiny fra
tion of the total state spa
e for the 
ode. The prototype

implementation also produ
es 
ow graphs that depi
t the 
olors of 
ode regions, or


an dump the graph in a 
at �le format suitable for import into other visualization

tools. Additional implementation details are presented in Chapter 6.

5.5 Summary

The algorithms presented in this 
hapter perform deadline analysis on interrupt-

driven assembly 
ode. Stati
 analysis was able to redu
e the required testing e�ort

to 
on
entrate on the validity of 
ertain ora
le assertions about timing.

In 30% of the analyses of a parti
ular interrupt handler for a parti
ular ben
hmark,

the deadline analysis was able to �rmly bound maximum interrupt laten
y. In the

remaining 60% of the 
ases, the analysis redu
ed the size of the testing problem by

an average of 98%. While the testing of the ora
les and remaining magenta nodes is

still a large task, it is several orders of magnitude smaller than the testing problem

without the deadline analysis presented in this 
hapter.

The multi-resolution analysis allows for 
ompa
t and eÆ
ient representation of

timing properties while smoothly in
orporating the ora
les. For ea
h of the test

inputs, less than 17 ora
les are suÆ
ient, and these 
an be added in an intera
tive

fashion until the deadline analysis is 
omplete. In the experiments, it was observed

that an expert user 
an go from a bare program of about 1000 lines of assembly


ode to a 
ompleted deadline analysis in less than an hour. (This does not in
lude
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the subsequent exhaustive testing of the ora
les, whi
h would normally be done even

without any analysis by ZARBI.)

While the 
urrent in
arnation of the tool uses a Z86 front end, the abstra
tions

used in the graph analysis are appli
able to a wide range of other pro
essors whi
h use

bit-maskable, ve
tored interrupt handling, su
h as the Motorola 68000 family [60,61℄,

the Intel 8051 family [45℄, the National Semi
ondu
tor COPS8 family [64℄, as well as

several RISC DSP ar
hite
tures, and other spe
ial purpose 
hips.

This 
hapter presents one of the �rst algorithms to allow deadline analysis of

interrupt-driven assembly 
ode. The proof-of-
on
ept implementation demonstrates

its usefulness when run on 
ommer
ial-grade real-time software. ZARBI is also one

of the �rst tools to in
orporate stati
 analysis with testing ora
les in an intera
tive

fashion.

The next 
hapter presents �ne-grained details of the tools demonstrated above,

in
luding implementation issues, limitations, and features intended for future use.
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6 ZILOG ARCHITECTURE RESOURCE-BOUNDING INFRASTRUCTURE

The previous 
hapters have presented algorithms for sta
k size analysis and deadline

analysis at a high level of abstra
tion without fo
using on implementation details.

This 
hapter is the 
ompliment to that high level view, detailing the prototype tools

that implement the resour
e bounding analyses des
ribed earlier.

6.1 Data Stru
tures

The primary data stru
tures used in ZARBI are for storing and manipulating the


ontrol 
ow graph representation. Four main 
lasses are responsible for this fun
tion:

GraphNode, GraphEdge, GraphID and GraphNexus.

The GraphNode is the 
entral data stru
ture and represents a single node in the


ontrol 
ow graph. Ea
h GraphNode has a unique GraphID whi
h 
ontains the PC,

IMR, and sta
k 
ontext for the GraphNode. The GraphID 
lass exists to separate the

methods for storing, manipulating, and 
omparing this information from the methods

for graph building and traversals. GraphNodes have two arrays of GraphEdges: one

for in
oming edges and one for outgoing edges. The GraphNode 
lass implements the

GraphNodeInterfa
e and 
an be used in the same graphs with other sub
lasses of the

GraphNodeInterfa
e interfa
e.

The GraphEdge 
lass implements the GraphEdgeInterfa
e and represents a di-

re
ted edge in the graph. GraphEdge has a referen
e to a sour
e GraphNodeInterfa
e

and a destination GraphNodeInterfa
e.

The GraphNexus stru
ture is a joining point for all of the GraphNodes that have

the same PC value. There is one GraphNexus for ea
h line of 
ode in the original

Z86 program, plus several spe
ial nexi for other lines in the original assembler �le.

The GraphNexus serves as a bookkeeping entity, tra
king data and statisti
s that all

of its GraphNode 
hildren have in 
ommon. The most 
ommon sear
hes performed

on the graph during 
onstru
tion require �nding a referen
e to parti
ular GraphNode

given only a PC and an IMR value. In this way, the array of GraphNexus obje
ts is

the ba
kbone of the 
ontrol 
ow graph, providing an organizational stru
ture that is

re
e
ted in many of the ZARBI visualization and analysis tools.

While the GraphID 
lass is primarily 
on
erned with the PC, IMR, and sta
k

values of GraphNodes, it also 
ontains 
ow sour
e pointers, referen
es to the GraphID

belonging to the node whi
h pushed the 
urrent top element on the sta
k. This

extra pie
e of information allows optimized 
onstru
tion of sta
k summary edges,

(Se
tions 4.3.2 and 3.1), be
ause ea
h node already has a referen
e to the sour
e

node of the potential summary edge without exe
uting an expensive sear
h. The


ow sour
e pointer also allows 
omparisons of GraphID's to di�erentiate between
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identi
al top sta
k elements whi
h were assigned by di�erent sour
e nodes. This

te
hnique 
auses top sta
k elements from parti
ular sour
e nodes to be treated as

unique identi�ers, whi
h allows the sta
k size analysis to su

eed in bounding the

sta
k for 
ertain degenerate 
ases where spurious summary edges would otherwise be


onstru
ted.

An abstra
t GraphTraversal 
lass exists whi
h allows both forward and ba
kward

breadth-�rst traversals of the 
ontrol 
ow graphs. At least seven 
on
rete sub
lasses

of GraphTraversal exist, allowing many of the analysis passes in ZARBI to use a

uniform traversal me
hanism.

6.2 Sta
k Size Che
king Tools

The next four subse
tions des
ribe the implementation of four major parts of the

sta
k size analysis presented in Chapter 4. The simpli�er (Se
tion 6.2.1) is a Z86

assembly language parser, whi
h partially 
ompiles the input programs and performs

error 
he
king that need not be repeated in later phases of analysis. The simulator

(Se
tion 6.2.2), state ma
hine models (Se
tion 6.2.3), and geneti
 sear
h algorithm

(Se
tion 6.2.4) were all key 
omponents for �nding the realisti
 lower bounds on

maximum sta
k height presented in Chapter 4.

6.2.1 Simpli�er

In order to avoid dupli
ation of 
ode and work in many of the tools in the ZARBI

suite, Z86 programs are �rst passed through a simpli�
ation stage { essentially par-

tially 
ompiled { before being parsed in by later tools in the 
hain.

The simpli�er expands all symbol table referen
es to their �nal immediate values,

labels ea
h line of exe
utable 
ode, and performs a variety of error 
he
ks before

passing the program on to the simulator, sta
k analysis, or deadline analysis engines.

The 
ode for parsing raw Z86 assembly language �les and building abstra
t syntax

trees was largely automati
ally generated with the Java Tree Builder [91℄, another

tool built at Purdue. Transformation of the abstra
t syntax tree into the simpli�ed

tree is handled through extensive use of the \Visitor" design pattern [33℄ and the

Generi
 Java extension [13℄.

Error 
he
king undertaken by the simpli�er in
ludes: ensuring that all arithmeti



onstants are in range to be stored in the available register size, whether those 
on-

stants are expressed in binary, de
imal, o
tal, or hexade
imal notation; 
he
king that

all jumps and 
alls are to valid 
ode addresses; and identifying any unresolvable

symbol referen
es.

The simpli�er outputs the partially 
ompiled 
ode into a �le, whi
h must then

be parsed ba
k in by the stri
ter grammar of later tools in the 
hain. This keeps


ompilation 
on
erns like symbol table resolution 
ompletely separate from other
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analyses in ZARBI, and alleviates the need for redundant error 
he
king in other tool


omponents.

The output of the simpli�er 
onforms to the grammar found in Appendix B.

6.2.2 Simulator

The ZARBI toolset in
ludes a 
y
le-level simulator of the Z86E30 pro
essor, 
on-

stru
ted from Zilog's spe
i�
ations [100℄. Building a simulator based upon published

spe
i�
ations from the manufa
turer 
an be error-prone, as su
h do
uments 
an be

vague, in
omplete, or simply wrong [26℄. In the many 
ases where spe
i�
ations were

vague, the simulator was implemented with worst-
ase assumptions about the a
tual

hardware. Nevertheless, the ZARBI simulator has not been validated against real

Z86E30 
hips in any way, and this would be an absolutely ne
essary step for an in-

dustrial strength version of ZARBI. The 
urrent simulator was intended primarily as

an exploratory tool for evaluating the role of su
h a simulator in resour
e-bounding

analyses. This simulator also does not implement several features of the Z86E30

ar
hite
ture whi
h are not used by the ben
hmark suite.

The simulator is approximately 7400 lines of Java 
ode, not in
luding the �le


reated by the parser-generator tool. Both a graphi
al user interfa
e (pi
tured in

Figure 6.1,) and a 
ommand-line bat
h mode are available.

Upon graphi
al startup, the simulator reads in a simpli�ed Z86 program and

displays the ROM, register and 
ag windows. Single-step and break-point exe
ution

are available, with the various windows updating all register and 
ag values as the

program is stepped through.

The simulator interfa
e allows the user to alter values in any Z86 register and a
-


urately displays pro
essor state not otherwise available, even to the program running

on raw hardware. (For example, exa
t timer 
ount values.)

One of the key bene�ts of the ZARBI simulator is 
y
le-a

urate interrupt be-

havior. The 
ommer
ially-available Zilog in-
ir
uit emulator does not allow single-

stepping through interrupt handlers and does not maintain 
orre
t 
lo
k state when

single-stepping.

The absen
e of 
y
le-a

urate simulators and models for many modern pro
essors

is a major obsta
le to veri�
ation of real-time software in pra
ti
e.

When run in 
ommand-line mode, the simulator outputs maximum sta
k depth

for a given run, and may allow devi
e models to output status information to the


onsole.

6.2.3 State Ma
hine Models

All of the 
ommer
ial ben
hmarks examined in this dissertation were written

for Z86 
hips 
onne
ted to other peripheral devi
es like analog-to-digital 
onverters,

liquid 
rystal displays, universal asyn
hronous re
eiver/transmitters, and external
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Figure 6.1. S
reenshots from the ZARBI Simulator

memory devi
es. The exa
t fun
tions of these various devi
es are unrelated to the

Z86 
hip or its simulator, but the intera
tions they provide are ne
essary for the

software to exer
ise typi
al 
ontrol 
ow paths. For example, most of the ben
hmarks


ommuni
ate with an intelligent LCD display over a 4- or 8-bit data bus. If the

display does not a
knowledge ea
h 
ommand, the 
ontrol software does not pro
eed

to the main operating loop.

In order to address this problem, the ZARBI simulator in
ludes an interfa
e for

models of external 
hips to be plugged into the simulation.

The external devi
e interfa
e allows the simulator to reset external devi
e models,

simulating a power 
y
le, or to pass information about elapsed time in the simulation.

In the real system hardware, external devi
es are not 
onne
ted to the Z86's internal


lo
k, but the simulator needs to pass a time referen
e to the devi
e models.
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The external devi
e models are implemented as simple state ma
hines in Java


ode, whi
h was suÆ
ient for all of the external devi
es found in the ben
hmark

systems. They intera
t with the simulated Z86 through memory-mapped I/O, just

as in the a
tual systems.

This modular interfa
e allows many kinds of external devi
es to be simulated

and permits the types, versions, and lo
ations of external devi
es to be re
on�gured

appropriately for ea
h of the di�erent ben
hmark systems.

The external devi
e models, in turn, are separated from the 
on
erns of the Z86

model and 
an perform their own fun
tions. For example, the model of the external

LCD devi
e 
an 
al
ulate based on internal state what text would appear on the LCD

panel in the real system and pipe this to standard output during simulation.

A

ounting for external devi
es in embedded systems has proven to be an impor-

tant part of this proje
t, despite the fa
t that these fa
tors are overlooked in mu
h

of the resear
h in embedded systems resear
h.

6.2.4 Geneti
 Algorithm

Sear
hing for realizable paths that lead to a maximum sta
k height is intra
table

in the general 
ase (see Se
tion 3.2). Exhaustive sear
h for su
h a path is also im-

pra
ti
al given the 
ombinatorially explosive size of the state spa
e. Instead, heuristi


sear
hes must be relied upon to �nd realizable paths with large sta
k heights. Thus,

ZARBI employs what is known as a geneti
 or evolutionary sear
h algorithm [34℄ to

�nd tight lower bounds on the maximum sta
k height of the ben
hmarks. Geneti


algorithms are a 
omplex topi
 largely beyond the s
ope of this dissertation, but this

se
tion outlines the major parameters supplied to the sear
h heuristi
 for the sake of


ompleteness.

When performing a geneti
 algorithm sear
h for interrupt s
hedules that yield

large maximal sta
k heights, the ZARBI Simulator ba
kend is run without the graph-

i
al user interfa
e, in bat
h mode. A shell s
ript manages the simulator runs, and

performs the evolutionary adjustments to the population of interrupt s
hedules.

Brie
y, geneti
 algorithms use a �tness heuristi
 to sele
t good solutions out of

diverse population of possible solutions. The sear
h then merges and mutates the

qualities of good solutions in hopes of �nding better solutions.

For the experiments in Chapter 4, the geneti
 algorithm sear
hes were run for 25

generations, ea
h with a population of 25 interrupt s
hedules. The initial population

was 400 randomly generated interrupt s
hedules. The simulator was run for 120

se
onds of simulated time on ea
h interrupt s
hedule, and the maximal sta
k size

during the run was taken to be the �tness fun
tion for the interrupt s
hedule. (It

is the nature of the 
ommer
ial ben
hmarks that they have 1-se
ond long operating


y
les. Thus, dis
ounting a few se
onds of startup time, it was expe
ted that their

behavior would stabilize after ea
h se
ond, so 120 se
onds of run time per individual

would be quite suÆ
ient to observe maximal sta
k size under given 
onditions.)
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From ea
h generation to the next, the top three interrupt s
hedules were auto-

mati
ally passed on to the next generation. The remainder of the new population

was generated using two parents sele
ted from the old population using tournament

sele
tion. The parental pair of s
hedules was merged using standard 
rossover, and

subje
ted to probabilisti
 mutation.

The full details of interrupt s
hedules are explained in Appendix C; 
rossover

between two interrupt s
hedules was de�ned as three separate randommerges between

the three distin
t 
lasses of interrupt s
hedule lines.

Overall mutation rate for 
hildren was linearly de
reasing from 10% in the �rst

generation, down to 4% in the �nal generation. Ea
h of the three kinds of interrupt

s
hedule lines underwent spe
i�
 mutation, in order to preserve the sense of its �tness.

The one-shot interrupt lines had a 20% 
han
e of having the IRQ number randomly

permuted, and an 80% 
han
e of having the trigger address shifted +/- 3 instru
tions.

Periodi
 address-triggered interrupt lines had a 10% 
han
e of IRQ number mu-

tation, a 40% 
han
e of trigger address shifting +/- 3 instru
tions, and a 40% 
han
e

of period mutation by +/- 0.5% of maximum period.

Periodi
 time-triggered interrupt lines had a 10% 
han
e of IRQ number mutation,

a 40% 
han
e of trigger time shifting +/- 0.5%, and a 50% 
han
e of period mutation

by +/- 0.5% of maximum period.

The parameters to the geneti
 sear
h algorithm have not been 
losely examined

in these experiments, but were suÆ
iently suitable that the geneti
 sear
h for ea
h

ben
hmark yielded an interrupt s
hedule with as good or better maximal sta
k height

than manually sele
ted expert interrupt s
hedules.

6.3 Deadline Analysis Tools

The se
ond half of this 
hapter 
on
erns implementation details for the major tools

used in the deadline analysis phases of ZARBI. Se
tion 6.3.1 presents the implementa-

tion of graph 
oloring, while Se
tion 6.3.2 des
ribes the multiresolution analysis with

adaptive sli
ing. Se
tions 6.3.3, 6.3.4 and 6.3.5 outline the various graph visualization

and debugging me
hanisms built into ZARBI.

6.3.1 Coloring Algorithm

The ZARBI algorithm for graph 
oloring is presented in CTL notation in Fig-

ure 5.6. This se
tion details the a
tual implementation of the 
oloring de
ision in

pseudo
ode and explains the 
oloring traversal.

As the �rst step, all nodes in the graph are 
olored red, whether they are rea
hable

or not. This has the natural side e�e
t that nodes whi
h 
annot be rea
hed via

ba
kward traversal from the interrupt handler will ne
essarily be red. As a result,

there are no rules for de
iding to 
olor a node red, be
ause red nodes will not be

passed through the de
ision 
ode.
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All nodes 
orresponding to the �rst instru
tion in the interrupt handler of interest

are 
olle
ted into a worklist and 
olored ultragreen.

A ba
kward 
oloring traversal 
ontinues for as long as the worklist of nodes is

empty. Nodes are taken o� of the worklist one at a time and are 
onsidered for


oloring. The 
oloring de
ision rules are given in Figure 6.2. After the node is given

an initial 
oloring, all of its in
oming edges are visited. If the sour
e node on an

in
oming edge is not marked, the sour
e node is put on the end of the worklist. After

all of the in
oming edges have been visited, the 
urrent node is marked. (If the

node remains marked, this initial 
oloring will be
ome its �nal 
olor. Nodes are only

unmarked if one of their outgoing edges 
hanges 
olor.) The algorithm then iterates

to the next node in the worklist.

When an edge is visited, it is given the initial 
oloring of its destination node. If

this is a re
oloring of the edge, the sour
e node of the edge is expli
itly unmarked so

that it 
an be re-examined when it is put ba
k on the worklist.

1. n in �rst node of greenIRQ handler ) n 2 UltraGreen

2. (9e 2 
(n)):(e 2 UltraGreen) ) n 2 Green

3. (8e 2 
(n)):(e 2 Green) ) n 2 Green

4. (9e 2 
(n)):(T imesum(e) ^ (e 2 Green)) ) n 2 Green

5. (9e 2 
(n)):(T imesum(e) ^ (e 2 Blue)) ) n 2 Blue

6. ((8e 2 
(n)):(:Push3(e)_

(Push3(e) ^ (e =2 Red) ^ (e =2 UltraGreen))))^

(9e 2 
(n)):(e 2 Y ellow) _ (e 2Magenta) ) n 2Magenta

7. (8e 2 
(n):(((e 2 Green) _ (e 2Magenta)_

(e 2 Blue)) ^ (:Push3(e))) ) n 2 Blue

8. Else ) n 2 Y ellow

where 
(n) is the set of node n's outgoing edges, and the predi
ates Push3(n) and

T imesum(n) are true for interrupt and time summary edges, respe
tively.

Figure 6.2. ZARBI Graph Coloring De
ision Rules

The 
oloring algorithm terminates when all node 
olors stabilize. Termination is

guaranteed to take pla
e be
ause of the pre
eden
e of the 
oloring rules. Nodes that

are 
olored green are done { will not be re
olored to some other 
olor { as it 
an be

shown indu
tively that all downstream edges and nodes are also done in order for a

node to be 
olored green. Modulo green, magenta nodes are also done { that is, on
e

a node is magenta, it will either stay magenta or eventually be
ome green. Similarly,

blue nodes are done modulo green, whi
h leaves only yellow and red. There is no

rule for judging a node to be re
olored red, so the 
oloring algorithm will eventually


onverge and terminate.
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6.3.2 Adaptive Sli
ing

repeat

BorderY ellowSet( getBorderY ellow()

for all borderY ellow su
h that borderY ellow 2 BorderY ellowSet do

if borderY ellow is a pop node then

if 9edge 2 
(borderY ellow) su
h that destination(edge) 2 Y ellow then

if destination(e) not in non-green handler then

for all node 2 destination(
(borderY ellow)))) do

maxOutgoingK ( max(
ontextAt(node); maxOutgoingK)

end for

if maxOutgoingK + 1 > 
ontextAt(borderY ellow) then

deletionList ( all nodes ba
kward rea
hable from borderY ellow

without traversing push edges

rebuildList( all nodes one push edge ba
k from deletionList

delete the deletionList

buildContext( maxOutgoingK + 1

rebuild graph segment with workList( rebuildList

end if

end if

end if

end if

end for

until No 
hanges have been made in G

Figure 6.3. Adaptive Sli
ing Algorithm

The ZARBI deadline analysis in
ludes adaptive sli
ing, an automated te
hnique

for in
reasing the resolution of the analysis in areas of the graph where abstra
tion


auses ambiguity. An example is presented in Se
tion 5.2.4; the details of the imple-

mentation are presented here, with pseudo
ode shown in Figure 6.3.

In the overall s
heme of deadline analysis, multiresolution analysis takes pla
e

after the initial 
oloring of the graph with respe
t to a given handler. The �rst pass

s
ans ba
kward from the ultragreen handler to 
olle
t a list of all yellow nodes whi
h

are one edge away from green or ultragreen nodes. These nodes are the border yellow

nodes and are the primary 
andidates for both adaptive sli
ing and time summary

ora
le assertions.
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Not all border yellow nodes 
an be re
olored green through adaptive sli
ing or time

summary ora
les { some 
ould be yellow be
ause of loops and path mergings elsewhere

in the graph. These are upstream yellow nodes, be
ause their yellow 
lassi�
ation

depends entirely upon stru
tures elsewhere in the graph. However, regardless of

what per
entage of the border yellow nodes is upstream yellow, it is still the 
ase that

some number of border yellow nodes 
an be re
olored green with the help of sli
ing

or ora
les.

The multiresolution analysis next iterates through the list of border yellow nodes

and dis
ards any nodes whi
h are not pop nodes. Pop nodes 
orrespond to one of

three op
odes in the Z86 assembly language { POP, RET, and IRET. Only the border

yellow pop nodes are of interest for adaptive sli
ing, be
ause they are the merge points

in a ba
kward traversal where sta
k 
ontext is lost. In other words, if a green node

in the program has an in
oming pop edge from a yellow POP instru
tion, it is the

impli
it merging of the node for the POP instru
tion with another node in a di�erent

sta
k 
ontext whi
h 
auses an arti�
ial yellow 
y
le to appear in the graph.

While �ltering non-pop nodes out of the list, the analysis also 
he
ks ea
h border

yellow pop node 
andidate to see that it has at least one outgoing yellow edge that

does not lead to a non-green interrupt handler. Pop nodes that are yellow only be
ause

of outgoing edges that lead in one step to a non-green interrupt handler 
annot be

re
olored green with additional sta
k 
ontext; they will be 
olored magenta in a later

graph 
oloring pass.

Finally, for ea
h remaining 
andidate border yellow pop node, a maxOutgoingK

tally is made, giving the maximum sta
k 
ontext value of any node rea
hable in one

outgoing edge from the 
andidate. If a 
andidate node'smaxOutgoingK is larger than

the 
andidate's maximum sta
k 
ontext minus 1, the 
andidate is pla
ed on the �nal

adaptive sli
ing list. This 
ondition prevents adaptive sli
ing from taking pla
e on


andidates where the sta
k 
ontext is already at least one more than all of the outgoing

edge destinations. These nodes 
annot be su

essfully re
olored through sli
ing, as

they already have full pre
ision with regard to the sta
k information available at all

of their su

essor nodes. An important 
aveat is that these nodes may not be their

�nal 
olor just be
ause they were �ltered out in the 
urrent pass; they may still need

additional sta
k 
ontext to be 
olored green, but not before some outgoing destination

node is itself sli
ed into nodes with greater 
ontext.

In pra
ti
al terms, themaxOutgoingK test also provides an important 
omponent

to the stopping 
riteria for the multiresolution analysis. Without this test on 
andi-

date nodes, the analysis 
ould loop inde�nitely trying to add greater sta
k 
ontext to

a graph segment that is yellow for some other reason.

The multiresolution analysis iterates through the �nal list of nodes sele
ted for

adaptive sli
ing. For ea
h node in the list, two new lists are 
al
ulated: the deletion

list is the transitive 
losure of all nodes that 
an be rea
hed by ba
kward traversal of

non-push nodes; the rebuild list is the set of push nodes bordering the deletion list.

Push nodes 
an 
orrespond to PUSH or CALL instru
tions. In the 
ase where the
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deletion list in
ludes the �rst instru
tion of an interrupt handler, the push nodes 
an

be any instru
tion from whi
h that interrupt handler 
an be rea
hed in one edge.

The nodes on the deletion list are deleted. The nodes in the rebuild list are used

to seed the initial worklist when the graph builder is 
alled to re
onstru
t the deleted

graph segment. Before re
onstru
tion, however, the sta
k 
ontext 
eiling is set to one

item higher than whatever the highest sta
k 
ontext number was among all the nodes

in the delete list. After re
onstru
tion, the entire graph is re
olored.

The overall stopping 
riteria for the multiresolution analysis is expensive to 
al-


ulate. Adaptive sli
ing on any given run 
an push ba
k the green frontier to expose

new border yellow pop nodes that were not 
andidates in the previous s
an. Thus,

the entire pro
ess must be repeated { the entire loop in Figure 6.3 { until the list of

�nal sli
ing 
andidates is of zero size.

The adaptive sli
ing algorithm is not optimal in that a lot of work is dupli
ated

during the analysis. In pra
ti
e, large segments of graph 
an be built, deleted, rebuilt

with greater sta
k 
ontext, deleted again, and rebuilt with even more sta
k 
on-

text. A 
leaner algorithm 
ould instead update existing nodes with greater 
ontext,

rather than 
ompletely re
al
ulating 
ontrol 
ow ea
h time. However, this would add

substantial 
omplexity to the implementation, as the adaptive sli
er would need a

di�erent graph building engine, distin
t from the main graph builder.

The 
omplexity of the multiresolution analysis is surprisingly large, due both to

the 
omplexity of the stopping 
riteria, and the 
omplexity of 
ompletely re
oloring

the graph after ea
h sli
ing. Knowing when to stop looking for 
andidates for sli
ing

requires global knowledge of the graph, and thus 
annot be inexpensively implemented

in a system that fo
uses on per-node operations.

6.3.3 Colordot

One of the daunting pra
ti
al problems in deadline analysis of real interrupt-driven

programs is �nding ways to make sense of the enormous amount of data available.

When a user is in the pro
ess of running the tool to dis
over yellow loops that re-

quire ora
le assertions, even a small 
ommer
ial example 
an present thousands of

lines of 
ode, and potentially hundreds of thousands of nodes and edges to examine.

ZARBI provides several output modes whi
h organize the analysis data into di�erent

perspe
tives.

The 
olordot output tool takes advantage of the key observation that like-
olored

nodes tend to o

ur in 
ontiguous zones. A 
olordot dump of the analysis prints out

dots for ea
h 
ombination of PC and IMR that exists in the program; the 
olor of the

dot is an attempt to summarize the 
olors of the possibly many nodes in the graph

with mat
hing PC/IMR values.

The rationale behind providing this graphi
al representation is that with relatively

little pra
ti
e, users of ZARBI 
an qui
kly learn to identify trouble spots in the graph

that will require greater attention.
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imr = 00

L000C ||

L000F ||

L0012 ||

imr = 00 81

L0015 ||

L0017 ||

L0019 ||

L001B ||

L001E ||

L0020 ||

imr = 00 81 83

L0023 ||

L0026 ||

L0028 ||

L002A ||

imr = 00 81 83 01 03

L002B || ||

L002C ||

imr = 00 81 83 01 03

Figure 6.4. Colordot Output for FSE03

The 
olordot output for FSE03, (des
ribed in Figure 5.2,) with the green interrupt

de�ned as IRQ1, is shown in Figure 6.4.

The format of the output 
an be read as a two-dimensional table, with exe
utable


ode labels printed in as
ending order down the verti
al axis, and IMR values printed

at regular intervals along the horizontal axis in the order in whi
h they were en
oun-

tered.

Thus, the program in Figure 6.4 begins with the instru
tion at label \000C", with

an IMR value of \00". S
anning linearly down the exe
utable addresses, the �rst

non-zero IMR value of \81" appears at label \0015", and so on.

A new horizontal legend (starting with \imr = ...",) is printed ea
h time a new

IMR value is en
ountered, or every 25th line of output, if no 
hanges take pla
e.

A third important axis in the 
olordot output is not visible in Figure 6.4; as the

name implies, the dots in the display are 
olored. (Also, they are not dots. ASCII pipe


hara
ters proved to be more easily visible in long dumps, but the name \
olordot"
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imr = 00

L000C BB

L000F BB

L0012 BB

imr = 00 81

L0015 MM

L0017 MM

L0019 MM

L001B YY

L001E YY

L0020 GG

imr = 00 81 83

L0023 GG

L0026 BB

L0028 BB

L002A BB

imr = 00 81 83 01 03

L002B BB GG

L002C XX

imr = 00 81 83 01 03

B = Blue; M = Magenta; Y = Yellow; G = Green; X = Ultra Green

Figure 6.5. Colordot Output for FSE03 with Colors Abbreviated

was already entren
hed in the do
umentation.) Figure 6.5 re
asts the output of

Figure 6.4 with the bars repla
ed by 
olor des
riptions.

In a 
olor display, the 
olordot output 
an be qui
kly interpreted to see that label

1E is the transition point between well-behaved green nodes and the rest of the graph.

Furthermore, it 
an qui
kly be seen that the initialization se
tion prior to label 15

probably needs no additional attention.

In the example above, ea
h pair of dots is the same 
olor. That is, for any given

PC/IMR 
ombination, there are two identi
al dots. While this is true of all of the

toy examples shown in previous 
hapters. it is not generally true for many nodes in

the 
ommer
ial ben
hmarks.

In 
omplex graphs where a PC/IMR pair may 
ontain hundreds of nodes di�er-

entiated only by sta
k 
ontext, there may be several di�erent 
olors of nodes present.

In these 
ases, the 
olordot tool outputs two di�erent 
olored dots for the high and
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low 
olors of the many nodes at that lo
ation. Thus, a PC/IMR pair that has both

green and yellow nodes would have a green and a yellow dot in the asso
iated dump.

This information is espe
ially useful when s
anning the analysis dump looking for

subroutines whi
h are 
alled from 
ontexts of several di�erent 
olors.

The 
olordot output format is but one possible view of the formidable data avail-

able during the ZARBI deadline analysis. It has proven useful in pra
ti
e for qui
kly

identifying segments of the graph whi
h require additional time summary ora
le as-

sertions. However, the 
olordot output format has several weaknesses whi
h make it

ne
essary to rely on other auxiliary display formats during serious deadline analysis.

Colordot does not show 
ontrol 
ow edges, and is therefore diÆ
ult to interpret

in program areas where dominant 
ontrol 
ow is not in a straight line.

Colordot gives no indi
ation of how many nodes are 
olle
ted together under a

given PC/IMR pair, thereby disguising program \hot spots" whi
h often warrant

additional manual attention.

The high/low 
olor s
heme is not well de�ned, as there does not appear to be

any ordering of the node 
olors whi
h allows the high/low s
heme to provide the best

summary information in all desirable 
ontexts. In 
ases where nodes of more than

two 
olors must be represented, it is not obvious whi
h 
olor should be hidden. Slight

perturbations of the 
olordot high/low preferen
es 
an substantially alter the overall

appearan
es of the more 
omplex graphs.

The 
olordot tool has no provisions for displaying graphs with more IMR values

than 
an 
onveniently �t a
ross the viewable text terminal. In pra
ti
e, this has not

proven to be a signi�
ant limitation.

Despite these shortfalls, 
olordot has proven to be a qui
k and e�e
tive tool for

visualizing the deadline analysis data in the ZARBI prototype.

6.3.4 Graph Crawler

When more detailed visualization of the deadline analysis graph is required than


an be provided with the 
olordot tool, ZARBI provides a graph 
rawler.

The 
rawler is a 
ommand-line interfa
e that allows the user to navigate the

nodes and edges of the graph in 
omplete detail. The 
rawler state ma
hine moves

through the graph based upon 
ommands from a 
ommand-line interfa
e, as shown

in Figure 6.6

A typi
al 
rawler intera
tion on the FSE03 ben
hmark is shown in Figure 6.7.

The partial trans
ript in the �gure starts at the nexus for label \0023", and

displays the 
orresponding assembly language for referen
e. The user sele
ts \P" to

print the 
urrent nexus out, but there is only one node to display. Choosing the only

available node, the 
orresponding graph notation for the node is displayed. The users

requests \O" for outgoing edges, and the three outgoing edges from this node are

displayed. By sele
ting one of the edges, the 
rawler will move on to the destination

node of the 
hosen edge.
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Nexus
to new
Jump

 Nexus
Display

Display
  Edges

Jump
to new
Node

Choose
Node

Parent

Incoming

Outgoing

Choose
Edge

Display
Jump

Nexus
Menu

Menu
Node

Figure 6.6. Crawler State Ma
hine

The 
ommand-line interfa
e displays nodes and edges in full 
olor, 
orresponding

to their �nal status in the deadline analysis.

The primary disadvantage of the 
rawler is that it is diÆ
ult to visualize the

state of nodes that are nearby, but more than one edge away from the 
urrent node.

Also, the listing of nodes and edges 
an be many times longer than the available

text window in 
omplex graphs; these long listings appear to the untrained eye to be

largely identi
al, making navigation a slow, \
rawling" pro
ess.

Despite its drawba
ks, the 
rawler makes it possible to drill down into the heart

of 
omplex graphs while still being able to visualize the status of adja
ent nodes and

edges. Experimentally, the 
rawler has proven essential both during the debugging

stages of ZARBI development, and when trying to unravel 
omplex yellow 
ontrol


ow during deadline analysis.

6.3.5 Graph File Format

ZARBI has a 
at ASCII �le format into whi
h it 
an dump the �nal graph, as

given by the grammar in Figure 6.8. This format has proven amenable as input to

other prototype model 
he
king utilities and visualization tools.
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Current Nexus is L0023: JP TRUE, L0023

P Print 
urrent Nexus

J Jump to Nexus

? p

0 [0x0023,0x83,{}℄

? 0

? Current Node is [0x0023,0x83,{}℄

I Print 
urrent Node in
oming edges

N Go to parent Nexus

O Print 
urrent Node outgoing edges

? o

0 [0x0023,0x83,{}℄ -> [0x0023,0x83,{}℄ = (12,0x00,0x0000)

1 [0x0023,0x83,{}℄ -> [0x002B,0x03,{0x0023}℄ = (24,0x13,0x0023)

2 [0x0023,0x83,{}℄ -> [0x002C,0x03,{0x0023}℄ = (24,0x13,0x0023)

Figure 6.7. Crawler Interfa
e

Goal() ::= ( Edge() )* EOF

Edge() ::= Vertex() ! Vertex() = Value()

Vertex() ::= [ Word() , Byte() , f Word() ( , Word() )* g ( , Pair() )* ℄

k [ Word() , Byte() , f g ( , Pair() )* ℄

Value() ::= \(\ Byte() , Byte() , Word() ( , Byte() )* \)"

Pair() ::= Byte() : Byte()

Byte() ::= An 8-bit quantity.

Word() ::= A 16-bit quantity.

Figure 6.8. ZARBI Graph File Format

While not used in the 
urrent prototype, the format in
ludes provisions for arbi-

trary pairs of bytes to be appended to ea
h node. This is intended to support sli
ing

and unrolling of loops; 
urrent loop nodes would be dupli
ated and annotated with
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information of the form, \rx : y", where x would be the loop register, and y would

be the pre
ise values it 
ould be unrolled into.

The graph �le format output of FSE03, used as the running example throughout

Chapters 5 and 6, is shown in Figure 6.9.

6.4 Summary

The Zilog Ar
hite
ture Resour
e-Bounding Infrastru
ture is just that { a 
olle
tion

of tools and data stru
tures that provide general support for 
ontrol 
ow graph-based,

resour
e-bounding analyses of Zilog-based mi
ro
ontroller systems. The 
urrent pro-

totype is targeted to the Z86E30, but the ba
kend analysis tools operate on the CFG

abstra
tions presented in Chapter 3 and are less dependent on Z86 assembly syntax.

Components within ZARBI in
lude parsers, a partial 
ompiler, a graph building

engine, a simulator, general traversal tools, several kinds of data visualization tools,

not to mention the a
tual sta
k-size and deadline analysis engines.

Many of the 
omponents have been 
onstru
ted with modularity and future ex-

pansion in mind.
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[0x000C,0x00,{}℄ -> [0x0026,0x00,{0x000F}℄ = (20,0x12,0x000F)

[0x000C,0x00,{}℄ -> [0x000F,0x00,{}℄ = (00,0x40,0x0000)

[0x0026,0x00,{0x000F}℄ -> [0x002A,0x00,{0x000F}℄ = (00,0x40,0x0000)

[0x0026,0x00,{0x000F}℄ -> [0x0028,0x00,{?,0x000F}℄ = (10,0x11,0x0000)

[0x000F,0x00,{}℄ -> [0x0026,0x00,{0x0012}℄ = (20,0x12,0x0012)

[0x000F,0x00,{}℄ -> [0x0012,0x00,{}℄ = (00,0x40,0x0000)

[0x002A,0x00,{0x000F}℄ -> [0x000F,0x00,{}℄ = (14,0x22,0x000F)

[0x0028,0x00,{?,0x000F}℄ -> [0x002A,0x00,{0x000F}℄ = (10,0x21,0x??)

[0x0026,0x00,{0x0012}℄ -> [0x002A,0x00,{0x0012}℄ = (00,0x40,0x0000)

[0x0026,0x00,{0x0012}℄ -> [0x0028,0x00,{?,0x0012}℄ = (10,0x11,0x0000)

[0x0012,0x00,{}℄ -> [0x0015,0x81,{}℄ = (10,0x00,0x0000)

[0x002A,0x00,{0x0012}℄ -> [0x0012,0x00,{}℄ = (14,0x22,0x0012)

[0x0028,0x00,{?,0x0012}℄ -> [0x002A,0x00,{0x0012}℄ = (10,0x21,0x??)

[0x0015,0x81,{}℄ -> [0x0017,0x81,{}℄ = (10,0x00,0x0000)

[0x0015,0x81,{}℄ -> [0x002B,0x01,{0x0015}℄ = (24,0x13,0x0015)

[0x0017,0x81,{}℄ -> [0x0019,0x81,{}℄ = (10,0x00,0x0000)

[0x0017,0x81,{}℄ -> [0x0015,0x81,{}℄ = (12,0x00,0x0000)

[0x0017,0x81,{}℄ -> [0x002B,0x01,{0x0017}℄ = (24,0x13,0x0017)

[0x002B,0x01,{0x0015}℄ -> [0x0015,0x81,{}℄ = (16,0x23,0x0015)

[0x0019,0x81,{}℄ -> [0x001B,0x00,{}℄ = (06,0x00,0x0000)

[0x0019,0x81,{}℄ -> [0x002B,0x01,{0x0019}℄ = (24,0x13,0x0019)

[0x002B,0x01,{0x0017}℄ -> [0x0017,0x81,{}℄ = (16,0x23,0x0017)

[0x001B,0x00,{}℄ -> [0x001E,0x00,{}℄ = (10,0x00,0x0000)

[0x002B,0x01,{0x0019}℄ -> [0x0019,0x81,{}℄ = (16,0x23,0x0019)

[0x001E,0x00,{}℄ -> [0x0020,0x00,{}℄ = (10,0x00,0x0000)

[0x001E,0x00,{}℄ -> [0x001B,0x00,{}℄ = (12,0x00,0x0000)

[0x0020,0x00,{}℄ -> [0x0023,0x83,{}℄ = (10,0x00,0x0000)

[0x0023,0x83,{}℄ -> [0x0023,0x83,{}℄ = (12,0x00,0x0000)

[0x0023,0x83,{}℄ -> [0x002B,0x03,{0x0023}℄ = (24,0x13,0x0023)

[0x0023,0x83,{}℄ -> [0x002C,0x03,{0x0023}℄ = (24,0x13,0x0023)

[0x002B,0x03,{0x0023}℄ -> [0x0023,0x83,{}℄ = (16,0x23,0x0023)

[0x002C,0x03,{0x0023}℄ -> [0x0023,0x83,{}℄ = (16,0x23,0x0023)

Figure 6.9. ZARBI Graph File Format Dump of FSE03
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7 SUMMARY AND FUTURE WORK

7.1 Summary

Stati
 
he
king 
an provide safe and tight bounds on sta
k usage and exe
u-

tion times in interrupt-driven systems. This dissertation presents algorithms for re-

sour
e bound analyses; also presented is ZARBI, a prototype implementation whi
h

stati
ally 
omputes sta
k size and exe
ution time bounds for a ben
hmark suite of


ommer
ially-deployed, interrupt-driven systems. Advan
ed knowledge of resour
e

bounds enables real-time system designers to eliminate whole 
lasses of errors from

their software before testing begins, thereby redu
ing the testing e�ort ne
essary to

a
hieve 
on�den
e in their system.

Despite the ubiquity of hardware interrupts in real-time systems, little prior re-

sear
h has dealt with interrupt-driven software. The 
ommer
ial ben
hmark suite

examined here in
luded proprietary Z86-based mi
ro
ontrollers programmed in as-

sembly language, with multiple ve
tored interrupt sour
es, a shared system sta
k,

extensive use of unstru
tured loops, and no formal loop annotations.

The sta
k analysis presented by this dissertation bounds the maximum sta
k size

to within one byte of the true maximum in all but one of the 
ommer
ial ben
hmarks.

The deadline analysis found �rm worst-
ase laten
ies in 30% of the 
ases; in the

remaining 70% of the 
ases, the analysis redu
ed the size of the testing problem by

an average of 98%. While the testing e�ort still required for these systems is large,

it is several orders of magnitude smaller than the testing problem without deadline

analysis.

This dissertation presents novel algorithms for bounding sta
k height and maxi-

mum interrupt laten
y. This is the �rst su
h work on tra
table 
ontrol-
ow analysis

in the presen
e of ve
tored interrupt handling.

A se
ondary 
ontribution of this dissertation is a proof-of-
on
ept implementation

of the novel analyses. The implementation is one of the �rst tools to give an eÆ
ient

and useful stati
 analysis of assembly 
ode, and the �rst to analyze interrupt-driven

assembly 
ode. The prototype presented here is also among the �rst to in
orporate

stati
 analysis with testing ora
les in an intera
tive fashion.

The analysis algorithms also 
he
k for several 
lasses of semanti
 errors in the

Z86 program, in
luding using simple types to dete
t sta
k manipulation errors. In

addition, ZARBI 
ontains 
omponents for enhan
ed visualization and debugging of


ontrol-
ow graph \problem areas" during the intera
tive pro
ess of interrupt laten
y

analysis.

The 
urrent in
arnation of the tool uses a Z86 front end, but the abstra
tions used

in the graph analysis are appli
able to a wide range of other pro
essors whi
h use bit-
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maskable, ve
tored interrupt handling. Examples in
lude the Motorola 68000 family

[60, 61℄, the Intel 8051 family [45℄, the National Semi
ondu
tor COPS8 family [64℄,

as well as several families of spe
ial purpose 
hips.

7.2 Future Work

The su

ess of the analyses presented here paves the way for many areas of po-

tential future work. Other resear
hers have already begun to referen
e the paper [14℄

on ZARBI's sta
k analysis, and to build this te
hnology into their own analysis

tools [63, 82℄. Related papers have examined the 
omplexity of the sta
k analysis

�rst presented here [18℄, or have rephrased the model 
he
king approa
h as a type-


he
king problem [73℄.

The existen
e of an analysis infrastru
ture than 
an answer questions aboutWCET

in interrupt-driven software enables many new questions to be asked. Many pro
es-

sors used in real-time appli
ations have hardware wat
h-dog timers { a sort of software

dead-man's swit
h, whi
h resets the pro
essor state if a parti
ular op
ode is not exe-


uted within a given period. Wat
h-dog timers are deployed in most of the systems

in the ZARBI test suite, but little prior work has addressed the kind of errors that

this feature 
an 
ause. The te
hniques presented in this dissertation 
ould be applied

to the wat
hdog timer question; rather than 
al
ulating worst-
ase interrupt laten
y,

the analysis 
ould sear
h for 
ode segments that are more than x 
y
les away from a

WDT instru
tion, where x is the maximum wat
h-dog period.

Real-time software without interrupts has been analyzed in great depth, and re-

sour
e bounds 
an now be 
al
ulated for some systems where pipeline and 
a
he

e�e
ts 
ontribute signi�
antly to WCET analysis. With ZARBI as a baseline, it may

be possible to extend these te
hniques to a

ount for pipeline and 
a
he e�e
ts in

systems with ve
tored interrupt handling.

Combining the 
urrent analysis with meta-information about minimum interrupt

periods and interrupt priority 
ould result in an analysis that would be able to bound

resour
es in more 
omplex systems, or eliminate more magenta nodes in the 
urrent

systems. Automati
 dis
overy of internal and data-dependent loop bounds would

improve the tool's ease of use by inferring many of the assertions that are 
urrently

provided to the time summary ora
les.

Re
ursion is un
ommon in real-time systems, but not unheard of [25℄. Extensions

to the analysis algorithms to allow re
ursive fun
tions would also apply to iterative

loops with non-zero sta
k behavior, as found in \FAN005", the one member of the


ommer
ial ben
hmark suite whi
h has de�ed analysis thus far.

Any 
omplex analysis of real systems 
an produ
e 
opious amounts of data, as

is the 
ase with the deadline analysis presented here. While ZARBI in
ludes several

tools to assist the user in visualizing and 
omprehending this data, better visualization

te
hniques are possible. Work is in progress on a three-dimensional representation

of the deadline analysis CFG output, with the goal of making border yellow nodes

easier to identify and eliminate.
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The dream of building a \push-button" resour
e-bounding tool for real-time sys-

tem designers remains beyond the rea
h of resear
h this author is familiar with.

Real-time systems are inherently 
omplex, and the questions a designer would like to

ask of an analysis are often highly spe
i�
 to the given system. Even so, the prototype

implementation shown here demonstrates that a general purpose framework 
an be

built whi
h allows someone with expertise in real-time systems to use stati
 analysis

without having to be
ome an expert in stati
 analysis. The prototype presented in

this dissertation is not industrial strength, but the prin
iples it demonstrates may one

day in
uen
e real tools. Better tools for bounding resour
e usage in real-time systems

would bene�t system designers, and ultimately, 
onsumers of embedded, rea
tive, and

interrupt-driven systems.
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APPENDIX A MICRO00 EXAMPLE PROGRAM

Mu
h of the ben
hmark suite used throughout this dissertation is either proprietary


ode whi
h 
annot be published, or toy examples whi
h have been presented without

suÆ
ient detail to be a
tual Z86 programs.

For 
ompleteness, this appendix presents the \Mi
ro00" ben
hmark in its entirety.

While still a small toy problem, the 
ode is 
omplete { it 
an be 
ompiled to Z86 obje
t


ode, burned to a Z86E30 \one-time programmable" 
hip, and run on bare hardware.

A.1 Example System Overview

Dev2

Sensor

Output Device

Input Device Input Device

SensorSensor Dev0 Dev1

Z86

Figure A.1. Con
eptual Diagram for Mi
ro00 Example

The example system has three external devi
es and three sensors as illustrated in

Figure A.1. The example hardware is wired as shown in Figure A.2. For 
larity of

presentation, the text will not dwell on the details of the other three devi
es in the

system. All that matters is that Devi
e 0 and Devi
e 1 have some kind of data that

they regularly pass to the Controller. The Controller forwards this data, along with

some of its own, to Devi
e 2, whi
h 
ould be any kind of output devi
e.
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Bus

Z86

P3

P2

P0

Bus

Bus

Dev0

DS

CS

Dev1

CS

DS

Dev2
CS

DS

Figure A.2. Hardware Con�guration for Mi
ro00 Example System

The ele
tri
al proto
ol observed by these devi
es is simple. When a devi
e wishes

to relay data to the 
ontroller, it requests an interrupt with its Data Strobe line. The


ontroller indi
ates that it is ready by strobing the 
orresponding devi
e's Chip Sele
t

line. The Controller is the \Bus Master", and devi
es do not speak unless spoken to,

via the CS line.

If a
tually deployed, this type of 
on�guration 
ould be seen in a hierar
hi
al

arrangement of environmental 
ontrols, where ea
h separate 
ontroller relays its sensor

data to a logging entity.

Figure A.3 explains the 12-instru
tion subset of the Z86 assembly language used

for the Mi
ro00 example software.

Twenty of the Z86's 256 registers have spe
ial purposes, su
h as port I/O, timer


ontrol, or sta
k management. The relevant spe
ial register identi�ers for this example

program are listed in Figure A.4.

When an interrupt arrives, the 
ontroller 
lears bit 7 of the IMR register, (the

equivalent of a DI instru
tion), and jumps to the 
orre
t handler. An IRET instru
-

tion sets the bit again, (the equivalent of an EI instru
tion.)
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AND sr
, dst Binary AND the sr
 and dst, store result in dst.

CALL label Call pro
edure. Stores return address on sta
k,

and jumps to label.

DI Disable Interrupts.

DJNZ dst, label De
rement, Jump Not Zero. De
rements dst register,

and jumps to label if result is non-zero.

EI Enable Interrupts.

IRET Return from Interrupt Handler. Pops 
ondition 
odes and

return address o� of sta
k, 
ontinues exe
ution.

JR 

, label Jump Relative. If 
ondition 
ode 

 is true, jumps to label.

If omitted, 

 is assumed true.

LD dst, sr
 Loads register sr
 into dst.

POP dst Pops value o� of sta
k, into dst. (dst = reg[SP++℄)

PUSH sr
 Pushes sr
 register onto sta
k. (reg[{SP℄ = sr
)

RET Return from pro
edure. Pops return address o� of sta
k,

and 
ontinues.

TM dst, sr
 Test Mask. Binary AND's the sr
 and dst;

a�e
ts 
ondition 
odes, but does not store result.

Figure A.3. Z86 Instru
tions Used in Mi
ro00 Example System

Note that there are two return instru
tions, \RET" and \IRET". \RET" 
orre-

sponds to the \CALL" instru
tion; \CALL" and \RET" pro
edure 
alls do not guar-

antee preservation of any registers a
ross the 
all. The \IRET" instru
tion, however,

does not 
orrespond to an expli
it \CALL" instru
tion. The Z86 has true ve
tored

interrupt handling, whi
h means that 
ontrol 
an transfer to any interrupt handler

after any op
ode, given that the interrupts are enabled. Interrupt handlers preserve

the pro
essor 
ondition 
ode register on the sta
k, but otherwise do not guarantee

any other register to be preserved a
ross the 
all. This means that programmers must

work 
arefully to ensure that their interrupt handlers do not 
orrupt state information

during deli
ate 
omputations in the non-interrupt 
ode.

A.2 Example System Program

The overall stru
ture of the example program is illustrated by the partial 
all graph

in Figure A.5. The �gure does not show 
ontrol-
ow transfers due to interrupts.

Figures A.6, A.7 and A.8 show the Mi
ro00 example program. The program makes


ommuni
ation between the 
ontroller and the three devi
es possible. After a brief

initialization segment from lines 17 - 23, the program enters an in�nite loop, from

whi
h it o

asionally breaks in order to relay sensor data from Port 3 (line 27) to

Devi
e 2.
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IMR Interrupt Bits 0-5 individually enable ea
h of the

Mask 6 interrupt sour
es. Bit 7 enables ve
tored interrupt

Register pro
essing. Bit 7 normally enabled with the EI

instru
tion, and disabled with DI.

IRQ Interrupt When interrupt signals arrive, the 
orresponding bits

Request in the IRQ register are set. This allows interrupts

Register to be handled via polling, and makes visible pending,

disabled interrupts.

P0 Port 0 In the example, Port 0 
onne
ts to Chip Sele
t lines

on ea
h of the three external devi
es.

P2 Port 2 In the example, Port 2 is the 8-bit data bus 
onne
ting

the 
ontroller to all of the external devi
es.

P2M Port 2 Mode P2M allows ea
h of the lines on P2 to be 
on�gured

Control as input (data in to Z86), or output (data out of Z86.)

P3 Port 3 In the example, Port 3 is 
onne
ted to the Data Ready

strobes for the external devi
es. This means that

Devi
e 0 
an raise Interrupt Request 0, and

Devi
e 1 
an raise IRQ1.

RP Register Pointer Sele
ts register bank for lo
al addressing mode.

SPL Sta
k Pointer Stores Sta
k Pointer value to be used for internal sta
k.

Figure A.4. Z86 Spe
ial Registers Used in Mi
ro00 Example System

When the main loop 
alls SEND (line 28), SEND in turn 
alls DEVOUT (line

35), whi
h 
alls PULSE (line 40). In the PULSE pro
edure, interrupts are globally

disabled with the DI instru
tion (line 55) prior to initiating the Chip Sele
t pulse to

the output devi
e. This operation must not be interrupted, be
ause this 
ould result

in 
onfusing signals being sent to the output devi
e. After the pulse is 
omplete,

interrupts are re-enabled by DEVOUT (line 42), and the main loop 
ontinues on its

merry way.

In the ba
kground, ve
tored interrupt handlers IRQ0 and IRQ1 wait for data to


ome in from either of the other two devi
es. When it does, the appropriate handler

saves all of the important state registers on the sta
k, and 
alls the SEND pro
edure

to relay the data to Devi
e 2.

Note that IRQ1 defers to IRQ0 in lines 76 and 77, dropping the data from Devi
e

1 if Devi
e 0 already has data waiting.

A 
ursory analysis of the 
ontrol 
ow of the 
ode shows that when the EI at line

42 is rea
hed, any one of the four possible 
ombinations of IRQ0 and IRQ1 
ould be

enabled. Even in this small example, it is not immediately 
lear whether or not the


orre
t 
ombination is always present. The SEND pro
edure 
an be 
alled from the

main loop, or from IRQVC0 or from IRQVC1; further, under 
ertain 
ir
umstan
es,

it 
an be 
alled from IRQVC0 from within IRQVC1, or from IRQVC1, from within
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Init

Start

CommonSend

DevOut DevIn

Pulse

IRQVC0

IRQVC1

Figure A.5. Partial Call graph for the Mi
ro00 Example Program

IRQVC0. To make things worse, the double interrupt 
ase 
an take pla
e when the

main program is already several CALL levels down into the SEND sequen
e.

As though stati
 analysis of this example 
ode were not diÆ
ult enough to begin

with, testing the maximal sta
k size by simulating interrupts is not straight forward

either. Interrupt handlers 
an have subtle additive and subtra
tive intera
tions. As

shown by IRQ1 deferring to IRQ0 at line 77, simulating all interrupts �ring as often

as possible does not ne
essarily yield the maximum sta
k size. In pra
ti
e, interrupts

often represent error 
onditions of some kind, and their handlers 
an a
t to slow down

normal 
omputation or adjust the sta
k size arbitrarily.

In short, reliable, pre
ise analysis of the maximal possible sta
k size, even in

relatively small programs, makes for a 
hallenging problem.

A.3 ZARBI results

The ZARBI sta
k height analysis returns the results shown in Figure A.9 for the

Mi
ro00 ben
hmark.
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01 ; Constant Pool (Symbol Table).

02 ; Bit Flags for IMR and IRQ registers.

03 IRQ0 .EQU #00000001b

04 IRQ1 .EQU #00000010b

05 ; Bit Flags for external devi
es on Port 0 and Port 3.

06 DEV0 .EQU #00000100b

07 DEV1 .EQU #00001000b

08 DEV2 .EQU #00010000b

09

10 ; Interrupt Ve
tors.

11 .ORG %00h

12 .WORD #IRQVC0 ; Devi
e 0

13 .WORD #IRQVC1 ; Devi
e 1

14

15 ; Main Program Code.

16 .ORG 0Ch

17 INIT: ; Initialization se
tion.

18 LD SPL, #0F0h ; Initialize Sta
k Pointer.

19 LD RP, #10h ; Work in register bank 1.

20 LD P2M, #00h ; Set Port 2 to all outputs.

21 LD IRQ, #00h ; Clear any interrupt requests.

22 LD IMR, #(IRQ0 ^| IRQ1)

23 EI ; Enable Interrupts 0 and 1.

24 START: ; Start of main program loop.

25 DJNZ r2, START

26 PUSH r1 ; If our 
ounter expires,

27 LD r1, P3 ; send this sensor's reading

28 CALL SEND ; to the output devi
e.

29 POP r1

30 JR START

31

Figure A.6. Mi
ro00 Example Program
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32 SEND: ; Send Data to Devi
e 2.

33 PUSH r0 ; Save r0 on Sta
k.

34 LD r0, #DEV2 ; Sele
t 
ontrol line for Dev 2.

35 CALL DEVOUT ; Send out to Devi
e.

36 POP r0 ; Restore r0 to value before

37 RET ; SEND was 
alled.

38 DEVOUT: ; Send data out to a Devi
e.

39 LD P2, r1 ; Output data.

40 CALL PULSE ; Pulse devi
e 
ontrol line to

41 ; inform devi
e data awaits.

42 EI ; Rea
tivate interrupts,

43 RET ; if disabled.

44 DEVIN: ; Re
eive data from a Devi
e.

45 DI ; Disable interrupts.

46 LD P2M, #0FFh ; Set Port 2 lines to all inputs.

47 CALL PULSE ; Pulse 
ontrol line to inform

48 ; devi
e 
ontroller awaits data.

49 LD r1, P2 ; Input data.

50 LD P2M, #00h ; Set Port 2 lines to all outputs.

51 EI ; Rea
tivate interrupts.

52 RET

53 PULSE: ; Pulse 
ontrol line of a devi
e.

54 PUSH IMR ; Remember interrupt mask.

55 DI ; Musn't interrupt during pulse.

56 LD P0, r0 ; Control line determined by r0.

57 LD P0, #00h

58 POP IMR ; Rea
tivate interrupts.

59 RET

60

Figure A.7. Mi
ro00 Example Program (
ontinued)
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61 IRQVC0: ; Interrupt for Devi
e 0.

62 PUSH IMR

63 AND IMR,#^C IRQ0 ; Ensure interrupt is not re-fired.

64 PUSH r0 ; Save registers from squashing.

65 LD r0, #DEV0

66 COMMON: PUSH r1

67 LD r2, #00h ; Reset 
ounter in main loop.

68 CALL DEVIN

69 CALL SEND

70 POP r1 ; Restore all the saved registers,

71 POP r0 ; in
luding the IMR,

72 POP IMR ; to their pre-interrupt values.

73 IRQDN: IRET ; Interrupt Handler is done.

74

75 IRQVC1: ; Interrupt for Devi
e 1.

76 TM IRQ, #IRQ0 ; If Interrupt 0 already pending,

77 JR NZ, IRQDN ; Can
el this handler.

78 PUSH IMR

79 AND IMR,#^C IRQ1 ; Ensure interrupt is not re-fired.

80 PUSH r0 ; Save registers from squashing.

81 LD r0, #DEV1

82 JR COMMON

83 .END

Figure A.8. Mi
ro00 Example Program (
ontinued)
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Max Sta
k Height = 37 at [0x004A,0x80,{0x80}℄

(Guessing path)

[0x004A,0x80,{0x80}℄

[0x0048,0x80,{0x0038}℄

[0x0035,0x80,{0x0030}℄

[0x002D,0x80,{?}℄

[0x0029,0x80,{0x0066}℄

[0x0063,0x80,{?}℄

[0x005C,0x00,{?}℄

[0x0077,0x00,{0x02}℄

[0x0072,0x02,{0x0047}℄

[0x0047,0x82,{0x0063}℄

[0x0060,0x02,{?}℄

[0x005C,0x02,{?}℄

[0x0058,0x02,{0x03}℄

[0x0053,0x03,{0x001C}℄

[0x001C,0x83,{}℄

Coloring graph, IRQ=0: [ OK ℄

Edges = 619 Green Yellow Magenta Blue Red

Nodes = 339 191 0 17 131 0

Per
ent = 56% 0% 5% 38% 0%

Figure A.9. Mi
ro00 Example Program Sta
k Height Results
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APPENDIX B SIMPLIFIED Z86 GRAMMAR

The ZARBI Simpli�er takes as input the Z86 Assembly Language des
ribed in [100℄

and emits syntax 
ompliant with the grammar below. The many other ZARBI tools

parse in this stri
ter grammar, thereby avoiding dupli
ated work like symbol table

resolution.

Goal() ::= Line() Goal()

Goal() ::= Code() EOF

Code() ::= LabelDef() Line() Code()

k .END

Line() ::= Dire
tive()

k Instru
tion()

LabelDef() ::= Label() :

Instru
tion() ::= CLR()

k LD()

k LDL()

k LDC()

k POP()

k PUSH()

k ADC()

k ADD()

k CP()

k DA()

k DEC()

k DECW()
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k INC()

k INCW()

k SBC()

k SUB()

k AND()

k COM()

k OR()

k XOR()

k CALL()

k DJNZ()

k IRET()

k JP()

k JR()

k RET()

k TCM()

k TM()

k LDCI()

k RL()

k RLC()

k RR()

k RRC()

k SRA()

k SWAP()

k CCF()

k DI()

k EI()

k HALT()

k NOP()

k RCF()

k SCF()

k SRP()
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k STOP()

k WDH()

k WDT()

IRET() ::= IRET

RET() ::= RET

CCF() ::= CCF

DI() ::= DI

EI() ::= EI

HALT() ::= HALT

NOP() ::= NOP

RCF() ::= RCF

SCF() ::= SCF

STOP() ::= STOP

WDH() ::= WDH

WDT() ::= WDT

INC() ::= INC G IA Operand()

INCW() ::= INCW rr De
 Reg Pair()

CALL() ::= CALL Label()

k CALL � rr De
 Reg Pair()

k CALL � CharSymbol()

CLR() ::= CLR G IA Operand()

COM() ::= COM G IA Operand()

DA() ::= DA G IA Operand()

DEC() ::= DEC G IA Operand()

DECW() ::= DECW rr De
 Reg Pair()

POP() ::= POP G IA Operand()

PUSH() ::= PUSH G IA Operand()

RL() ::= RL G IA Operand()

RLC() ::= RLC G IA Operand()
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RR() ::= RR G IA Operand()

RRC() ::= RRC G IA Operand()

SRA() ::= SRA G IA Operand()

SWAP() ::= SWAP G IA Operand()

SRP() ::= SRP # CharSymbol()

JP() ::= JP Condition() , Label()

k JP Condition() , rr De
 Reg Pair()

k JP Condition() , CharSymbol()

JR() ::= JR Condition() , Label()

DJNZ() ::= DJNZ r De
 Reg() , Label()

AND() ::= AND AND Operand()

OR() ::= OR AND Operand()

XOR() ::= XOR AND Operand()

ADD() ::= ADD AND Operand()

SUB() ::= SUB AND Operand()

ADC() ::= ADC AND Operand()

SBC() ::= SBC AND Operand()

CP() ::= CP AND Operand()

TCM() ::= TCM AND Operand()

TM() ::= TM AND Operand()

LD() ::= LD AND Operand()

k LD � r De
 Reg() , r De
 Reg()

k LD � CharSymbol() , r De
 Reg()

k LD � r De
 Reg() , CharSymbol()

k LD � CharSymbol() , CharSymbol()

LDL() ::= LDL rr De
 Reg Pair() , Label()

k LDL CharSymbol() , Label()

LDC() ::= LDC r De
 Reg() , � rr De
 Reg Pair()

k LDC r De
 Reg() , � CharSymbol()
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LDCI() ::= LDCI � r De
 Reg() , � rr De
 Reg Pair()

k LDCI � r De
 Reg() , � CharSymbol()

k LDCI � CharSymbol() , � rr De
 Reg Pair()

k LDCI � CharSymbol() , � CharSymbol()

G IA Operand() ::= r De
 Reg()

k CharSymbol()

k � r De
 Reg()

k � CharSymbol()

AND Operand() ::= � r De
 Reg() , # CharSymbol()

k � CharSymbol() , # CharSymbol()

k r De
 Reg() , � r De
 Reg()

k r De
 Reg() , � CharSymbol()

k CharSymbol() , � r De
 Reg()

k CharSymbol() , � CharSymbol()

k r De
 Reg() , # CharSymbol()

k CharSymbol() , # CharSymbol()

k r De
 Reg() , r De
 Reg()

k r De
 Reg() , CharSymbol()

k CharSymbol() , r De
 Reg()

k CharSymbol() , CharSymbol()

Condition() ::= F

k C

k NC

k Z

k NZ

k PL

k MI

k OV

k NOV
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k EQ

k NE

k GE

k GT

k LE

k LT

k UGE

k ULE

k ULT

k UGT

k TRUE

Dire
tive() ::= . WORD # Label()

k . ASCII # CharSymbol()

CharSymbol() ::= % Hex h()

k % Bin b()

k % De
 d()

Label() ::= An identi�er.

De
 Reg() ::= A register in de
imal notation.

De
 Reg Pair() ::= A register pair in de
imal notation.

Bin b() ::= An integer in binary notation.

De
 d() ::= An integer in de
imal notation.

Hex h() ::= An integer in hexade
imal notation.
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APPENDIX C INTERRUPT SCHEDULE FILE FORMAT

The ZARBI Simulator a

epts as input three kinds of interrupt sequen
es that 
an

be spe
i�ed in an interrupt s
hedule �le. This appendix gives an example of the

interrupt s
hedule �les used for the geneti
 algorithm sear
h used to �nd lower bounds

on maximum sta
k heights.

The �rst kind of interrupt sequen
e that 
an be spe
i�ed indi
ates that a parti
ular

interrupt will �re just before a 
ertain address in the program is exe
uted. The

interrupt will �re ea
h time this address is about to be exe
uted.

The other two kinds if interrupt sequen
es are periodi
. They will start �ring

a spe
i�ed time after the start of the program or just before a 
ertain address is

exe
uted. Besides an initial �ring point, these interrupt sequen
es spe
ify a period in


lo
k 
y
les.

An interrupt s
hedule �le 
ontains an arbitrary number of single-shot interrupt

sequen
es and periodi
 interrupt sequen
es, as illustrated by Figure C.1.

Single-shot interrupt sequen
es are in the �rst blo
k of Figure C.1. IRQ means

interrupt and ADDR means address. All addresses are in hexade
imal. The �rst line

says interrupt number 5 will be �red ea
h time the simulator is about to exe
ute the

instru
tion at address 00E4.

The se
ond blo
k in Figure C.1 
ontains the periodi
 interrupt sequen
es that are

started just before a spe
i�ed address is exe
uted. The number after EACH spe
i�es

the number of 
y
les before the interrupt should be �red again. The �rst of these

interrupt sequen
es spe
i�es that interrupt 5 will �re just before address 04BC is

exe
uted the �rst time, and then subsequently every 35,721 
lo
k 
y
les after that.

The third blo
k in Figure C.1 
ontains the periodi
 interrupt sequen
es that are

started a �xed number of 
y
les after the 
ontroller begins program exe
ution. The

�rst of these interrupt sequen
es says that interrupt 1 will �re after the �rst 703,529


y
les of exe
ution, and will subsequently �re again every 700,748 
y
les.
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IRQ 5 � ADDR 00E4

IRQ 5 � ADDR 05D6

IRQ 1 � ADDR 0298

IRQ 4 � ADDR 03D5

IRQ 4 � ADDR 0710

IRQ 5 � ADDR 04BC EACH 35721

IRQ 4 � ADDR 00D5 EACH 511911

IRQ 1 � ADDR 0620 EACH 617499

IRQ 0 � ADDR 0B2A EACH 254317

IRQ 4 � ADDR 0A1D EACH 366248

IRQ 1 � TIME 703529 EACH 700748

IRQ 1 � TIME 418949 EACH 754244

IRQ 2 � TIME 701474 EACH 978065

IRQ 4 � TIME 424882 EACH 601242

IRQ 2 � TIME 193234 EACH 317528

Figure C.1. Example Interrupt S
hedule
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APPENDIX D FLOW ORACLE GRAMMAR

The ZARBI graph builder uses a \
ow ora
le" to answer questions about the very

small number of indire
t jumps 
ontained in the 
ommer
ial ben
hmarks. The gram-

mar a

epted by the ZARBI Flow Ora
le is shown in Figure D.1.

Goal() ::= Line() Goal()

k EOF

Line() ::= Reg() � Label() : Info()

Info() ::= Item() , Info()

k Item()

Item() ::= Range()

k Loop()

k Atom()

Atom() ::= Label()

k Hex()

Loop() ::= Hex() TO Hex()

k Hex() DOWNTO Hex()

Range() ::= Hex() .. Hex()

Label() ::= The syntax of a Z86 program label

Hex() ::= 8-bit, unsigned integers in hexade
imal

Reg() ::= Z86 assembly syntax for a register

Figure D.1. Flow Ora
le Input Grammar

In pra
ti
e, the 
urrent version of the 
ow ora
le is used only to provide lists

of possible target addresses for indire
t jump instru
tions. Only one of the seven


ommer
ial ben
hmarks, \Fan005", used indire
t jumps at all. In Fan005, the register

with the jump target was loaded only with immediate 
onstants, and no pointer

arithmeti
 was performed on its values. Cal
ulating all possible indire
t jump targets

for a Z86 program is an infeasible data 
ow analysis problem in the general 
ase, but

be
omes feasible when the expressive power of the language is suÆ
iently 
onstrained.

Be
ause data 
ow analysis is tangential to the primary thrust of this dissertation,

the 
urrent version of ZARBI takes a short
ut around the problem, and allows \man-

ual" data 
ow analysis to be spe
i�ed through the 
ow ora
le. Figure D.2 shows the

only 
ow information used in the experiments presented in this dissertation.
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%AEh � L0AC8: {L0ACB, L0ADD, L0AF6, L0B08, L0B67, L0B7E, L0B88}

Figure D.2. Flow Ora
le Input Example

The 
ow information provided by Figure D.2 states that register pair \%AEh"

will 
ontain one of the seven address labels to the right of the 
olon at program point

\L0AC8". This 
ow information is provided to the graph builder for the Fan005

ben
hmark, whi
h allows the proper edges to be 
onstru
ted when the analysis rea
hes

the indire
t 
all instru
tion at address 0x0AC8 in the program.

Information provided by the 
ow ora
le must be safe in order for the entire deadline

and sta
k-size analyses to be safe. Automating 
onservative data 
ow analysis of this

kind is beyond the s
ope of this dissertation.

The 
ow ora
le's syntax was designed to allow 
ow information for loop variables

to be passed to the graph builder for automated loop unrolling, but this has not been

implemented in the 
urrent version of ZARBI. Automated unrolling of internally-

bounded loops 
ould eliminate up to two thirds of the time ora
le assertions provided

for deadline analysis, as se
tion 5.2.3 des
ribed.

The syntax provided by the 
ow ora
le would allow 
ow information of the form

shown in Figure D.3, whi
h states that the loop variable in register 12 at instru
tion

345 goes from 5 down to 1.

%12h � L0345: 05 DOWNTO 01

Figure D.3. Flow Ora
le Loop Bound Syntax

The 
ow ora
le interfa
e has allowed manual data 
ow analysis to be used in the

prototype system, but would permit automated analyses to intera
t with the graph

builder in the same fashion.
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APPENDIX E TIME ORACLE GRAMMAR

The ZARBI graph builder uses a \time ora
le" to answer questions about maximum

laten
y while building the deadline analysis graph. The grammar a

epted by the

ZARBI Time Ora
le is shown in Figure E.1.

Con
rete examples of input to the time ora
le are provided throughout se
tion 5.4.

Goal() ::= Line() Goal()

k EOF

Line() ::= GraphNode() ! GraphNode() = Int()

GraphNode() ::= [ Label(), Mask(), Sta
kList() ℄

Mask() ::= Var()

k Hex()

Sta
kList() ::= Var()

k f Label() g

k f Hex() g

Label() ::= 16-bit, unsigned integers in hexade
imal

Hex() ::= 8-bit, unsigned integers in hexade
imal

Var() ::= alphabeti
 variable name

Figure E.1. Time Ora
le Input Grammar
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