STATIC CHECKING OF INTERRUPT-DRIVEN SOFTWARE

A Thesis
Submitted to the Faculty
of
Purdue University
by

Dennis W. Brylow

In Partial Fulfillment of the
Requirements for the Degree
of

Doctor of Philosophy

August 2003

To my parents:
my stepfather, who taught me patience;
my stepmother, who taught me organization;
my father, who taught me humor;
and my mother, who taught me faith —
all qualities I could not have made it
this far without.

i

il

ACKNOWLEDGMENTS

This dissertation would not be what it is if it were not for the collected efforts of
many friends and colleagues over the years. Several should be thanked here:

William Rueth of Greenhill Manufacturing who provided me with years of em-
ployment before graduate school, a wealth of knowledge and experience, and
the use of Greenhill’s proprietary software in my experiments.

Niels Damgaard, my co-author for the ICSE paper, who wrote a great deal of
code for the ZARBI Simulator and genetic search algorithm. Also, Wanjun
Wang for timely maintenance of JTB and for writing the GUI components for
the Simulator.

Mike Grypp, Phil McGachey, Mayur Naik, Krishna Nandivada, John Regehr,
Michael Richmond, and Ben Titzer for proofreading and comments on drafts of
this dissertation or its predecessor documents.

My committee members at Purdue: Doug Comer, Tony Hosking and Jan Vitek,
for guidance throughout my graduate career, and especially in the final stages
of this work.

Somesh Jha, my external committee member from University of Wisconsin, for
bearing with this process despite the additional overhead that being two states
away entails.

Jens Palsberg: My patient adviser, my Evil Master. A model researcher, a
brilliant mentor, and a good friend.

Petra Eccarius, who provided moral support for uncountably many long nights
working in the Lab, and who always knew I could do it.

TABLE OF CONTENTS

LIST OF FIGURES o o
ABSTRACT
1 Introduction L
1.1 Thesis Statement
1.2 Overview. e
1.3 Embedded Systems L
1.3.1 Interrupt-Driven Software

1.3.2 Testing

1.3.3 Practical Challenges

1.4 Contributions

2 Related Work
2.1 Source-Level Timing Schemas
2.2 The False Path Problem
2.3 Higher-Level Languages
2.4 Special-Purpose Languages
2.5 Preconditions for Successo
2.6 Call Graphs and Model Checking
2.7 Type Theory
28 Tools
2.9 Summary of Related Work, ..

3 Framework
3.1 Control Flow Graphs
3.2 Stack Size Analysis

3.2.1 Negative Cycleso o

v

4

Page

3.2.2 Summary Edge Closure 15
3.2.3 Positive Cycles o 16
324 Null Cycles 17

3.3 Stacks and Contexts 17
3.4 Refinementso 18
3.4.1 Graph Building oo 18
3.4.2 Demand-Driven Construction 18
3.4.3 Avoiding False Paths 19
3.4.4 Adaptiveslicing oL 19

3.5 Deadline Analysis 19
3.5.1 Time Summary Edges 20
Stack Size Analysis 22
4.1 OVverview 22
4.1.1 The Stack Size Problem 23
4.1.2 Results. 25

4.2 Model Buildingo o 26
4.3 Model Checking 29
4.3.1 The Z86 Assembly Language 29
4.3.2 From 786 Assembly Code to a Flow Graph 30
4.3.3 Stack-Size Analysis 32
4.3.4 Type Checking of Stack Elements 33

4.4 Experimental Results oL 33
4.4.1 Benchmarks oo 33

4.4.2 Infrastructureo Lo 34
4.4.3 Building the graph o000 34
4.4.4 Stack-Size Analysis oo L 35
4.4.5 Type Checking of Stack Elements 37

4.5 SUmMMAary e 37

vi

Page

5 Deadline Analysis 39
5.1 Overview 39
5.1.1 The Deadline Analysis Problem 39
5.1.2 Results.o 41

5.2 Example Analysis 43
5.2.1 A Program and its Flow Graph 43
5.2.2 Initial Coloring of the Example Graph 46
5.2.3 Testing Oracles 47
5.2.4 Multi-Resolution Analysis 50

5.2.5 Magenta and Blue Nodes 51

5.3 Experimental Results, 54
5.3.1 Benchmark Characteristics 54
0.3.2 Measurements 54
5.3.3 Assessment 57

5.4 User Experienceo 58
5.0 SUIMMAIY . . . o v v v e e e e e e e e e 63
6 Zilog Architecture Resource-Bounding Infrastructure 65
6.1 Data Structureso 65
6.2 Stack Size Checking Tools, 66
6.2.1 Simplifier 66
6.2.2 Simulatoro 67
6.2.3 State Machine Models 67
6.2.4 Genetic Algorithm L. 69

6.3 Deadline Analysis Tools 70
6.3.1 Coloring Algorithm 70
6.3.2 Adaptive Slicingo 72
6.3.3 Colordot 74

6.3.4 Graph Crawler 7

vil

Page

6.3.5 Graph File Format 78

6.4 Summary 80

7 Summary and Future Worko oo 82
7.1 SUMMArYy oo e e e 82
7.2 Future Worko 83
LIST OF REFERENCES 85
APPENDICES 94
Appendix A: Micro00 Example Program 94
A1 Example System Overview 94

A.2 Example System Program 96

A3 ZARBlresults. 98
Appendix B: Simplified Z86 Grammar 103
Appendix C: Interrupt Schedule File Format 109
Appendix D: Flow Oracle Grammar 111
Appendix E: Time Oracle Grammar 113

VITA 114

Figure
1.1
3.1
3.2
4.1
4.2
4.3
4.4
4.5
4.6
4.7
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
6.1
6.2
6.3
6.4

LIST OF FIGURES

Example of an Interrupt-Driven System
Summary Edge Closure
Time Summary Edge o oL
Example Program (part 1)
Example Program (part 2)
Example Program Flow Graph
Instructions and the corresponding edge labels
Rules for Inserting Summary Edges
Graph size and resource usage for benchmarks
Stack size resultso L
Coloring a Flow Graph,
Example Program,
Example Program Flow Graph
Time Summary Oracle in the Example
Example Program Adaptive Slicing
Coloring Graph for Latency Analysis
Benchmark Characteristics
Results With Completed Oracles
Adaptive Slicing vs. Fixed k-CFA
Oracle Information Provided
Screenshots from the ZARBI Simulator
ZARBI Graph Coloring Decision Rules
Adaptive Slicing Algorithm L oL
Colordot Output for FSEO3

viil

Page

Figure
6.5
6.6
6.7
6.8
6.9
Al
A2
A3
A4
A5
A6
AT
A8
A9
C.1
D.1
D.2
D.3
E.1

1X

Page
Colordot Output for FSE03 with Colors Abbreviated 76
Crawler State Machine oo oL 78
Crawler Interface oo 79
ZARBI Graph File Format 79
ZARBI Graph File Format Dump of FSE0O3 81
Conceptual Diagram for Micro00 Example 94
Hardware Configuration for Micro00 Example System 95
786 Instructions Used in Micro00 Example System 96
286 Special Registers Used in Micro00 Example System 97
Partial Call graph for the Micro00 Example Program 98
Micro00 Example Program 99
Micro00 Example Program (continued) 100
Micro00 Example Program (continued) 101
Micro00 Example Program Stack Height Results 102
Example Interrupt Schedule 110
Flow Oracle Input Grammar 111
Flow Oracle Input Example 112
Flow Oracle Loop Bound Syntax 112
Time Oracle Input Grammar. 113

ABSTRACT

Brylow, Dennis W. Ph.D.,; Purdue University, August, 2003. Static Checking of
Interrupt-Driven Software. Major Professor: Jens Palsberg.

Static checking can provide safe and tight bounds on stack usage and execution
times in interrupt-driven systems. This dissertation presents static analysis algo-
rithms and a prototype implementation of those algorithms for statically computing
resource bounds in interrupt-driven systems. Advanced knowledge of resource bounds
enables real-time system designers to eliminate whole classes of errors from their soft-
ware before testing begins, thereby reducing the testing effort necessary to achieve
confidence in their system.

Despite the ubiquity of hardware interrupts in real-time systems, little prior re-
search has dealt with interrupt-driven software. The benchmark suite of commercially-
deployed, interrupt-driven systems examined here includes proprietary Z86-based mi-
crocontrollers programmed in assembly language with multiple vectored interrupt
sources, a shared system stack, extensive use of unstructured loops, and no formal
loop annotations.

The stack analysis bounds the maximum stack size to within one byte of the
true maximum in all but one of the programs in the benchmark suite. The deadline
analysis found firm worst-case latencies in 30% of the cases; in the remaining 70% of
the benchmarks, the prototype reduced the size of the testing problem by an average
of 98%. While the testing effort still required for these systems is large, it is several
orders of magnitude smaller than the testing problem without deadline analysis.

This dissertation presents novel algorithms for static analysis in the context of
interrupt-driven assembly code. The prototype implementation is one of the first
tools to incorporate static analysis with testing oracles in an interactive fashion.

1 INTRODUCTION
1.1 Thesis Statement

Static checking can be employed to provide safe and tight bounds on stack usage
and execution times in interrupt-driven systems.

1.2 Overview

It was the goal of this research to find a balance between static analyses and de-
sign specifications for the purpose of constructing practical development tools in the
area of real-time, interrupt-driven software. This effort has been successful; the pro-
totype tool, called “ZARBI” (Zilog Architecture Resource-Bounding Infrastructure),
implements novel static analysis algorithms for finding safe and tight bounds on both
stack usage and worst-case interrupt latency in the analyzed systems.

The systems analyzed in this dissertation exemplify a class of interrupt-driven
software with vectored interrupt handling, unstructured and unbounded loops, limited
indirect addressing and limited indirect procedure calls. The benchmark suite includes
seven commercial microcontroller systems available to the author, as well as many
smaller example programs that demonstrate other interesting real-time programming
idioms.

The structure of this dissertation follows the outline below.

e Chapter 1 presents introductory material, the thesis statement, and outlines
contributions.

e Chapter 2 describes related work.

e Chapter 3 defines terms and explains concepts that are used throughout later
chapters.

e Chapter 4 presents the stack size checking algorithm [14], demonstrating that a
control-flow representation containing a program counter, interrupt mask regis-
ter, and the top stack element at each node is sufficient to bound stack usage in
many interrupt-driven systems, as well as check several other safety properties.

e Chapter 5 presents the deadline analysis algorithm used to bound interrupt
latency [15]. The ZARBI implementation of the algorithm colors control flow
graphs based on interrupt latency, incorporating external timing information
into the static analysis in order to bound maximum latencies.

Power "
Pulse "7~
@

N ¢ Microcontroller Fan

Network

) /‘\ ,’\ ,F\ ,’\ ,’\ ,'\ ,F\
R R e A R
E \Y} \Y} A\YJ N Ay 7 A\YJ

Figure 1.1. Example of an Interrupt-Driven System

e Chapter 6 describes the infrastructure of the prototype system, detailing design
choices, algorithmic details, and experiences relevant to building this static
checking tool.

e Chapter 7 summarizes and concludes with a discussion of future research direc-
tions.

1.3 Embedded Systems

Real-time, reactive and embedded systems are used in applications such as flight
control, vehicle management systems, telecommunications, home electronics and med-
ical devices [25,31,40,92]. Many such applications are long lived, interact with their
environment continuously, and operate under important real-time constraints. The
systems analyzed in this dissertation were designed and marketed with the expecta-
tion that they would run for months or years without down time. They are expected
to continuously react to input, and failures can potentially cause tangible monetary
loss. As the deployment of such embedded systems grows, the need for cost-effective
software assurance techniques grows correspondingly.

1.3.1 Interrupt-Driven Software

This dissertation focuses on a common class of real-time systems known as interrupt-
driven systems. Interrupts and interrupt handlers are used in systems where fast re-
sponse to an event is essential. Interrupt-driven systems are those in which significant
portions of the overall computation rely on interrupts and their handlers.

For example, Figure 1.1, illustrates the operation of one of the microcontroller
systems analyzed in later chapters. The example microcontroller has three interrupt
sources which interact in a complex fashion. The first interrupt source is an internal
timer, used to generate the waveform that controls a bank of variable speed ventilation
fans. The interrupt handler regularly recalculates the timer interval to maintain the
desired waveform. The second interrupt source is a 60Hz power pulse, which enables
the microcontroller to synchronize the waveform output with the fan power source.
The first and second interrupt handlers must coordinate with one another in order to
correct for phase changes in the fan power, or drift in the internal timer calculations.
The third interrupt source is a network communication channel via RS-485 long-haul
modem, used by a central network controller to poll status, examine sensor readings,
and even reprogram the remote microcontrollers. Network communication interrupts
can come at virtually any time, and must be given highest priority when they arrive.
(The processor manually sequences the RS-485 packets, bit by bit, at the proper baud
rate.) If the processing of network traffic takes too long, proper control of the fans
cannot be maintained. The full version of the microcontroller system shown here is
part of a ventilation system used in an agricultural setting; fan lockup can result in
danger to livestock from heatstroke, pneumonia, or deleterious levels of ammonia and
methane.

Testing of real-time embedded systems like the example in Figure 1.1 is difficult.
While powerful processors can be used for embedded systems, the demand for cost-
effective computation results in the use of smaller, resource-constrained devices in
far greater numbers [92]. For developers, the reality of resource-constrained devices
can mean that the use of convenient, high-level abstractions (e.g., real-time operat-
ing systems which provide certain guarantees) is not an option. Software in reactive
and real-time embedded systems is often programmed by hand in low-level languages
like C and assembly [25]. Real-time software can rely heavily on hardware interrupt
handling, have no high-level process model, and leverage little or no compiler assis-
tance — all factors which can make analysis of the software more difficult. Without
the high-level abstractions most software analysis techniques depend upon, such sys-
tems are often evaluated for safety and correctness only through extensive testing or
simulation.

1.3.2 Testing

Component and integration testing of embedded systems can be intensely time-
consuming, prohibitively expensive, and is often less than comprehensive. Unlike
software on general purpose computing platforms, embedded systems are hard to in-
strument. Embedded systems have narrow information channels: internal register
states are difficult to access externally without altering the system; hardware inter-
actions are difficult to manipulate without distorting key timing properties of the

system; and finally, resource constraints usually render on-chip monitoring infeasi-
ble [42].

Testing of real-time embedded systems is even more difficult than embedded sys-
tems, because the real-time components of the software add nondeterminism to the
system. Small variations in the interrupt requests caused by external triggers and
internal timers can result in different behavior between runs even if the controller is
executing the same computation on the same data.

Furthermore, even if it were practical to ascertain precise machine state from
embedded systems, the number of possible execution paths increases combinatorially
in a interrupt-driven system. For any given machine instruction in a segment of
code where interrupts are enabled, control could potentially pass either to the next
instruction, or to any of the enabled interrupt handlers. In this way, the number
of transitions in an equivalent state machine for a interrupt-driven system increases
exponentially in the number of available interrupts. Traditional coverage testing
quickly becomes intractable in this setting.

Consider the example system from Figure 1.1: assume that the first interrupt
source (internal timer) is triggered 180 times per second, with the handler executing
for 100 microseconds; the second interrupt source (power pulse) occurs 60 times per
second, with the handler executing for 10 microseconds; and the third interrupt source
(network traffic) occurs once per second, and takes 100 microseconds to handle. If
these events take place completely independently, then the odds of observing all
three handlers conjunctively contributing to the maximum stack height in any given
microsecond time-slice are roughly 1 x 107°. This worst case behavior could be
expected once in a billion observations, assuming it was even possible to gather stack
height data from the embedded system and that normal test inputs would even explore
that corner of the problem space. Nevertheless, if 1000 such systems are deployed and
operated for years, it is a near-certainty that this unusual worst-case behavior will
occur in the field. Further note that these probabilities are for a greatly simplified
example system.

While it is unlikely that the need for full-scale testing will ever be completely
supplanted by any other methodology, there is great potential for software verification
tools to substantially decrease both the time and effort for testing real-time systems.
For example, static analysis of timing properties in real-time systems could eliminate
whole classes of errors prior to testing.

1.3.3 Practical Challenges

The example in Figure 1.1 is a simplification of a real-time system actually in
production; the processor is an 8-bit Z86 microcontroller, with 256 bytes of RAM,
4K of program ROM, and a 12MHz clock [100]. The software for the example system
was written by hand, in Z86 assembly language, and is about 2500 lines of code, with
comments. The prototypes of this particular system underwent months of testing
prior to actual production. The final production model did not include the RS-
485 network hardware; even though the software was written to handle the network

connection, production deadlines did not allow sufficient testing to determine what
adverse impacts, if any, could be expected when the interrupts interacted.

Several pressing questions prevented the deployment of the network functionality
for the example controller.

e How high would the stack grow if the controller’s network communication han-
dlers were triggered during normal operating modes? The memory layout of
the Z86 does not offer hardware protection for global data registers from the
system stack; if the stack grew larger than the designers had anticipated, it
would overwrite other data registers.

e How would the network communication handlers interfere with the other in-
terrupts in the system? Could a network packet cause the controller to miss
one of its deadlines for generating the proper control signals? Could the other
interrupts cause the network communication interrupt to miss its deadline for
properly interpreting a network packet?

Worse yet, even without the network interrupts enabled, it was not clear that the
controller would necessarily meet all of its deadlines.

The ZARBI tool was designed to help address questions like the ones above when
analyzing interrupt-driven systems. The static analyses presented later in this disser-
tation produce safe, tight bounds on stack usage and interrupt latency. With these
bounds in hand, system designers can avoid much of the costly testing effort that
would otherwise be required to determine whether or not the system has sufficient
resources.

1.4 Contributions

The production microcontrollers studied in this dissertation rely on vectored, asyn-
chronous interrupt handling to accomplish their work. They use a limited form of in-
direct procedure call, extensive goto-like “JMP” instructions, and have no formally an-
notated loop bounds. The goal of this research project was to devise automated tech-
niques for producing accurate bounds on resource consumption in interrupt-driven
systems. A side benefit of the research was the construction of a prototype tool
capable of providing resource bounds for the kinds of systems exemplified by the
characteristics above.

The primary contribution of this work is ZARBI, the Zilog Architecture Resource-
Bounding Infrastructure. The prototype tool computes conservative, tight bounds on
stack usage and worst-case interrupt latency for interrupt-driven systems written in
786 assembly language. These bounds allow the system designer to eliminate whole
classes of errors from the software before testing even begins, thereby reducing the
testing effort necessary to achieve confidence in the system.

Secondary contributions of this work include novel algorithms used in the core
of ZARBI to bound stack height and maximum interrupt latency, respectively. This

is the first such work on tractable control-flow analysis in the presence of vectored
interrupt handling.

Additional analyses also check for several classes of semantic errors in the Z86 pro-
gram, including using simple types to detect stack manipulation errors. In addition,
ZARBI contains components for enhanced visualization and debugging of control-flow
graph cycles during the interactive process of interrupt latency analysis.

2 RELATED WORK

In the general case, the problem of bounding stack sizes and maximum execution
times is equivalent to the halting problem [84]; it is a basic theorem of computer
science that these questions are undecidable. Much work has been done on tools
that operate on decidable subsets of programming languages, for example, Berkeley
Packet Filters [56], or Agere Systems’ C-NP language [1] for programming network
processors, which do not allow backward branching.

Most research in the area of calculating real-time software resource bounds stems
from Puschner and Koza’s work [80], which uses the following conditions to guarantee
decidability:

e No asynchronous interrupts

e No recursion

No indirect calls

No goto instructions

Strictly bounded loops

In the 1990’s, researchers have worked to relax several of these restrictions, with
a variety of trade-offs. However, despite the fact that asynchronous interrupts are
the most salient feature of actual real-time systems, they remain the least researched
topic on the above list.

2.1 Source-Level Timing Schemas

In 1989, Alan Shaw wrote, “When interrupts are permitted and both interrupt
handling times and frequencies are bounded, the effects of processor sharing between
a user process and one or more interrupt handlers can be included in a timing analy-
sis,” [89]. While this is certainly true, it remains very difficult in practice to automat-
ically ascertain interrupt handling times. Interrupt frequencies are entirely beyond
the scope of automated program analysis, and generally fall under the category of
design criteria for a given system. Shaw’s timing schema for high-level languages,
(by which he meant Algol,) has served as the basis for over a decade of subsequent
research on analyzing maximum execution time for software. On the topic of inter-
rupts, Shaw indicated that the system could be extended to account for interrupts
using the equation,

tmaz(S) = tmaz (9)/ (1 = fimaz X tmaa(1H))

where t,,4,(S) if the uninterrupted, straightline maximum execution time for state-
ment S, t],..(S) will be the maximum execution time of statement S taking interrupts
into account, and f,4, and t,,,, (I H) are the known interrupt frequency and interrupt
handler execution time. Shaw concluded that, “timing predictability seems imprac-
tical when a process can be preempted at arbitrary points in its code,” and left the
matter at that. A large body of work has stemmed from this original premise, as
exemplified by papers like Lim et al. [48], which extend Shaw’s basic timing schema
to account for features of modern processors such as pipeline, data cache, and instruc-
tion cache effects. Engblom et al. [28] concentrate on co-transformation of source-level
schema in order to inform analysis of compiler-optimized object code. All of the work
listed above assumes an absence of interrupts, or trivially isolatable interrupt behav-
ior, in spite of the fact that virtually all modern processors used in real-time systems
have vectored interrupt handling facilities, and all real-time systems known to the
author have made use of those facilities.

2.2 The False Path Problem

In 1996, Altenbernd identified that a key issue in accurate worst-case execution
time (WCET) analysis is the False Path Problem [4]. In constructing a control-flow
graph, the abstraction often contains paths that cannot actually take place in a real
program execution — branches that aren’t taken, interrupt handlers that aren’t yet
enabled, etc. In order to calculate tight bounds on execution time, the algorithm
must search for the longest executable path in the graph, rather than the longest
structural path in the graph. This is equivalent to an NP-complete problem that
exists in hardware design; finding the longest executable path in a network of logic
gates is substantially more difficult than finding the longest structurally connected
path [54]. Altenbernd used symbolic execution to track possible values of key con-
ditional variables, and thereby pruned infeasible paths out of the control-flow graph.
This is essentially the same technique used by ZARBI to prune away a substantial
number of infeasible interrupt handler paths from the control-flow graphs.

2.3 Higher-Level Languages

Liu and Gémez [50] automatically transformed Scheme code directly into time-
bound functions, based upon partially-known input structures. They then plugged in
numbers gleaned from intensive profiling to approximate the actual execution time
of the compiled code. Their method has fared well initially, yielding execution time
estimates very close to measured execution times. However, the source language and
its accompanying transformations have no provisions for vectored interrupts, and the

technique glosses over issues concerning accurate low-level timing of primitives by
averaging together tens of millions of runs of representative code. It remains to be
seen whether the need for first-class lambda expressions will outweigh the need for
accurate low-level timing in the community of real-time system designers.

Applying essentially the same concept as [50], but at a lower level, Lundqvist
and Stenstrom [51] augmented a PowerPC simulator to use an “unknown” value.
The unknown value allows a variant of instruction-level simulation, without having
to know precise input. In addition, they used path-merging heuristics to maintain a
tractable number of paths. Their work does not consider vectored interrupt handling,
although their path-merging technique may be generalizable to assist in keeping paths
caused by interrupt handlers to a manageable number.

Research on Real-Time Java [12] aims to make Java a legitimate language choice
for real-time programmers. While the object-oriented programming model has little
in common with Z86 assembly language, work on RTJ addresses many of the same
problems as this dissertation. Implementation of scoped memory for RTJ [9] addresses
issues of bounding memory allocation, and more importantly, bounding execution
time impacts of memory management. Others have worked on WCET analysis for
Java Byte Code [8] and portable WCET annotations for Java Byte Code [10]. How-
ever, the very abstractions that make Java an attractive development environment
hamper accurate analyses; just getting back the gain time lost to overestimation of
WCET due to dynamic dispatch is a difficult problem [43].

2.4 Special-Purpose Languages

Many special-purpose languages have been created for use in real-time systems.
Real-Time Euclid [46] has provisions for schedulability analysis built in — all loops
have a bounded number of iterations or execution time.

ESTEREL [11] is a prime example of a synchronous language that can be used for
programming reactive systems. Synchronous languages use instant broadcast between
processes, which means that interprocess communication and other data handling
take an irrelevantly small amount of execution time. While synchronous languages
are well-suited to purely reactive systems, they are not as well-suited to interactive
or transformational systems. The embedded systems examined in this dissertation
exhibit characteristics of all three kinds of systems: reactive, interactive, and trans-
formational.

Like synchronous programming languages, the Giotto project [40] seeks to provide
a platform-independent abstraction for programming real-time systems. Giotto pro-
grams are concerned with functionality and timing properties of the system. Tasks are
organized into modes, and communicate with one another through drivers — underly-
ing code for transporting data between processes, sensors, and actuators. The actual
tasks and drivers are not implemented in Giotto; they are executed in a platform-
dependent fashion using compilers that must conform to Giotto’s constraints in order
to guarantee that the final system meets the properties promised by the Giotto model.

10

Extending the Giotto project, the E-Machine [41] is a platform-independent virtual
machine that supervises the timing of a real-time system with respect to the external
environment.

2.5 Preconditions for Success

As mentioned in the previous section, Puschner and Koza codified the standard
conditions for making WCET analysis tractable in 1989 [80]. These limitations were
no interrupts, recursion, indirect calls, or goto’s, with a-priori bounds on all loops.

Nine years later, a survey paper on techniques for static analysis of embedded
software [52] assumes all of these preconditions except for the goto rule. The brunt
of work in the WCET area continues to revolve around timing effects caused by cache
misses. Cache effect analysis is not applicable to many real-time systems, like the
786 family of processors, which do not even have cache memory.

Li and Malik’s Cinderella project [47], so named for the fictitious girl’s hard real-
time constraint with respect to midnight and pumpkins, automatically formulates
WCET analysis as an integer linear programming problem. Their tool analyzes source
code for the Intel iI960KB processor, and locates critical variables with respect to the
timing analysis. The user then manually assigns bounds to the critical variables, and
the analysis calculates final execution times. Cinderella operates under the standard
Puschner and Koza assumptions, and does not allow interrupts.

Work in automatic detection of induction variables [62], and bounding of unnat-
ural loops in low-level languages [38] is applicable to loops present in the commer-
cial microcontroller systems examined later in this dissertation. Healy and Whal-
ley’s approach [39] concentrates on the branch instructions themselves. By searching
backward to find all of the assignments that influence registers used in the branch
comparison, they are able to classify all jumps as one of unknown, fall-through, or
jump. The search continues until all registers in the expression can be replaced by
immediate values, or a control-flow merge point is encountered. This intra-procedural
analysis allows tighter bounds to be calculated for many loops.

2.6 Call Graphs and Model Checking

A static analysis of assembly code may attempt to approximate the values in
specific registers or on the stack. This problem is closely related to the problems of
call-graph construction and points-to analysis for object-oriented programs. Accu-
rate, scalable analyses for these purposes exist in the programming languages com-
munity [75,95].

The FLAVERS system at University of Massachusetts, (FLow Analysis for VER-
ifying Specifications), is a flexible framework for flow analysis of concurrent pro-
grams [23,65]. FLAVERS has even been extended to analyze infinite executions [66],
which are common in embedded systems. However, the FLAVERS system has a much

11

higher-level abstraction of concurrent tasks; separate tasks do not have completely
shared stack and data registers. Such a high-level analysis thrives on a more rigidly
specified interface between tasks than can exist at the Z86 microcontroller level.

The stack-size checking algorithm in ZARBI can be seen as a demand-driven
version of an algorithm for model checking of pushdown systems like Podelski [79].
The algorithm presented later in this dissertation differs from Podelski [79] in that
it generates edges on demand, thereby ensuring that many unreachable nodes are
automatically pruned away. This demand-driven quality, combined with tight ap-
proximation of feasible IMR values, prevents the exponential state-space explosion
that would occur in more naive analyses.

Analysis of partially-implemented real-time systems [7] is tangentially related to
this dissertation, in that the Z86 simulator in ZARBI models the unimplemented
portions of systems for test purposes, and static analysis of timing bounds may involve
modeling external inputs in a similar fashion.

Research at University of Wisconsin has used graph reachability [83] as a mecha-
nism for program analysis. Context-sensitive analysis of the sort employed by ZARBI
has been shown to be undecidable in the general case [84], as it is equivalent to Post’s
Correspondence Problem. Fortunately, the straightforward heuristic that stack sizes
in Z86E30 software can be no larger than the meager 256 bytes of total RAM gives
the ZARBI algorithm decidability.

Maximum execution time is formulated as a graph theoretic problem in Puschner
and Schedl [81], using T-graphs. T-graphs are substantially similar to the control
flow graphs used in ZARBI with edges weighted by execution times. Relative ca-
pacity constraints provide information about infeasible paths in the T-graphs using
information provided by the user. When the T-graph construction is complete, the
search problem is passed on to an integer linear programming (ILP) solver. The T-
graph approach allows goto statements and can provide precise maximum execution
time — rather than execution time bounds — in cases where every instruction takes an
invariable amount of time to execute under all circumstances.

Like Brylow et al. [14], Wegener and Mueller [98] shows that static analysis and
evolutionary testing can be used successfully in concert to seek both upper and lower
bounds on worst-case execution time.

2.7 Type Theory

Advances in the static analysis of programs have addressed a plethora of safety
issues, including bounding resources like stack size.

Palsberg and O’Keefe [74], and Palsberg and Schwartzbach [76] present and prove
soundness for a type system that checks the safety of a calculus with untyped lambda
terms. This is essentially the same kind of safety problem as type checking the basic
stack operations in Z86 programs, and a similar type system is used by the ZARBI
stack-bounding analysis to catch several classes of potential errors.

12

In 1996, Necula and Lee proposed a technique for embedding a formal proof of
correctness in code [69]. In 1997, Necula refined his Proof-Carrying Code mecha-
nism [67], and showed what such a framework might look like. In 1998, Necula and
Lee revealed a working, non-trivial implementation of the PCC concept [68]. The
proof-carrying code concept includes annotations for loop invariants, which could
ultimately be helpful in WCET analysis of loops.

Morrisett’s TAL [59] is a RISC-like assembly language, with annotations at basic
block and allocation points that allow the code to be proven type-safe. In this way,
typed assembly language is a particular kind of proof-carrying code, with the overhead
of the proof being dramatically reduced. Extensions to TAL include type-safe stack
management [58] for a substantial subset of the Intel x86 instruction set [57]. Another
extension to the TAL system is Crary and Weirich’s type system for bounding resource
consumption, particularly time bounds [22].

The tool presented in [99] checks SPARC machine code for memory safety using
type state checking and input annotations. This approach has benefits similar to [68]
and [59], in that safety checking is done at the lowest level, and does not entail trusting
an optimizing compiler. Also like [68] and [59], the systems presented in [99] was not
designed with analysis of timing properties in mind.

While all of the papers above present valuable techniques for static analysis of
low-level programs, none allow for preemptive interrupts of any kind.

2.8 Tools

The Advanced Software Technology (ASTEC) group centered at Uppsala Uni-
versity has built a substantial infrastructure for analysis of WCET in real-time sys-
tems [29]. The ASTEC group represents control flow using a basic unit called a scope,
which is intuitively a looping construct. All scopes have an iteration counts associ-
ated with them; non-looping code is a scope with zero or one iteration. Scopes are
assembled into a scope tree, which implicitly represents all possible control flow in the
program. Scopes are a very general concept, to which a wide variety of execution facts
can be attached, including flow information facts [27] to describe feasible execution
paths, or facts about low-level factors like pipeline effects on the execution time [30].
Scope trees are processed into a system of constraints using an implicit path enumer-
ation technique (IPET) analysis to determine the maximum execution count for each
point in the program. WCET can then be estimated using the function

WCET = mazimize(Z Tentity X tentity)

Ventity

where Z¢ptiry is the execution count for each entity, t.puy is the known execution time
of each entity, and flow constraints ensure that the system examines only feasible
paths [27]. The research at ASTEC is in concert with IAR Systems, and therefore
has been tested at several points against realistic real-time systems. Work on the

13

ASTEC infrastructure continues, with support now included for flow analysis of C
programs [35].

The University of Saarland Embedded Systems (USES) group has used abstract
interpretation [21,70] and ILP solvers to extensively model the Motorola “ColdFire”
MCEF 5307 processor [31]. Their modular architecture breaks down the overall WCET
problem into smaller parts: a value analysis approximates possible addresses of mem-
ory accesses; a cache analysis characterizes all memory accesses as hits or possible
misses; a pipeline analysis takes into account the speedup caused by subsequent in-
structions passing through the pipeline in succession; a final path analysis calculates
the WCET of the program. Each analysis can make use of information provided by
the previous analysis in the chain. The USES group’s tool has been applied to test
programs supplied by AIRBUS [31].

Commercial ILP solvers like CPLEX [44] and 1p_solve [72] have been employed
to analyze advanced processor features like cache and pipeline analysis [3, 32|, and
branch prediction [55].

2.9 Summary of Related Work

Much work has been done on timing schema for high-level languages, and on mit-
igating the timing effects of pipelines and caches in modern processors. Symbolic
execution and implicit path merging are among several techniques intended to elimi-
nate false paths in representative control-flow graphs in order to keep static analysis
tractable in size. Model checking and type system advances have been used to verify
many useful software properties. Nevertheless, previous work in the area of bounding
resources for real-time software can be separated into two categories:

e Work that ignores preemptive interrupts altogether, and

e Work that assumes interrupt handlers are trivially isolatable from the main
process.

All of the real-time systems examined in this dissertation have interrupt handlers
heavily integrated with the main program; they share the same system stack, op-
erate on the same relatively small set of registers, and in many cases affect control
flow within the main program. Prior research does not attempt analysis of interrupt
handlers as an integral part of the real-time system, and thus cannot provide useful
bounds on interrupt-driven systems. Furthermore, for most prior work, the expo-
nential increase in state-space that occurs when taking interrupt-handler control-flow
into account would make analysis largely intractable.

Chapters 4 and 5 present techniques for analysis of interrupt-driven programs that
mitigate much of the exponential increase in state-space during analysis.

14

3 FRAMEWORK

The next several chapters present the static analysis techniques used to bound stack
size (Chapter 4) and execution time (Chapter 5) in interrupt-driven software. This
chapter defines common concepts and abstractions used throughout chapters 4 and 5,
as well as in the chapter on implementation details (Chapter 6).

3.1 Control Flow Graphs

The algorithms presented in this dissertation operate on an abstraction of pro-
gram states known as a control flow graph [2]. This section defines flow graphs and
terminology that will be used in subsequent discussions of the algorithms.

A control flow graph is an abstraction of program states and the transitions be-
tween them. Details and examples of control flow graph construction are given in
sections 4.2, 5.2, and 6.1.

A control flow graph G is defined as the tuple (V, E), consisting of a finite set of
vertices V and edges E C V x V. A vertex is also sometimes called a node. For the
analysis algorithms presented later in this chapter, a control flow graph (abbreviated
hereafter as CFGQ) is the first component of a tuple (G, w, terminus), where w is a
weight function that maps edges e € E to integers (w : E — Z) and terminus is the
designated vertex (terminus € V') to be the starting or ending point of a search.

A control flow graph, (abbreviated hereafter as CFG,) is a digraph [87], meaning
that all edges e € E are directed, or one-way; the first vertex in e is the source, and
the second vertex is the destination. Let A(v) be the set of edges e € E such that
v is the destination vertex for e. Let 2(v) be the set of edges e € E such that v is
the source vertex for e. A(v) is vertex v’s incoming edge set, and 2(v) is v’s outgoing
edge set. A vertex vy is upstream of vy if there exists a path from vy to vg, but not
vice-versa.

Resource-bounding algorithms deal extensively with paths in the CFG. A path 7
is a sequence of vertices vy, ..., vy such that Vi € {0, ..., k—1} : (v;,v;41) € E. A simple
path is a path in which each v; in 7 is distinct. A cycle [87] consists of a simple path
from vy to v, with an additional edge from vy back to vy. A vertex vy is reachable
from vertex vy if there exists a path from vy to vg.

The resources to be analyzed in a CFG are represented as edge weights. The weight
function w maps each edge to an integer cost. G is therefore a weighted digraph, or
network [87]. Every path m has a path weight or cost C(m) =3, g1y W(Vis Vit1).
Let a null path be a path in which Vi € {0,....,k — 1} : w(v;, v;11) = 0.

Many of the algorithmic details of resource bound analysis in this dissertation
deal with the different types of cycles in CFG’s. A negative cycle refers to a cycle 7

15

in which C(7) < 0. A cycle is said to be positive if C(7w) > 0. A zero-weight cycle is
one in which C'(7) = 0. A zero-weight cycle which is also a null path is a null cycle.

The longest path problem is a classical graph problem [87] equivalent to many
problems in static analysis. The longest path in the graph is defined as the path with
the largest cost, which is not necessarily the path with the largest number of edges.

3.2 Stack Size Analysis

This section presents properties that a CFG may possess. Later chapters will
show how a stack size analysis algorithm can take advantage of these properties. For
stack analysis, the weight function w is defined to associate each edge in the graph
with an integer change in stack height. In the resulting weighted digraph, stack size
analysis is equivalent to the search for a longest path rooted at vertex terminus.

In the general case, the longest path problem is known to be NP-hard and thus
is considered intractable [87]. However, the control flow graphs examined here have
additional structure that can be exploited to provide a more efficient analysis. The
next several subsections outline properties that make a CFG more amenable to stack
size analysis.

3.2.1 Negative Cycles

In the algorithms presented later, the longest path in a graph is undefined if the
graph contains negative cycles. While it is possible to construct actual programs
that result in negative cycles in CFG’s, such programs are not dealt with in this
dissertation. Negative cycles can be detected in O(V?) using Floyd’s Algorithm [87].

3.2.2 Summary Edge Closure

Later algorithms will use the concept of summary edges, as defined below. A
summary edge es, has weight zero, a source vertex vy, and a destination vertex vy
such that there exists a path 7y from vy to vg in which the edge ey, = (v, v1) has a
positive weight, edge e = (vj_1,vx) has an equal but opposite negative weight, and
the subpath from v; to vy, is a null path. An example summary edge is shown in
Figure 3.1. The first and last edges in 7y are said to be matched, since they have
the same absolute value of weight, with opposite polarity. Because 7y, consists of two
matched edges and a null path, the total cost of 7y, is zero.

A graph is said to be closed with respect to summary edges if and only if every
non-zero-weighted edge is part of a zero-weighted path 7y, and thus associated with
a summary edge ey. Closed graphs cannot contain a negative edge e_ that does not
have a matching e;. Likewise, a closed CFG cannot contain an e; that does not
have a matching e_, or a summary edge ey, with a non-zero weight. These conditions

16

Figure 3.1. Summary Edge Closure

correspond to the type-checking of stack elements specified in Section 4.3.4, which
ensure that pushes match pops, procedure calls match returns, etc.

Summary edges summarize well-structured zero-weight paths in such a way that
all negative-weighted edges can be deleted from the graph without altering the length
of the longest paths. In a summary edge closed graph, any path from terminus
through a negative-weighted edge must pass through an equal and opposite positive-
weighted edge. If a longest path passes through a negative-weighted edge, then there
exists another path of equal length passing through the associated summary edge
instead. If a longest path does not pass through a negative-weighted edge, then again
no negative-weighted edges were required. Summary edge closure is a key property
that allows all negative-weighted edges to be removed from the graph without altering
the length of any longest paths. Construction of summary edges is explored in greater
depth in Section 4.3.

A graph with no negative cycles can be closed with respect to summary edges in
time polynomial in V' [53].

3.2.3 Positive Cycles

In this dissertation, the longest path in a CFG is not defined for graphs with
positive cycles. If a positive cycle exists in the graph, a path can become arbitrarily
long by passing through the cycle multiple times. A graph with neither negative nor
positive cycles is bounded. Given a graph G that has no negative edges, positive cycles
can be checked for by a bounded depth-first search, in which a graph is not bounded
if the cost of a path exceeds a given boundary, m. For stack size analysis it is assumed

17

that there is a known bound on allowable stack size for the program; the maximum
allowable size is used as m when checking for positive cycles in the graph. This check
can be performed in time O(V -m), which is linear in V' when m is constant.

3.2.4 Null Cycles

A graph with no negative edges and no positive cycles cannot contain any cy-
cles except those that are zero-weight cycles. Zero-weight cycles without negative-
weighted edges can only be null cycles. Null cycles cannot contribute to the longest
path, and thus can be collapsed into a single vertex without changing the cost of the
longest path. Null cycles can be detected in a graph with no negative edges and no
positive cycles in at worst O(V?) time [87].

A digraph with no cycles is a directed, acyclic graph, or DAG. For DAG’s, the
longest path problem can be solved in linear time, O(V') [87].

3.3 Stacks and Contexts

Some of the algorithms and techniques presented later in this dissertation cannot
be understood solely in the context of control flow graphs without additional pro-
gram analysis concepts. This section defines terminology that will be used in later
discussions.

A stack is a last-in, first-out data structure [71]. The stack has at least two
operations defined, push and pop. An element x pushed onto a stack o results in a
new stack, xo. The pop operation on a stack xzo returns element x and stack o. Let
the pop operation be undefined for an empty stack, written “{}”.

An abstraction used in many programs is the procedure call, in which a common
segment of code is factored out into a procedure or subroutine, which can then be called
from multiple program locations [2]. The program points from which procedures are
called are termed call sites.

A CFG that differentiates the vertices for the same procedure when called from
different call sites is context sensitive [70]. Context sensitivity necessitates represent-
ing additional state information at vertices in the graph. Because a procedure A can
call another procedure B before completing, the context required to distinguish two
states in the program may require more than one call site. Context represented as a
stack of call sites is a call string [70,88].

With call strings comes a notion of valid or realizable paths in the CFG. Realizable
paths m..q € G are those in which the sequence of program states corresponding to
vertices along 7., preserve the procedure call semantics of the original program.
That is, for all 7., outgoing from vertex v.., Treq returns from the procedure
subgraph to call site v.q, rather than some other call site.

18

3.4 Refinements

Conceptually, there are two mappings required to get from a raw program to
resource bounds. The first mapping is from the program to the CFG. The second
mapping is from the CFG to the resource bounds. The previous sections in this
chapter have concentrated on the second mapping. This section concentrates on the
first mapping — translating a raw program into a precise and compact CFG.

The next several subsections present concepts underlying the construction of com-
pact and precise graphs for resource bounding analysis. Further details can be found
in [2,70].

3.4.1 Graph Building

Naive CFG construction algorithms can result in a combinatorial explosion of the
vertex state space. It will be important later to optimize the size and complexity of
the graphs.

At one end of the spectrum, consider a CFG representation where every vertex
in the graph contains the values of every binary digit of state stored in any variable
used in the program. The precision of this representation is very good, because every
possible state of the program can be unambiguously differentiated from every other.
However, the size of the state space for vertices in the CFG is exponential in the
number of bits of storage, resulting in very large graphs even with small programs.

At the other end of the spectrum, consider a CFG representation where each
vertex of the graph represents a particular executable instruction in the program.
Such a representation is compact, being linear in the size of the program. However,
because such a CFG lacks context sensitivity, it may contain many unrealizable paths,
and thus lacks the precision required to give useful resource bounds for any of the
programs examined in this dissertation. Section 4.1.1 revisits this discussion in the
context of a specific hardware architecture.

Later chapters will show that for practical reasons, an implementation must find a
middle ground where the CFG has enough precision to accurately model the resources
that must be bounded, without the size of the graph becoming unmanageable.

3.4.2 Demand-Driven Construction

For the algorithms presented in this dissertation, there is no need to represent
program points that cannot be reached by any execution path. Unnecessary expansion
of the CFG can be avoided by constructing the graph in a demand-driven fashion,
where portions of the graph will only be constructed when they are known to be
needed according to a given criteria. An example of this is to build only the CFG
containing program states that are reachable from the terminus vertex.

19

The algorithms presented in later chapters also do not need CFG’s to represent un-
realizable interrupt paths. Abstract interpretation can be used to approximate values
without completely simulating a program [21]. Later chapters show that by approx-
imating the contents of certain control values in the hardware, many unrealizable
interrupt paths can be omitted from the CFG’s.

3.4.3 Avoiding False Paths

As alluded to in Section 2.2, model precision can be increased by avoiding false
paths in the CFG. A false path 74 is defined as a path for which the sequence
of vertices corresponds to a sequence of states that cannot occur, either because the
sequence would violate the semantics of the program, or does not correspond to what
the hardware does.

One of the techniques available for curtailing false paths is to model only realiz-
able paths using call strings [88]. Call strings introduce context-sensitivity to CFG
construction, which is both more precise and more expensive to calculate [70]. The
disadvantage of this technique is that the allowable state space of vertices in the graph
increases exponentially in the number of bits required for the call strings.

3.4.4 Adaptive slicing

While arbitrary length call strings add precision to CFG’s, the size penalty can
greatly increase the complexity of building the graph. A trade-off can be made be-
tween precision and size by using call string suffizes [88], with which only the topmost
n elements of the call string are stored, for some limiting value of n.

Varying the value of n in the CFG allows the degree of stack context to be adjusted
for the precision required for analysis. In this way, additional context can be stored in
vertices that are otherwise difficult to analyze, while more compact call string suffixes
can be used in graph segments requiring less precision.

A graph with variable length call string suffixes is multi-resolution, indicating
that the amount of context at vertices can be varied according to space and precision
concerns. The technique of adding more detail to a static analysis only where it is
required to reach desired precision is described in [78].

CFG cycles caused by insufficiently long call string suffixes can be detected in
time polynomial in V', as described in Section 6.3.2. Sections 5.2.4 and 6.3.2 present
the adaptive slicing technique used for constructing multi-resolution CFG’s, and Sec-
tion 5.3.2 discusses the precision/space trade-off of multi-resolution analysis.

3.5 Deadline Analysis

Deadline analysis of CFG’s is similar to stack size analysis, but the CFG’s have
different properties. The weight function w is defined to associate each edge in the

20

graph with a positive integer execution time count. Like stack analysis, the final
deadline analysis graphs do not contain cycles. Unlike stack size analysis, deadline
analysis CFG’s are searched backward for longest paths ending at vertex terminus,
rather than starting at terminus. Deadline analysis graphs do not need to be closed
with respect to summary edges because w is defined to provide only positive, non-zero
edge weights.

The problem of searching for longest paths ending at a given destination vertex
in a digraph is the multi-source longest path problem and can be solved for acyclic
digraphs in linear time [87].

Chapter 5 presents methods for identifying, bounding, and eliminating positive
cycles in the initial deadline analysis control flow graphs.

3.5.1 Time Summary Edges

A key problem in deadline analysis is that many programs do not naturally cor-
respond to an acyclic CFG. In the experiments presented later in this dissertation,
none of the benchmark suite of test programs corresponded to an acyclic initial CFG.

Cycles are common in deadline analysis CFG’s because positive cycles correspond
to the iterative control flow produced by looping constructs. Positive cycles must
be removed from the graphs before deadline analysis can take place, because the
algorithms shown later do not define the longest path in CFG’s with positive cycles.

Loops that produce positive cycles in CFG’s may have bounds that can be deter-
mined by other types of analysis. Section 5.4 gives examples of loop constructs in
real programs that can be bounded through methods other than static analysis.

Given a positive cycle mgy . and a maximum cost bound Ci,,, that has been
determined by other methods to be the maximum cost of any path along gy, the
cycle can be replaced with a time summary edge of weight C,,,4, as shown in Figure 3.2.

In order for the deadline analysis algorithm to remain conservative, time summary
edges must be admissible [86]. That is, a time summary edge can overestimate the
true execution time of the loop it summarizes, but it cannot underestimate. If un-
derestimated time summary edges exist in a graph, the deadline analysis algorithm
is not guaranteed to arrive at correct bounds.

Time summary edges cannot be used to summarize cycles in all cases; later chap-
ters will discuss the types of program loops that can be eliminated with time summary
edges. Section 5.2.3 describes the use of time summary edges in CFG construction,
and Section 5.3.2 presents results of an empirical study of time summary edges re-
quired for real programs.

21

Figure 3.2. Time Summary Edge

22

4 STACK SIZE ANALYSIS

Static analysis can provide safe and tight bounds on stack usage for interrupt-driven
systems implemented on the Zilog Z86 platform.

This chapter presents in detail the overall problem of stack-size analysis in such
systems, the algorithm used in ZARBI’s analysis, and the results of applying this tool
to a suite of commercial embedded systems.

After a brief overview in section 4.1, section 4.2 presents a small example of an
interrupt-driven program and its flow graph. Section 4.3 describes the algorithms used
in this dissertation to find bounds on stack sizes, and section 4.4 shows experimental
results produced with ZARBI. Section 4.5 summarizes the chapter and evaluates the
prospects for scaling up these techniques to other processors, such as the Motorola
68000 family.

4.1 Overview

As mentioned earlier, resource-constrained devices are used in many applications.
Examples include cell phones, personal digital assistants, digital thermostats, and
many others. While larger processors can be employed to comfortably implement
embedded systems, economic realities result in the deployment of cheaper processors
with tighter resource constraints. It can be difficult to fit required functionality into
such a device without sacrificing the simplicity and clarity of the software.

The focus of this dissertation is on small, interrupt-driven devices based on the
Z86E30 processor [100], a descendant of Zilog’s Z8 processor. The Z86 features 256
8-bit registers, 4K of instruction ROM, and 24 I/O lines organized into three 8-bit
ports. In addition, the Z86 has six levels of vectored interrupt processing, and two
internal timers. Despite the Z86’s limited resources, it is deployed in many elaborate
systems where larger, more powerful processors are not cost effective. In many such
systems, the Z86’s RAM space, ROM space, and [/O lines are pushed to the limit.
One of the proprietary embedded systems we have examined has a single Z86 phase-
controlling three variable speed fans, operating five heating/cooling units, watching
four temperature sensors, monitoring 60—cycle power for brown-outs, networking with
a system overseer via RS-485 serial port, and displaying all of its readings on an
intelligent LCD unit, all in real time. In such applications, the software is often
manually optimized in assembly language, to squeeze every byte out of the ROM,
and to use every available register of RAM.

Other processors used for embedded applications comparable to the Z86 include
derivatives of the Motorola 68000 series [60]. For example, Palm Pilots and their
clones are based on the Motorola DragonBall CPUs (MC68328 [61]), and some cell

23

phones are based on the same architecture family. These processors have maskable,
vectored interrupt handling much like the Z86. Devices such as Palm Pilots and
cell phones, which function primarily by processing external inputs, can use vectored
interrupt handling to provide prompt responses.

Compared with the 68000’s, the Z86 has a much smaller instruction set and fewer
interrupts (6 interrupts versus 18 in the case of DragonBall MC68EZ328). Yet the Z86
is capable of vectored interrupt handling, making it attractive for rapid prototyping
of programming tools.

The dissertation presents algorithms that have been designed and implemented to
assist developers with three tasks that can consume a significant part of a real-time
system programmer’s time:

e Stack-Size Analysis: On the 786, the stack exists in the 256 bytes of register
space, and it is critical that the stack does not overflow into other reserved
registers, corrupting data used elsewhere in the program. At the same time,
overestimating the stack requirements takes away badly needed registers. The
algorithm given later in this chapter finds safe and tight upper and lower bounds
on the maximum stack size for all but one of the test programs examined.

e Type Checking of Stack Elements: Items are taken off the stack either with a
POP instruction, or when returning from a procedure or an interrupt handler.
The analysis presented in this dissertation uses an implicit type system with just
four types — interrupt information, code address, interrupt mask, unknown —
and checks that the data on top of the stack has the right type at the appropriate
time.

e Interrupt-Latency Analysis: The microcontroller systems examined need to han-
dle interrupts within hard real-time bounds. Chapter 5 presents techniques for
finding upper bounds on interrupt latencies.

While the overall analysis of these embedded systems requires domain-specific
knowledge about the applications, the tools presented in this dissertation accept as
input the bare, unannotated Z86 assembly code.

ZARBTI’s stack size bounding functionality is based on a known algorithm for
model checking of pushdown systems [79]. That algorithm is closely related to the
style of interprocedural analysis for C that has been studied by Reps [83]. However,
the presence of vectored interrupt handling creates additional challenges, as explained
next.

4.1.1 The Stack Size Problem

Given a program in Z86 assembly language, the stack size checking algorithm first
builds a control flow graph (as previously defined in Section 3.1), and then runs the
desired analyses on the CFG. The key question in this concerns the way to abstract
a Z86-machine state into a node in the CFG:

24

How much of a Z86-machine state should be represented in a CFG node?

In one extreme, a node contains the whole Z86-machine state. Such a flow graph
would be huge, that is, in the worst case, about 226*8 = 22048 podes. It is beyond
current means to represent that many nodes.

In the other extreme, a node represents just the program counter (PC). Such flow
graphs are useful for interprocedural analysis of C programs [83], yet they are of little
value in the presence of vectored interrupts. When control transfers to an interrupt
handler, the current address is placed on the stack, and all interrupts are disabled. If
one does not model the interrupt mask register (IMR) in which it is recorded whether
interrupts are enabled or disabled, then the analysis is led to believe that a new
interrupt can occur as soon as control has arrived at the handler. This process can
be repeated, with the result that the stack, seen from the analysis’s point of view,
can grow without bounds.

There is another consequence of not modeling the IMR; if an interrupt request
arrives at a given execution point it cannot be guaranteed that the request will be
handled within a finite amount of time. The core of the problem is that false interrupt
handler paths may appear in the graph if the IMR value is not approximated.

The above observation makes it clear that the stack size checking algorithm needs
to model at least some of the IMR. On the Z86, the IMR consists of seven bits, of
which one is the master bit which enables or disables all interrupt processing, and six
others enable or disable individual interrupts [100]. An interrupt will only be handled
if both the master bit and its own bit are set. When an interrupt handler is called,
the master bit is automatically turned off. If an interrupt is not handled as soon as
it arrives, it will wait (in the IRQ register) until the IMR changes to a value that
entails that the interrupt can be handled.

One could consider modeling the PC and the master bit of the IMR. However, this
is just as troublesome as modeling only the PC, as one of the tasks of an interrupt
handler often is to re-enable interrupts by turning on the master bit. When this
happens in the interrupt handler itself, the analysis is led to believe that an interrupt
for that same handler can now occur exactly at the point of setting the master bit,
leading to a stack growing without bounds, as above.

The CFG used for stack size analysis therefore models the PC and the IMR in
their entirety. A Z86-assembly program is typically on the order of 2! lines of code
(because there is 4K of instruction ROM), and the IMR is seven bits, so an upper
bound on the number of nodes is 2!°77 = 27, Because of the six interrupt sources,
each node in the flow graph can have up to six edges going to interrupt handlers, and
one or more edges corresponding to non-interrupt operation. This means that the
graph is likely to be less sparse than often seen in program analysis of C programs. It
may be possible to model some abstraction of the PC and the IMR, thereby reducing
the overall size of the state space, but this idea is not explored by this dissertation.

The CFG can model more than the PC and the IMR, but it is not clear in general
which other registers it would be beneficial to model. Chapter 5 describes the addition

25

of stack information to each node in order to refine the model. The next key question
is:

Can modeling just the PC and the IMR be sufficient for a useful program-
ming tool?

In other words, can the modeling of the PC and the IMR be a good middle
ground between modeling the whole machine and modeling the PC? The criteria for
usefulness in this context are given by

e the degree to which the resultant CFG is a good basis for the three kinds of
checks that the tool should support: stack-size analysis, type-checking of stack
elements, and interrupt-latency analysis; and

e the amount of time and space it takes to build the CFG and perform the checks.

The remainder of this chapter presents an experimental evaluation of the above ques-
tion.

4.1.2 Results

The stack size checking algorithm presented here is able to produce tight, safe
bounds on maximum stack usage for six of the seven proprietary embedded systems, as
well as a number of other interesting test inputs. In addition, the CFG’s constructed
are annotated with information about time, space, safety, and liveness, which allows
verification of several code safety properties. The stack size estimation technique
presented in this chapter is one of the first to give an efficient and useful static
analysis of assembly code, and appears to be the first to use symbolic execution
over an interrupt mask register to produce a tractable flow graph in the presence of
vectored interrupts.

The prototype implementation includes a Z86 simulator, which has provided lower
bounds on the maximum stack sizes, against which the upper bounds can be com-
pared.

In six of the seven commercial cases, and for all of the additional test input cases,
the algorithm gives an excellent estimate of the maximum stack size. In all cases,
this estimate was either exact (that is, equal to the lower bound that we found via
simulation), or at most two bytes more than the lower bound.

For the seventh commercial case, the stack size cannot be bounded without a
more detailed analysis including either explicit loop bounds, or enough data flow
information to infer loop bounds.

Also in six of the seven commercial cases, the type-checking algorithm was able to
check the types used in all stack manipulations, and found no errors. The seventh case
could not be checked, because the stack bound must be known for the type-checking
algorithm to succeed. Several additional test inputs were created with deliberate

26

; Constant Pool (Symbol Table).
; Bit Flags for IMR and IRQ.
IRQO .EQU #00000001b

; Bit Flags for external devices
; on Port 0 and Port 3.

DEV2 .EQU #00010000b

; Interrupt Vectors.
.ORG %00h
.WORD #HANDLER ; Device O

; Main Program Code.
.ORG %0Ch
INIT: ; Initialization section.
0C LD SPL, #OFOh ; Initialize Stack Pointer.
OF LD RP, #10h ; Work in register bank 1.
12 LD P2M, #00h ; Set Port 2 limnes to
; all outputs.
15 LD IRQ, #00h ; Clear IRQ.
18 LD IMR, #IRQO
1B EI ; Enable Interrupt O.

Figure 4.1. Example Program (part 1)

stack manipulation errors; all errors were caught by the prototype implementation of
the algorithm.

In summary, by modeling only the PC and IMR registers, the stack size checking
algorithm is able to provide solid stack-usage bounds for six out of the seven real-time
systems. The analysis is sufficiently fast and precise to be useful in practice. However,
providing stack-usage bounds for the seventh system, and execution time bounds in
general, requires modeling of additional information, as discussed in chapter 5.

4.2 Model Building

This section gives an informal presentation of concepts that will be rigorously
defined in section 4.3. Figures 4.1 and 4.2 show a small Z86 program featuring a
main program loop, and a single interrupt handler, both of which can call a shared
procedure. Figure 4.3 shows the corresponding flow graph.

27

START:
1C DJNZ
1E LD
20 CALL
23 JP

SEND :
26 PUSH

DELAY:
28 DI
29 LD
2C DJNZ
2E CLR
30 POP
32 RET

HANDLER:
33 LD
35 CALL
38 IRET

.END

r2, START ;
rl, P3
SEND

START

IMR

PO, #DEV2
r3, DELAY
PO

IMR

r2, #00h
SEND

b

b

Start of main program loop.

If our counter expires,
send this sensor’s reading

; to the output device.

Send Data to Device 2.
Remember what IMR was.

Mustn’t be interrupted
during pulse.

Select control line
for Device 2.

Short delay.

Reactivate interrupts.

Interrupt for Device O.

; Reset counter in main loop.

Interrupt Handler is done.

Figure 4.2. Example Program (part 2)

Each node in the call graph contains two pieces of information. The first is the
value of the program counter, and the second is the value of the IMR. For this diagram,
representation of the IMR has been simplified to two bits; the first represents the

master mask bit, and the second represents the IRQ0O mask bit. (The example only

makes use of interrupt zero.)

Control flow begins in the upper left corner of the graph, at the label “INIT”.
At this time, the program counter is 0C, and the IMR is cleared. Across the top of
Figure 4.3, straight line initialization code is executed, with no interrupt enabled. At
the node labeled “START”, the PC has value 1C, and both the IRQ0 and master
IMR bits have been set. From this point on, all nodes with an IMR of 11 have an
outgoing edge leading to the interrupt handler.

28

INIT: START:
0C|00|—»{OF| 00> 12| O 15[0 18 00—» 1801 1¢C11 e
HANDLER: ;A
33/01 13 = = 1E|11] | |

v v \\Ell
35/01 226|011 28| 01/» 29|01 «;(28|11|«'1{26|11|«'2{20|11| | -
A A ; J
v : /// \Qj
2C|01 . |
& & W & & \
v | 1
2E|01 | |
\ \ \ / /: \ / \ 4 :
38|01 4 32|01 fa- - -1] 30/01) -~ 32(1117%% 23|11 |
N EF/ 777777 P Pl |

?3

Figure 4.3. Example Program Flow Graph

Edges labeled with “!” or “?” correspond to pushing and popping operations,
respectively. The number following the punctuation on these edges indicates the
number of bytes involved in the stack operation. The PUSH instruction pushes one
byte on the stack, while CALL pushes two, and an interrupt pushes three. Pop edges
are distinguished with dashed lines. Additional “summary” edges generated by the
analysis are labeled “ex”, and will be explained in a later section.

In order to calculate maximum possible stack size, a depth-first traversal of the
graph is made, totaling up the push values of all the edges along each path. Pop
edges are not traversed, but the summary edges are. In the figure, this means that
the dashed edges are not considered during the search for the longest possible stack
length. From this, a path with maximal stack size is found.

For the example program, the maximum stack size can be seen to be nine bytes.
In short, the maximal path is to take an interrupt from node (28,11), where the size
is already three. The interrupt pushes three more bytes on the stack to get to the
handler, at (33,01). From there, the interrupt takes the edges to nodes (26,01) and
(28,01), adding three more bytes to the stack for a grand total of nine bytes.

All of the bold-edged nodes in the flow graph have a finite worst-case path to reach
the interrupt handler. Nodes with thin edges, however, defy the analysis presented

29

in this chapter when trying to calculate maximum interrupt latency. Chapter 5 will
present the modifications necessary for the deadline analysis algorithm to bound
interrupt latency at these nodes.

4.3 Model Checking
4.3.1 The 7Z86 Assembly Language

As alluded to earlier, the Z86 architecture has several special registers that deal
with interrupts. The Interrupt Mask Register (IMR) contains information about
which interrupts are turned on. Six of the bits control interrupts zero through five.
The Interrupt Request Register (IRQ) indicates which interrupts have fired, but have
yet to be handled. A third register is used to set interrupt arrival tie-breaking prior-
ities, but tie-breaking does not come into play for this analysis.

The 786 architecture supports an indirect register addressing mode. The analysis
relies on the unchecked assumption that the special registers IMR, IRQ, and SP are
not altered indirectly. Checking the assumption would require further analysis of all
256 registers and is left to future work.

The analysis algorithms in this dissertation restrict direct manipulation the IMR,
IRQ, and SP registers, as discussed below. Other forms of use can be located easily,
and are explicitly flagged as errors by an early pass of the tool.

e IMR values are allowed to be pushed on the stack, popped from the stack,
or manipulated by any binary operation in which one operand is a numeric
constant, and the other is the IMR. While other operations on the IMR are cer-
tainly possible to express in the Z86 assembly language, the analyses presented
here do not allow such operations. These constraints on the expressiveness of
the language allow precise sets of possible IMR values to be calculated for all
program points, and have proven to be sufficiently flexible to admit all seven of
the commercial benchmarks.

e [RQ is read only. The Z86 architecture allows programs to write to the IRQ
register, essentially raising interrupt requests manually. There does not appear
to be an inherent barrier to analyzing programs that use this feature, but it was
not encountered in any of the benchmark programs, so it has not been modeled
in these analyses.

e SP is allowed to be manipulated implicitly by stack-specific instructions or
explicitly by initialization instructions. In the commercial benchmarks, it is
not unusual for the stack to be cleared by an explicit reloading of the initial
stack pointer, so this is admitted by the analysis, and is noted by a special
nuke stack edge in the control flow graphs. However, the analysis algorithms
do not allow the stack pointer to be reinitialized to arbitrary values, and will
reject any program that loads more than one numeric constant into the stack

30

pointer register. The nuke edge is a special case, which for simplicity will be
omitted from discussion for the rest of the chapter; in the stack-size analysis, it
is treated like an e edge from the start node of the program to the destination
of the nuke edge.

There are other unchecked assumptions in this dissertation’s stack-size analysis.
It is assumed that the system stack does not overlap with registers used for other
purposes, and therefore is not corrupted by other instructions. The very purpose of
this stack-size analysis is to help the system developer check this assumption.

It is also assumed that the Z86 watchdog timer functionality does not interfere
with control flow. The Z86 has a WDT opcode, which once executed, will reset the
processor if another WD'T opcode is not executed within a programmable deadline.
This feature is intended to allow system designers to prevent the software from locking
up by entering an unintended infinite loop or other unforeseen control flow. Watchdog
timer reset therefore signals a serious error in the program, and the analyses currently
assume that watchdog timer effects do not occur. Checking this assumption is an
interesting problem all by itself, one for which these analyses may be extended to
tackle in future work.

4.3.2 From Z86 Assembly Code to a Flow Graph

Given a Z86 assembly program, a CFG is constructed in which each vertex is
labeled with a PC value and an IMR value. The start vertex is labeled with 1) the
PC value for the first line of the program, and 2) the IMR value where all bits are 0.
The graph is built in a demand-driven way such that only nodes that are reachable
from the start node are explored. Each edge represents a possible step of computation.
The flow graph is a conservative representation of the program: while each possible
computation at the program level is represented as a path in the graph, there may
be paths that do not correspond to a computation. (This is the False Path problem,
as mentioned earlier in Sections 2.2 and 3.4.3.)

There are ten kinds of edges, each with a distinctive label, as shown in Figure 4.4.
An edge label indicates how many elements are placed on the stack (or removed
from the stack) by the corresponding step of computation. An edge with label “e”
or “ex” has weight 0, an edge with label “In ...” has weight n, and an edge with
label “?n ...” has weight —n. Label “unk” is used as an abbreviation of “unknown”
in connection with edges of weight 1 that are unrelated to IMR. Some of the labels
also contain the actual values placed on the stack. Many instructions do not change
the stack; they are represented rather anonymously with an edge labeled “e”, which
stands for an “epsilon transition” in the equivalent automaton. Two kinds of edges
do not correspond to any instruction: the edges for implicit interrupt calls, and the
summary edges, “ex”, which are a special class of the epsilon edges.

Conceptually, the graph is built in three passes. First, the edges for the normal,
non-interrupt code are inserted. This includes all instructions that place values on

31

instruction format edge label computation step

(various) e Epsilon edge — no stack change.
(summary) es Epsilon summary edge — no stack change.
PUSH IMR " the value of the IMR is placed on the stack.
PUSH (not IMR) 1 some value (not IMR) is placed on the stack.
CALL (label) 12 procedure call. (return address saved)
(interrupt call) 13 implicit interrupt call. (return + flags saved)
POP IMR 71 the IMR is assigned the value on top of stack.
POP (not IMR) 71 some register (not the IMR) is assigned

the value on top of the stack.
RET 72 return from procedure call.
IRET 73 return from an interrupt handler.

Figure 4.4. Instructions and the corresponding edge labels

e POPIMR e POP (not IMR)
m p m——p
| |
1 (IMR)[71 1 “unk" 1?71 “unk”
|
ey ({ ey ;
—— == n---=-»>q
e RET e IRET
m-——*> [I) m ’ I?
12 (a)[72 13 (s,r)‘ 13
€ IV (S} ;
n————>q n————>q

Figure 4.5. Rules for Inserting Summary Edges

the stack, or do not change the stack; instructions that pop values from the stack are
not yet considered. Second, implicit interrupt call edges are inserted from all program
points, based upon the set of possible IMR values already known from the first pass.
Finally, the graph is closed under the four rules shown in Figure 4.5 and the rule that
the epsilon edges, (labeled “e” or “ey”,) form a transitive relation. In each of the four
rules, the intention is that if the solid edges are present, then the dashed edges must

also be present.

32

The four rules illustrated in Figure 4.5 govern the generation of 1) pop edges that
correspond to removing values from the stack, and 2) epsilon summary edges with
label “ex” that connect the point where values are placed on the stack to the point
where the same values are removed.

Pop edges are not used in this chapter’s stack-size analysis, but matter in later
chapters. The ey edges summarize a net stack size change of zero across a segment
of code with both push and pop edges.

For example, consider in detail the first rule in the upper left of Figure 4.5. The
node n is for an instruction “PUSH IMR”, and there is an edge from n to m that
models the IMR being placed on the stack. Moreover, there is an edge labeled “e”
from the node m to a node p. The node p is for an instruction “POP IMR”. There
could be an arbitrary number of instructions between m and p with a net stack change
of zero, but because epsilon edges are transitive, these cases are the same as the single
edge case. It is now straightforward to calculate the label of a node ¢ that will be
the target of an edge (a pop edge) from p. The pop edge represents removing the
IMR value from the stack and assigning it to the IMR register. The epsilon summary
edge, labeled “ey”, is inserted from n to ¢q. The epsilon summary edge reflects that
the stack size is the same at n and ¢, so it is warranted to allow a shortcut.

Notice that there can be more than one outgoing edge from a node for an instruc-
tion that removes elements from the stack.

The stack size analysis algorithm can be understood as a demand-driven version
of an algorithm for model checking of pushdown systems [79]. Unlike [79], this algo-
rithm generates pop edges on demand, thereby ensuring that only reachable nodes
are considered. The closure process can be done in O(n?) time where n is the number
of nodes in the final flow graph [53].

4.3.3 Stack-Size Analysis

To calculate a stack-size estimate, it is sufficient to consider only edges with
weights 0 or higher. This is a fundamental property of all graphs that have been
closed in the sense explained earlier in Section 3.2.2. The analysis can now calculate
a stack-size estimate by a straightforward depth-first traversal. For all paths from the
start node of the graph, the traversal calculates the sum of the weights of the edges
on the path. The maximum number found in this way is the estimated stack size. In
case the traversal encounters a loop with at least one edge of weight 1 or more, then
the stack-size estimate is “infinite.” Such a loop indicates a possibly infinite loop in
the program where the stack grows each time around the loop. Such a situation may
signify a programming error.

33

4.3.4 Type Checking of Stack Elements

The goal of the type check is to ensure that various instructions are executed in a
machine state where the top of the stack is of the expected type. The type-checking
algorithm uses an implicit type system with just four types:

type == 1 “IMR” | !1 “unk” | 12 | !3.
Edge labels can be mapped to types in the obvious way.
The type check ensures that for every path of the form

[§]
—m —p

n

where p models one of “POP IMR”, “POP (not IMR)”, “RET”, “IRET”, we have
one of the four situations

1 (IMR) R
n — m — p and p models “POP IMR”
1 “unk” e
n — m — p and p models “POP (not IMR)”
12 (a) o
n — m — p and p models “RET”
13 (r,a) o
n — m — p and p models “IRET”.

Such checks correspond to the safety checks of Palsberg and Schwartzbach [74,76],
and can be implemented efficiently as outlined in Section 3.2.2.

4.4 Experimental Results
4.4.1 Benchmarks

The seven proprietary microcontroller systems used for these experiments are
provided by Greenhill Manufacturing, Ltd. (http://www.greenhillmfg.com/). Three
of the controllers, “ZTurk”, “GTurk” and “CTurk”, drive multiple-zone evaporative
cooling systems, often present in poultry barns, particularly for turkeys. “Fan” and
“Serial” run variable speed cooling fans for forced ventilation structures, such as
modern swine barns. “Rop” and “DRop” handle a water quality / reverse-osmosis
filtering system commonly used in car washes.

In addition to the commercial systems, test results are included for a smaller test
program written to display more interesting interrupt behavior than the commercial
benchmarks. This benchmark is labeled “Micro00”, and its full text can be found in
Appendix A.

34

4.4.2 Infrastructure

The Zilog Architecture Resource-Bounding Infrastructure includes an instruction
cycle-level simulator for the Z86C30 architecture, in order to more closely examine
the execution of programs. The specifications for the simulator are taken from the
Zilog product specification available for this architecture, [100]. Where the specifi-
cations have been found to be ambiguous, worst-case assumptions have been made.
Simulation has been chosen because the actual Z86 chips do not contain hardware
provisions for profiling, and because running software on the Z86C30 requires per-
manently burning a particular program into a “one-time programmable” chip, which
would quickly become cost-prohibitive in a research setting. The commercially avail-
able development emulator for this architecture has very limited support for timing
analysis, and does not allow single-step examination of interrupt behavior.

All of the microcontroller systems available to us from Greenhill have the Z86
processors built into a circuit board with several other peripheral chips, and the
software for the systems reflects this fact. The simulator must therefore include
models of this external hardware in order to properly simulate the environment of
the program. Simple state machines provide the minimal interaction necessary to
simulate the normal execution paths of the systems. These state machine models
are generally constructed from the hardware manufacturers’ specifications for the
individual components, and assume worst-case delays wherever possible.

It appears to be a fundamental property of the examined embedded systems that
off-chip resources must be considered in order to undertake any comprehensive mod-
eling of the system. While this kind of information should be readily available to the
system designer in a production environment, it means that tools like the prototype
presented here are less likely to be able to be applied to new systems “out of the
box.”

ZARBI includes pilot scripts that drive the simulator using a genetic algorithm
to search for interrupt conditions that lead to large stack heights. (See Section 6.2.4
for details.) Because these conditions yield actual executable paths in the software,
(rather than “false paths”,) they provide realistic lower bounds for maximal stack
height, against which static analysis results can be compared.

4.4.3 Building the graph

This section displays results taken from running the stack-checking algorithm on
the test suite of programs.

All algorithms presented in this chapter are implemented in Java, and run on the
IBM Java2 SDK 1.3. Runs were made on a 500 MHz Pentium3-based laptop.

The stack-checking implementation has been optimized for speed, but avenues
for further optimization remain. Space usage has not been optimized, and could be
reduced significantly with further effort. However, the current prototype implemen-
tation is sufficiently fast (most runs take a few seconds) and sufficiently compact (at

35

Building the graph
Program | Nodes | Edges | Time | Space
CTurk 1,209 | 2,316 | 4.01 s | 31.6 MB
GTurk 1,681 | 3,101 | 4.20s | 32.2 MB
ZTurk 1,493 | 2,885 |4.12s | 32.1 MB
DRop 1,138 | 2,043 | 4.02s | 31.1 MB

Rop 1,217 | 2,278 | 4.08 s | 31.7 MB
Fan 5,149 | 17,195 | 5.13 s | 39.3 MB
Serial 394 | 1,082 | 3.78 s | 31.0 MB

Micro00 148 222 | 3.16 s | 349 MB

Figure 4.6. Graph size and resource usage for benchmarks

most 40 MB) for experimentation. Naturally, both speed and space usage could be
improved if implemented in C.

All time measurements are averages over 10 runs. To prevent external factors such
as hard disk speed or cache behavior from influencing the simulator results, several
“warm-up” runs are made prior to the recorded runs. The reported time usage is the
real time elapsed for the run from start to finish.

The space measurements were made with top. The space reported is the maximum
total size during the run, including space taken by the Java virtual machine, garbage
collector, and JIT. Measured space usage was deterministic (the same for each run of
the same program).

Roughly half of the time and space usage reported in Figure 4.6 is spent building
the graph; the rest is spent starting the Java virtual machine and parsing the Z86
assembler file. The parser uses the tools JavaCC [96] and JTB [91] for parser generation
and syntax tree manipulation.

4.4.4 Stack-Size Analysis

The upper bounds on the stack sizes found by the analysis are reported in Fig-
ure 4.7, in the column labeled “Upper Bound”. The lower bounds reported in Fig-
ure 4.7 are from the genetic algorithm search with the simulator; because these repre-
sent stack heights from known execution traces, the true maximum stack height must
be no less than these lower bounds.

The stack-size analysis typically takes around 0.1 seconds, and takes little extra
memory beyond the base size of the Java virtual machine. Note that the columns

36

Stack-size analysis

Program | Lower | Upper | Total Total

Bound | Bound | Time Space
CTurk 17 18 4.11s | 31.6 MB
GTurk 16 17 4.31 s | 32.2 MB
Z'Turk 16 17 4.22 s | 32.1 MB
DRop 12 14 4.14 s | 31.1 MB
Rop 12 14 4.18 s | 31.8 MB
Fan 11 N/A | N/A N/A
Serial 10 10 3.87s | 31.0 MB
Micro00 37 37 3.21s | 34.9 MB

Figure 4.7. Stack size results

Total Time and Total Space include the cost of building the graph, as well as the
stack size analysis.

The analysis presented here is unable to ascertain an upper bound on the program
“Fan” because it has the assembler equivalent of a for loop with a PUSH in the
body. This corresponds to a positive cycle in the CFG (see Section 3.2.3). While it is
obvious to a programmer that the number of loop iterations (and therefore the stack
size) is bounded for this particular loop, the analysis algorithm cannot see the bound
based solely on the PC and IMR registers. The prototype implementation includes
provisions in its data structures to model this kind of control flow, but the analysis
extensions have not been implemented at this time.

Despite efforts to limit unrealizable control flow paths in the graphs, the upper
bounds presented in Figure 4.7 may not correspond to genuine execution paths in the
running microcontroller programs. The following approach is used to evaluate the
precision of the upper bounds by finding lower bounds in actual program runs.

ZARBTI’s cycle-level simulator for the Z86E30 architecture includes all but a few
obscure processor features that are not used by the benchmark programs. The simula-
tor can interact with state machine models of external devices, including an intelligent
LCD display, an 8-bit Analog-to-Digital converter, a 9600-baud RS-485 serial port,
and a 64-byte EEPROM chip. The simulator can monitor stack size, and records the
maximal value together with the corresponding program path. Any run of one of the
benchmark programs with some interrupt schedule will generate a lower bound on
the stack height; a genetic algorithm directs the evolution of interrupt schedules to
search for a tight lower bound.

The input to the simulator is an assembly program and an interrupt schedule.
The schedule consists of a number of interrupt request sequences that should be fired

37

during the run in order to test the assembly program. The format of the interrupt
schedules supports both single-point interrupts and periodic interrupts. A full de-
scription of the interrupt schedule file format can be found in Appendix C.

For completeness, the experiments presented above used several strategies to
search for an interrupt schedule that gave as tight a lower bound as possible. These
strategies included simulation with 1) an “expert” interrupt schedule written by a per-
son familiar with the Greenhill microcontroller systems, 2) 1,000 randomized sched-
ules, and 3) 1,000 schedules generated by the genetic algorithm. The genetic algorithm
consistently matched or outperformed the results of the other two approaches. The
lower bounds found by the simulator with the winning interrupt schedule are reported
in Figure 4.7.

4.4.5 Type Checking of Stack Elements

For the six benchmark programs for which the analysis produced a finite stack
size, all stack operations type check. This was also true for all additional test inputs
that were not written with deliberate stack manipulation errors. All of the test inputs
with intentionally broken stack operations were detected and properly flagged. The
tool carries out the checks while executing the closure rules that insert pop edges.

The algorithm for type checking does not apply to programs with unbounded
stack size. Intuitively, this is because in such programs, it is not possible to match
the push and pop operations “one to one.”

4.5 Summary

The experiments shown in this chapter were designed to explore the question,
“Can modeling just the program counter and interrupt mask registers lead to a useful
programming tool?” The answer is certainly yes.

The stack size checking algorithm was able to provide tight upper bounds on six
of the seven proprietary programs. Furthermore, it effectively type checked the stack
operations on those six programs.

The seventh program defies analysis only because of a single loop which depends on
other registers to determine stack size. While this kind of limitation is symptomatic
of the undecidability of this problem in the general case, much work has been done
in the past on handling simple instances, as are likely to occur in assembly programs
of this type. Identification of induction variables and loop unrolling [62], and loop-
invariant specification [67,68] are successful techniques that may be combined with
the analyses presented here to tackle the upper bounds on the seventh program.

As for calculating maximum interrupt latency, PC and IMR values alone are not
sufficiently precise to differentiate nodes with disparate latencies; latency analysis will
be covered in depth in Chapter 5.

38

This work has the potential to impact far more assembly languages than that of
the Z86. The maskable, vectored interrupt architecture present on the Z86 is very
similar to many other processors, such as the Motorola 68000 family, and many RISC
DSP chips. Palm Pilots, handheld digital phones, and many other interrupt-oriented
applications use software that could be amenable to analysis along the lines presented
in this dissertation. While the Z86 programs examined here are on the order of 4K in
size, average Palm Pilot programs are 100K in size, with about three times as many
interrupt vectors. Estimating based upon current results, this would result in graphs
with a few hundred thousand nodes, and a few million edges — still within grasp of
current machine power for analysis. The larger instruction sets and register sets of
these processors are a largely orthogonal issue to the complexity of the analysis, and
only add details to the complexity of the implementation.

A key difference between the Z86 and larger interrupt-oriented processors is the
issue of program progress. With code in ROM, and no capacity for bus errors,
the Z86 processor is guaranteed to always proceed in its computation, regardless of
what garbage instructions it might be forced to execute. (It is possible for a poorly-
written Z86 program to jump to data constants stored in ROM, which would result
in “garbage” being executed.) In short, at least one of the edges leaving each node
in the graph is guaranteed to be taken upon execution. Not so with more complex
processors, where a badly formed jump address could cause computation to stop,
due to a bus error, a protection error, or a misaligned memory address. For these
reasons, additional safeguards, like Typed Assembly Language [59] would be required
in order to provide the necessary structure to guarantee program progress in such a
scaled-up framework. As an added bonus, such typing annotations may assist in elim-
inating “yellow” latency ambiguity in the graph, as will be explained in Chapter 5,
by providing much-needed limits on the flow of critical data. Finally, type systems
could enforce the safety checks on indirect addressing modes and direct addressing
instructions that the current implementation neglects.

The stack size estimation technique presented in this chapter is one of the first to
give an efficient and useful static analysis of assembly code. It employs static analysis
to provide safe, tight bounds on stack size for interrupt-driven Z86 microcontroller
systems.

The next chapter will present techniques for bounding interrupt latency in interrupt-
driven systems.

39

5 DEADLINE ANALYSIS

The deadline analysis algorithm presented in this chapter combines timing oracles
with static analysis to provide safe bounds on interrupt latency for real-time systems
implemented on the Z86 platform.

This chapter presents the difficulties of deadline analysis in such systems, the
algorithm used for deadline analysis in this dissertation, and the results of applying
the prototype implementation to a suite of commercial embedded systems.

After a brief overview in Section 5.1, Section 5.2 presents a program which will
be used as a running example throughout rest of the chapter. Section 5.2.3 presents
the concept of oracles, and Section 5.2.4 presents multi-resolution static analysis.
In Section 5.3, experimental results are given, and Section 5.4 walks through an
interactive deadline-analysis session with ZARBI.

5.1 Overview

Correctness of real-time software can be thought of as having two parts. The first
issue is correctness of input-output behavior, and the second is timeliness of that be-
havior. Verification and validation of input-output behavior has been widely studied;
there are many static-checking tools available, including type checkers [17], bytecode
verifiers [49], and model checkers [19], as well as numerous tools for supporting the
test process. Verification of timing properties is more difficult, but progress has been
made toward understanding the foundations of checking the timing properties of real-
time software in work such as [5] and [6]. Major open issues still remain, due to the
low-level nature of real-time systems. Many are still implemented either in assembly
language or at lower levels, such as FPGAs or custom-built ASICs. Even when real-
time software is written in a higher-level language such as C, it is desirable to check
the real-time properties of the compiled code because it can be difficult to predict the
effects of the compiler. Most previous work on analysis of assembly code [99] is not
concerned with timing properties.

5.1.1 The Deadline Analysis Problem

The analysis presented later in this chapter checks timing properties of real-time
assembly code. A prototype tool has been constructed as a demonstration of the
practical benefits of these techniques. This work focuses on interrupt-driven software,
where a signal from a source outside the direct control of the software can cause
computation to be interrupted by control being transferred to an interrupt handler.

40

Typical interrupts in the systems analyzed in this dissertation can occur because new
sensor data is available, a signal pulse arrives at the controller, an internal timer
goes off, or for many other reasons. The specification of an interrupt-driven system
will usually list deadlines for the handling of each type of interrupt. It is part of
the correctness of the system that all deadlines are met. Reasoning about the timing
behavior of interrupt-driven software is complicated because interrupts can be enabled
and disabled by the software itself, an interrupt handler can be interrupted, and
interrupts can arrive in a myriad of different scenarios. It is critical to know whether
an interrupt arrives at a point where it is enabled and can be handled right away,
or whether it arrives 50 clock cycles later, when, for example, the system has just
disabled interrupt handling and will be doing other work for the next two million
clock cycles. Deadline analysis seeks to answer the following question.

Deadline Analysis: Will every interrupt be handled before the deadline?

One can approach this question in a testing-based manner, by trying a suite of in-
terrupt schedules and measuring whether all deadlines are met. Developing a good
suite of interrupt schedules is a difficult problem because of the fine granularity of the
timing domain. Even if a clock cycle is as long as one microsecond, it is very difficult
to engineer or discover interrupt schedules that lead to any reasonable coverage of
the program. Statement coverage would be easy in this setting, but is not a useful
coverage criteria because it does not take into account the interplay of different in-
terrupts and the times when they occur. Branch coverage is more accurate but far
more expensive; at every program point where an interrupt is enabled, there is an
implicit branch to the handler. Covering all branches can therefore be a combinatori-
ally explosive problem. In summary, the problem with a test-based approach is that
it is difficult to test a sufficiently wide variety of schedules to gain confidence in the
software.

An alternative is a static-analysis-based approach to deadline verification. As
shown in Chapter 4, static analysis can be successfully employed to bound stack
usage in interrupt-driven systems. However, when timing analysis was applied to the
model presented in Chapter 4, worst-case execution time could not be estimated for
most of the paths in the program.

Static timing analysis for embedded systems cannot succeed without information
about the behavior of external devices that interface with the embedded processor.
For example, if the processor uses a loop to busy-wait on a new value from a port,
static analysis will view it as an infinite loop, even if the programmer knows that
an external device will deliver a new value every 100 milliseconds. Once the static
analysis has detected that there is an infinite loop on the path from A to B, it will
determine that if an interrupt occurs when the execution is at program point A and
the handler for the interrupt has exit point B, the handling may never terminate,
let alone meet its deadline. In summary, the static analysis approach presented in
Chapter 4 fails to perform useful deadline analysis.

This chapter explores the thesis that better results can be obtained by combining
static analysis and testing. In practical terms, the fundamental challenge is:

41

Challenge: Can static analysis significantly decrease the required testing
effort?

There are previous success stories of combining static analysis and testing. For ex-
ample, in the area of regression testing, rather than re-running the software on the
whole test suite every time a change has been made, one can use static analysis to
conservatively estimate which test inputs must be tried again [37]. In the deadline
analysis setting, static analysis can reduce the required testing effort, allowing the
testing effort to be more focused on key areas of the code that affect deadlines.

The deadline analysis presented here uses test oracles [85] to answer certain worst-
case execution time (WCET) questions that cannot possibly or easily be answered
by static analysis. An oracle asserts to the static analysis that if execution reaches
program point A, then it will reach program point B at most ¢ microseconds later.
Returning briefly to the high-level CFG abstractions of Chapter 3, oracle assertions
are expressed in the CFG’s as time summary edges (Section 3.5.1). When A and
B are close, then a much smaller testing effort is required to verify such an oracle
assertion than to do the entire deadline analysis. Moreover, if more than one oracle
assertion is needed for a program, the work of validating each assertion can be done
in parallel. The goal is to combine static analysis with timing oracles to improve the
precision of the deadline analysis.

Deadline analysis cannot be performed without WCET analysis. However, most
research on deadline analysis assumes that WCET analysis has already been suc-
cessfully performed, and most published papers on WCET analysis do not consider
the needs of deadline analysis. Many papers in this area concentrate on estimat-
ing the execution time from one program point to another, usually from start to
finish, sometimes even focusing on a particular input, and they rarely handle inter-
rupts [10, 20,27, 30, 77,93, 97]. Deadline analysis is more complicated than simple
WCET analysis because the interrupts can occur at any time and their handlers can
be enabled or disabled at any program point. In deadline analysis, the starting point
for the analysis is not given. It is a task of the analysis to identify the worst-case
program point at which an interrupt can occur and then estimate the WCET to the
exit point of the handler for that interrupt.

In summary, deadline analysis for interrupt-driven assembly code remains a diffi-
cult and little-studied problem.

5.1.2 Results

ZARBI has been designed and implemented to be used as a tool for integrated
deadline and WCET analysis of interrupt-driven assembly code. Expressed in simplest
terms, the ZARBI methodology is:

deadline analysis = static analysis + testing oracles.

For six commercial microcontroller programs, each on the order of 1000 lines
of code, less than 17 oracles were sufficient to complete deadline analysis. In the

42

Green

Figure 5.1. Coloring a Flow Graph

experimental session presented in Section 5.4, an expert user was able to interactively
add all of the required oracles for one of the commercial benchmarks in less than an
hour.

The technique presented here uses a multi-resolution analysis (Section 3.4.4),
which allows exploration of difficult segments of the control flow graph in sufficient
depth to bound the latency while avoiding the intractable complexity that would arise
from using such fine-grained analysis over the whole program.

The static analysis proceeds by building and coloring a flow graph. Each node is
given one of five colors: Green, Magenta, Blue, Yellow, and Red. Intuitively, Green
means that WCET can be estimated, Magenta means that starvation is possible,
Blue means that starvation is possible at a later node, Yellow means that the analysis
thinks that the deadline might not be met, and Red means that the analysis is certain
that the deadline cannot be met. For the test suite, no red nodes were found, the
analysis was able to eliminate all yellow nodes with the addition of oracles, and very
few nodes were magenta.

Figure 5.1 illustrates a flow graph at the time the deadline analysis is complete,
that is, when all yellow nodes have been eliminated. Notice that “other Handler” can
starve an interrupt that is to be handled by “Handler”.

The deadline analysis presented here is intended to be used as part of a three step
process. For a given interrupt, (1) add oracles until all nodes are green, magenta,

43

or blue, (2) use simulation and testing to find a WCET for the magenta clouds, and
(3) combine the WCET’s from the green, blue, and magenta clouds to compute the
WCET for handling the interrupt.

5.2 Example Analysis
5.2.1 A Program and its Flow Graph

The example program shown in Figure 5.2 is a short excerpt of Z86 assembly code
designed to exhibit interrupt latency characteristics hostile to static analysis. There
are two vectored interrupt handlers, IRQVCO and IRQVC1, both of which do nothing
but execute the return-from-interrupt instruction, IRET. The procedure PROC pushes
a value from a register onto the stack, pops it off, and returns. The main loop, LOOP
branches to itself infinitely. The OUTLP loop outputs the bytes 255 through 1 to an
external data port and terminates, while the BSYLP loop waits until data from an
external port arrives with 0 as the most significant bit.

The two-digit hexadecimal numbers along the leftmost column of the figure are the
ROM addresses that would be generated for this program if it were actually compiled
into machine code. These addresses will be used throughout the rest of this section
to refer to specific lines of the example.

Figure 5.3 shows the flow graph constructed for the example program in Figure
5.2. Each node in the graph has three pieces of information:

e Code address — the value of the instruction pointer when the processor begins
executing the instruction. The upper leftmost node in the graph (“INIT”) con-
tains address “0C”, which is the first instruction executed by the Z86 processor
on powerup.

e IMR value — the bits in the Interrupt Mask Register control vectored interrupt
handling by the Z86 processor. The layout of the IMR is “M.543210”, where bit
“M” controls global interrupt handling, and the lower order bits enable the six
correspondingly-numbered interrupt sources. The seventh bit is reserved. The
node at INIT has IMR value “00”, indicating that all interrupts are turned off,
while the node at LOOP has IMR value “83”, indicating that vectored interrupt
handling is turned on and the handlers for interrupts 1 and 0 are enabled.

e Stack context —initially, this field contains the top element on the system stack,
“{}” for an empty stack, or “?” when the exact value on the top of the stack is
irrelevant. As shown later, multi-resolution analysis may add additional items
of stack context to nodes as needed.

Solid arrows in the graph represent possible control flow between nodes. When
the transition between two nodes involves a change in the stack, the edges have been
annotated with “!” and “?”. The notation “!3” indicates an operation that pushes
three bytes onto the stack — an interrupt. (When an interrupt handler is invoked,

44

.0ORG %00h ; INTERRUPT VECTOR TABLE
.WORD #IRQVCO ; Vector IRQO
.WORD #IRQVC1 ; Vector IRQ1
.0RG %0Ch
INIT: ; INITIALIZATION
0C CALL PROC ; Call a little procedure.
OF CALL PROC ; Call it a second time to introduce
; an artificial yellow cycle.
12 LD IMR, #81h ; Enable global interrupts and IRQ handler O.
OUTLOOP: ;OUTPUT LOOP
15 LD P3, rl ; Send the contents of rl out data port 3.
17 DJNZ ri, OUTLOOP ; Dec rl, jump to top of loop if not zero.
19 CLR IMR ; Disable interrupts.
BSYLOOP: ; INPUT LOOP
1B TM P2, #80h ; Check the high bit on data port 2.
1E JR NZ, BSYLOOP ; If the bit is 1, continue looping.
20 LD IMR, #83h ; Enable global interrupt handling,
; and both handlers 0 and 1.
LOOP: ;MAIN PROGAM
23 JP LDOP ; An infinite loop.
; SUBROUTINES
PROC: ; This subroutine just pushes and value
26 PUSH r0O ; onto the stack, and then pops it back
28 POP 1rO ; off before returning. Its sole purpose
2A RET ; is to confuse the analysis tool and
; demonstrate the benefits of adaptive
; slicing.
; INTERRUPT HANDLERS
IRQVCO: ; Both of these handlers do nothing except
2B IRET ; execute the return from interrupt
IRQVC1: ; instruction. Even so, the complexity
2C IRET ; that arises from having both in play
.END ; at the same time causes all five colors

; from our analysis to appear.

Figure 5.2. Example Program

the Z86 pushes two bytes of return address and one byte of condition code bits onto

45

INIT:

OUTLP:

BSYLP:

LOOP:

0C

{

00

OF

{

00

12

00

{

12
026

» 26

00

{OF}

/ZA

00

{OF}

28

00

{12}

00

{7}

15

81

{

?2

2A

00

{12}

17

81

{}

?3

2B

01

{15}

19

81

{

?3

2B

01

{17}

1B

00

{

1E

00

{

20

00

{

?3

13

2B

01

{19}

—p

23

83

{

-«

13 ?3

%

2B

03

{23}

2C

03

{23}

Figure 5.3. Example Program Flow Graph

the stack.) The notation “?2” indicates two bytes being popped off of the stack — a
return from a procedure call. Dashed arrows in the graph represent stack summary
edges, as defined earlier in Chapter 4.

46

5.2.2 Initial Coloring of the Example Graph

The designer of the example program in Figure 5.2 would like to know if the
tasks corresponding to interrupts 0 and 1 will meet their deadlines. This requires
information about the minimum inter-arrival time for each interrupt source. But even
before that kind of data can be considered, there is another key piece of information
that any such analysis must have: the WCET of the program with respect to interrupt
latency. The maximum possible delay between the arrival of an interrupt request and
subsequent handling of that request must be known in order to make any accurate
statement about the system’s ability to meet deadlines.

In order to perform deadline analysis for a given interrupt, the algorithm classifies
the nodes in the flow graph into five colors. Three of those colors will be explained
here; two more will be covered in Section 5.2.4.

e Green nodes in the graph are those from which computation will inevitably
reach the handler of interest. For a green node, the analysis can compute the
WCET from the node to the handler in linear time (see Section 3.5).

e Red nodes are those from which it is impossible to reach the handler of interest.
In ZARBI’s model of computation, this would be a significant program error,
such as an infinite loop with interrupt handling disabled. The test suite of
production microcontroller software contained no such errors, so red will not be
discussed any further in this chapter.

e Yellow nodes are those which could not be definitively classified as green or red
for the handler of interest.

When the analysis colors the example system flow graph (Figure 5.3) with respect
to interrupt handler 1, the nodes with addresses 2C, 23, and 20 are colored green, as is
the node for the lowest instance of the interrupt zero handler, 2B, off of the LOOP node.
Nodes 1B and 1E are colored yellow because the analysis cannot statically determine
how long it will take to complete the BSYLP loop. Finally, since the remaining nodes
in the graph above BSYLP can reach interrupt handler 1 only through BSYLP, they too
will be colored yellow in the initial round.

Eliminating all yellow nodes in the graph would allow the analysis to give firm
bounds on the execution time of any path in the program leading to the interrupt
handler. The yellow nodes fall into five basic categories:

e Fxternal Yellow nodes comprise a cycle that depends on external input. These
cannot be resolved through static analysis, and will require some form of ad-
ditional information about the external environment of the controller. (For
example, the node with PC value 1B in Figure 5.3 is part of an external yellow
cycle.)

e Ultra Yellow nodes comprise a cycle in the graph corresponding to some kind
of unbounded loop.

47

e Starvation Yellow nodes are yellow because the interrupt handler of interest
can be starved (delayed indefinitely [16]) by another interrupt source calling its
own handler frequently enough to prevent the processor from making progress
toward the handler of interest. (Nodes 15, 17, and 19 in the example can be
starved by the handler starting at 2B.)

e Artificial Yellow nodes comprise unrealizable cycles that appear in the graph
as a result of implicit path merging. (The cycle of OF, 26, 28, and 2A in the
example is an artificial yellow cycle.)

e Upstream Yellow nodes are yellow only because they are upstream of other
yellow nodes. (Nodes 0C and 12 in the example are upstream yellow.)

Intuitively, yellow represents a “don’t know” category of nodes which lie along pos-
itive cycles in the CFG. External and ultra yellow nodes can be dealt with through
the use of oracles, as explained in the next section. Artificial yellow nodes are elim-
inated using adaptive slicing, as outlined in the section on multi-resolution analysis.
Starvation yellow nodes will be assigned a new color, to be dealt with by simulation
and testing. Finally, upstream yellow nodes will disappear when the other four classes
of yellow nodes are eliminated.

5.2.3 Testing Oracles

Real-time, interrupt-driven software can contain loops that cannot be bounded
through static analysis. Synchronous communication with off-chip resources, deci-
sions predicated on external data, or interaction with the user can be expressed as
loops whose bounds depend on additional information outside the realm of the system
source code.

The BSYLP area of the example system is such a loop. It is a simplified version of a
busy-wait loop found in several of the production microcontroller systems. Typically,
such a loop could be waiting for a peripheral device to signal that it has received the
last command, and can be issued further commands. The designers of the system
would know that the manufacturer of the device guarantees the maximum response
time for this operation will be, for example, 40mS, a fact that cannot be ascertained
from the source code. In order to take advantage of this external information the
analysis uses an oracle, an entity that answers questions about latency that cannot
be answered by static analysis.

An oracle gives an assertion of the form:

Address, — Addressy = Latency

which says that the program will take at most Latency machine cycles to get from
Address; to Addresss.

When constructing the initial control flow graph, information provided by the
oracle is used to insert time summary edges from a node N in the graph with address

48

! |

BSYLOOP:|1B| 00| {} j BSYLOOP:|1B| 00| {}
¥ ¥ j

iTnne::
1E| 00| {} 1E| 00 {} | 32000C
v v |
20| 00| {} 20000 -
(a) before (b) after

Figure 5.4. Time Summary Oracle in the Example

Address; to a node M in the graph with address Address, such that M and N have
the same IMR value and stack context. It was initially anticipated that the analysis
would need more complex syntax for specifying oracle edges, such as pattern matching
on IMR values or stack arithmetic. However, in the six production microcontroller
systems examined, the address-matching-only edges have proven sufficient to bound
all of the external yellow loops.

The semantics of these time summary edges is such that the color of the destination
node can be safely extended backward to the source node of the summary edge. This
does not in itself imply anything about maximum latency between nodes that lie
along a path from the source to the destination. The time summary applies strictly
to the maximum latency between two nodes touched by the time summary edge.

For the example program, a time summary oracle specifies that the BSYLP loop
takes at most 320,000 machine cycles (40mS on the example architecture). The input
to the oracle is:

[0x001B] -> [0x0020] = 320000

The resulting change to the graph is shown in Figure 5.4. The time summary edge

from 1B to 20 (which is already a green node) allows 1B to be recolored green. This in

turn causes 1E to be recolored green as well, so this oracle edge has eliminated BSYLP

as an obstacle to determining maximum interrupt latency for the entire program.
This dissertation uses oracles in three ways:

49

e Furternal event delays — bounds for loops that rely on data external to the
system, such as bytes arriving on the input ports of the processor.

e [nternal loop bounds — many of the for-loop style constructs could be bounded
using well-known static analysis techniques [27,62]. However, implementing the
proper structural loop analysis for assembly language source, without any an-
notations from the programmer, could be far more expensive than ascertaining
the loop bounds manually. Many of the loops found in the benchmarks are
trivially bounded by casual examination of the code, and the time summary
oracle construct is sufficiently general to bound the maximum loop execution
time. This would not be a preferred use of the tool in practice. An industrial
strength version of ZARBI would infer these bounds statically, or interactively
assist the programmer in annotating the code with proper bounds. The current
tool leaves this for future work.

e Internal data dependent loop bounds — a small number of loops in the test suite
relied not on immediate constants near the top of the loop, but rather on data
elsewhere in the program. The most common example of this was a display
routine that iterated over a zero-terminated ASCII string. Techniques exist to
automatically infer these kinds of bounds, but for simplicity of implementa-
tion, these were not employed. Instead, bounds on these loops were manually
ascertained, and equivalent time summary edges were inserted.

Fully two thirds of the input provided to the time summary oracle for these ex-
periments were loop bounds that could either be statically checked as annotations or
statically inferred by other means. The remaining third of the input was for external
event delays of the kind that could not possibly be determined statically. A very
small number of the input items were for loops dependent on internal data, which
could probably be determined with a very thorough flow analysis of all registers in
the program.

The interface provided to assist the user in giving these assertions to the oracle
is quite straightforward. After initial coloring of the graph, the tool produces a list
of border yellow nodes — yellow nodes that are one edge away from green nodes.
Typically, these will be branch or jump instructions that comprise the bottom of a
loop. In the case of the example program, the prototype tool would produce the
result,

Border Yellow instructions:
LOO1E: JR NZ, LO0O1B

directing the user to the BSYLP loop.

The correctness of assertions made by the user to the oracle are taken for granted
by the current system. Assertions must be admissible (Section 3.5.1) for the overall
analysis to produce correct results. In practice, one would want to concentrate system
testing or simulation on these areas to gain confidence in the validity of the assertions.

50

However, the key point to be made is that the static analysis has greatly reduced
the sheer volume of program states that must be tested. In each of the production
microcontrollers analyzed, there were fewer than 20 overall assertions to the oracle,
each of which covered only a handful of nodes in the graph, out of tens or hundreds
of thousands of nodes in the graph overall.

Static analysis can reduce the size of the latency testing problem from an utterly
intractable scale down to a subset of the program small enough that one could con-
ceivably use exhaustive simulation to ascertain the remaining WCET information, or
apply other finer-grained and less-scalable analyses.

5.2.4 Multi-Resolution Analysis

Initial construction of the control flow graph includes estimates of the possible
IMR values and top stack elements for each node. Abstracting away the rest of the
machine state implicitly merges control flow paths, thereby allowing the size of the
graph to remain tractable — typically much less than a million nodes, rather than the
227 nodes which is the worst case for this model. (7 bits of IMR, 10 bits of stack
element, and 10 bits of PC = 27 bits per node.) However, the imprecision of having
nodes distinguished by only one element of stack context (analogous to 1-CFA in flow
analysis parlance [90]), can result in artificial cycles appearing in the control flow
graph.

Such is the case in the example program, where procedure PROC is called twice
within a segment where interrupt handling is disabled. Ignoring for a moment the
question of how to bound latency from node 12, the INIT segment of the graph
would still be colored yellow because of the path [0F,00,{}], [26,00,{12}], [28,00,{?}],
[2A,00,{0F }], and back to [0F,00,{}]. This is a false path [4], which does not corre-
spond to genuine control flow — the second call to PROC will return to the originating
call site, not the previous call site.

The approach to multi-resolution analysis shown here improves the control flow
graph by eliminating many unrealizable paths.

False paths are a well known problem in control flow analysis, (see Section 2.2); one
solution is to employ k-CFA with larger values of k. However, it could be expensive to
recompute the entire control low graph with a higher value of £, as this quickly causes
a combinatorial explosion in graph size for interrupt-driven software. The CFG is
constructed using multi-resolution analysis, where the value of k (the amount of stack
context used to distinguish nodes) is increased only in the areas of the graph where it
is necessary to alleviate ambiguity in latency analysis. Thus, nodes like [28,00,{?}] in
the example are adaptively sliced into non-yellow nodes with greater stack context,
[28,00,{?,0F}] and [28,00,{7,12}], as shown in Figure 5.5. This approach is inspired
by Plevyak and Chien [78]. Independently of our work, Guyer and Lin [36] have also
used multi-resolution analysis.

Multi-resolution analysis takes place automatically; the algorithm (shown in Sec-
tion 6.3.2) iteratively identifies nodes that are both border yellow and stack popping

ol

28] o] 0y}
2A] 00| {OF} |42
26/ 00] {12}~
2A] 00| {12} |4~

(a) before (b) after

' 28| 00 {?,0F

28] 00 {?,12

Figure 5.5. Example Program Adaptive Slicing

instructions (POP, RET, and IRET), and adaptively slices these nodes and their associ-
ated graph segments to the necessary depth. This technique represents a substantial
savings in graph complexity, reducing the size of the graph by 20% to 60% compared
to running the analysis of the production programs with a fixed, non-adaptive k-CFA.
However, the reduction in graph size can come at the cost of increased analysis time,
as explained below.

While the multi-resolution analysis reduces the number of nodes and edges in the
graphs in all cases, when compared with the running time of straight k-CFA, it runs
faster in some cases, but slower in others. In two cases, the multi-resolution analysis is
an order of magnitude slower than straight k-CFA. This wide variation in relative run
times is highly dependent on the structure of the program under analysis — the depth
that the adaptive slicing must go to in order to disambiguate latency, the number of
call sites involved, and the lengths of the subroutines being sliced are all factors in
the cost of multi-resolution analysis. For this reason, the prototype tool includes a
command-line option which tells it to use straight k-CFA with a specific k, rather than
automatic multi-resolution analysis, so that the user can choose whichever method
performs better for their given program input.

The multi-resolution analysis is guaranteed to terminate because the control flow
graphs have a bounded stack size, which is verified by a previous phase of the tool,
(see Chapter 4.) The full details of the adaptive slicing can be found in Chapter 6.

5.2.5 Magenta and Blue Nodes

Time summary oracles allow the deadline analysis to resolve both external and
internal yellow loops. Multi-resolution analysis slices apart artificial yellow nodes. Of

52

the five types of yellow nodes, all that remain are starvation yellow and upstream
yellow.

Because these nodes are yellow for a fundamentally different reason than the other
nodes dealt with thus far, a new color is designated for them.

e Magenta nodes are those which are one edge away from either green or magenta
nodes in the graph, AND are one edge away from a non-green interrupt handler.

Magenta nodes are set aside as a special case for which maximum latency of
the green interrupt handler cannot be bounded without additional, detailed meta-
knowledge about the characteristics of the other non-green interrupt handlers involved
(knowledge such as inter-arrival times of interrupts, jitter, etc). These nodes are also
different in that the straightforward oracle-inserted time summary edges cannot help
render these nodes green, even if the oracle provides bounds on the WCET of the
segment of magenta nodes. This is because each magenta node can be starved, since
the non-green interrupt handler can in the worst case execute so frequently that the
computation does not make progress from the magenta node. (This is a point on
which the Z86E30 documentation is vague; it is not clear whether an interrupt can
occur frequently enough to completely halt progress in the non-interrupt code. In the
absence of a clear answer, the worst case is assumed.)

The WCET of contiguous clusters, or clouds, of magenta nodes cannot be reasoned
about at the individual node level, unlike all of the other analyses presented here.
For this reason, the problem of bounding magenta clouds is left as future work and is
beyond the scope of this dissertation. Fortunately, the current analysis has revealed
that on average, fewer than 2% of the nodes in the production microcontroller suite
are magenta; in several cases, there are no magenta nodes at all.

Those yellow nodes which are upstream of the newly designated magenta nodes
are also assigned a new color.

e Blue nodes are those for which the deadline analysis algorithm can precisely
bound the WCET to reach a cloud of magenta nodes.

Intuitively, blue nodes are well-behaved segments of the graph which would be
green if there were not a magenta cloud of potential interrupt starvation between
them and the green handler, as suggested by Figure 5.1.

The algorithm for coloring the graph is summarized in Computation Tree Logic
[24] notation in Figure 5.6. H is a predicate that is true for a node when that
node is the first instruction of the interrupt handler of interest. In CTL nota-
tion, AF means “exists globally”, which can be thought of as “inevitable”. So
Green = AF (UltraGreen) means that Green nodes are those for which all outgoing
edges inevitably reach UltraGreen nodes. Notation EF' means “exists eventually”,
or “reachable”. EX means that there is an outgoing edge that leads immediately
to the predicate. Thus, Magenta = EF(Green) N EX(handler ¢ H) says that
a Magenta node has a path that eventually reaches Green, and a path that leads

53

UltraGreen = H = Head of handler of interest.
Green = AF(UltraGreen) = Inevitable that computation
will reach an UltraGreen node.
Magenta = EF(Green) = Path exists to Green, and
A EX (handler ¢ H) to non-Green IR(Q) handler.
Blue = AF(Magenta) = Inevitable that computation
will reach a Magenta node.
Red = -FEF(UltraGreen) = Not possible to reach
an UltraGreen node.
Yellow = —(RedV Green = Don’t Know.

VMagenta V Blue)

Figure 5.6. Coloring Graph for Latency Analysis

in one edge to a non-Green interrupt handler. The ZARBI implementation of this
coloring algorithm is explored in Chapter 6.

Returning to the control flow graph from Figure 5.3, the three nodes at 15, 17,
and 19 are colored magenta. The interrupt handler nodes, 2B, hanging off of the
magenta section are considered blue. The entire segment above OUTLP, with the help
of the slicing explained in the previous section, is colored blue.

All edges in the CFG are annotated with execution cycles; all timing information
is taken from the Z86 reference manual [100]. The entire flow graph of the example
program is now green, blue, or magenta. The magenta cycles cannot be statically
bounded, but the green and blue nodes can be broken into directed, acyclic subgraphs,
each of which can be evaluated for WCET by a recursive traversal in which

WCET(B) = max(WCET(A) + edgeap)

where A ranges over all nodes that connect directly to node B, and edge 45 is the cost
of the edge from A to B. Running this traversal over the green nodes in the example
program produces a WCET time of 320010 machine cycles between the magenta node
at 19 and the interrupt handler at 2C. The same calculation over the blue subgraph
reveals a maximum WCET of 102 machine cycles from the start of the program to
the start of the magenta nodes.

Combining this information with additional knowledge about the magenta section,
such as, it will take at most 200 cycles to get from 12 to 1B through the magenta
section, bounds the maximum interrupt latency to be 320312 cycles.

54

Program | Lines | IRQs | Purpose

CTurk 1367 2 Agricultural control
GTurk 1687 2 Agricultural control
ZTurk 1612 2 Agricultural control
DRop 1162 3 Reverse osmosis control
Rop 1172 3 Reverse osmosis control
Serial 795 3 RS-485 network relay
Micro00 84 2 Example from Chapter 4
ICSEO1 55 1 Example from Chapter 4
FSEO03 35 2 Example from Chapter 5

Figure 5.7. Benchmark Characteristics

5.3 Experimental Results

The following sections present experiments applying the prototype implementa-
tion of this analysis to the suite of commercially available microcontroller systems.
Following these results, Section 5.4 presents a narrative of a representative session
with the tool, starting from a fresh program, and iterating the deadline analysis until
all nodes are either green, blue, or magenta.

5.3.1 Benchmark Characteristics

The benchmarks used for evaluating the deadline analysis (Figure 5.7) are the
same suite of test inputs used in Chapter 4 with the addition of the examples from
Figure 4.1 (“ICSE01”) and Figure 5.2 (“FSE03”). The commercial program “Fan”
has been omitted because the stack size analysis presented in the previous chapter
cannot bound its maximum stack height (due to both positive and negative cycles
in the corresponding CFG); bounded stack height is a precondition to running the
deadline analysis algorithm.

Each of the commercial systems underwent months of testing prior to actual pro-
duction, but an overall deadline analysis of the systems was not performed because
no such tools could be found.

5.3.2 Measurements

The results shown in Figure 5.8 give the final percentages of nodes by color after
completion of the deadline analysis algorithm. For clarity of presentation, interrupt

59

Percentage green Percentage blue
Prog IRQ; | IRQ. | IRQ3 || Prog IRQ; | IRQ2 | IRQ3
CTurk | 100% | 5% : CTurk 0% | 8% .
GTurk | 100% | 2% . GTurk 0% | 94%
Z'Turk 100% | 2% . Z'Turk 0% | 94% .
DRop 99% | 62% | 40% || DRop 1% | 36% | 58%
Rop 99% | 66% | 37% || Rop 1% | 32% | 60%
Serial 100% | 54% | 49% || Serial 0% | 44% | 49%
Micro00 | 56% | 45% . Micro00 | 38% | 49%
ICSEO1 | 100% . . ICSEO1 | 0% .
FSE03 | 100% | 28% . FSEO03 0% | 57%

Percentage magenta Percentage yellow

Prog IRQ; | IRQ, | IRQ3 || Prog IRQ; | IRQ, | IRQ3
CTurk 0% ™% : CTurk 0% 0% .
GTurk 0% 3% : GTurk 0% 0%
Z'Turk 0% 3% . Z'Turk 0% 0% .
DRop 1% 1% 1% || DRop 0% 0% 0%
Rop 1% 1% 2% || Rop 0% 0% 0%
Serial 0% 1% 1% || Serial 0% | 0% 0%
Micro00 | 5% 5% : Micro00 | 0% | 0%
ICSEO1 | 0% . . ICSEO1 | 0% .
FSEO03 0% | 14% . FSEO03 0% 0%

Figure 5.8. Results With Completed Oracles

sources in the tables are numbered as “IRQ;”, “IRQ.”, and IRQ3. This does not
imply any kind of priority relationship between the various interrupt sources, nor are
these the actual interrupt source numbers from the Z86 processor; they are merely
organized into columns. (E.g., Cturk has interrupt handlers for Z86 IRQ3, IRQ4, and
IRQ5, and these are labeled 1st, 2nd, and 3rd IRQ respectively in the table.) Note
that the tool rounds percentages down in most cases, or up in the case of percentages
less than 1%, so the tables in Figure 5.8 may not total precisely to 100%.

Yellow nodes were completely eliminated, and the percentages of green and blue
were quite high. The amount of magenta present in the final graphs was uniformly
low, less than 2% of the overall graph size on average. Several of the benchmarks had
0% magenta for a given IRQ, which means the analysis can safely and completely
bound interrupt latency for those particular handlers from anywhere in the program.

The ZARBI deadline analysis tool is implemented in Java, and took less than the
128 Megabytes of available RAM to complete the analysis in all cases. The running

56

Adaptive Slicing | fixed k-CFA
Program | Max k£ | Nodes | Edges | Nodes | Edges
CTurk 9 35750 | 51329 | 63904 | 84594
GTurk 10 140817 | 184724 | 215603 | 272421
ZTurk 10 127892 | 168104 | 190813 | 241118
DRop 5 19206 | 25244 | 46246 | 58510
Rop 5 21837 | 28731 | 54900 | 69597
Serial 3 8158 10753 | 19352 | 24775
Micro00 1 339 619 339 619
ICSEO01 1 46 74 46 74
FSE03 2 18 33 21 33

Figure 5.9. Adaptive Slicing vs. Fixed k-CFA

time of the tool increases as the number of oracle assertions allows the tool to slice
deeper into the graphs. Run-time varied from less than 2 seconds up to an hour for
the largest benchmark (with full multi-resolution analysis), with an average run-time
of 15 minutes overall. The current implementation has been optimized toward rapid
prototyping and easy debugging of the tool, with little regard for running time and
space requirements. It is expected that an industrial-strength version of the tool
could be constructed to run more efficiently.

Figure 5.9 shows the sizes of the graphs generated by the analysis, both with
adaptive slicing, and with a fixed k-CFA, where the value for k£ is fixed to the depth
needed by the adaptive slicing.

As mentioned earlier, employing multi-resolution analysis results in a substantial
savings in graph complexity, with multi-resolution graphs 20% to 60% smaller than
the equivalent fixed k-CFA graphs. While the fixed k-CFA graphs can be constructed
substantially faster in some cases, the reduction in yellow nodes offered by the multi-
resolution analysis is usually far more valuable. When using the tool to iteratively
discover time summary assertions for reducing yellow nodes, (as demonstrated in
Section 5.4,) anything that causes larger graphs potentially creates more yellow nodes,
adding more data to the output of the tool, and making the entire process increasingly
difficult.

Figure 5.10 characterizes the number and types of assertions that were provided
to the time summary oracle in order to eliminate all yellow nodes in the test suite.

In all cases, there was only one contiguous magenta cloud for each program that
had any magenta nodes.

57

Number of Summary Edges
Program | Total | External | Internal | Data
CTurk 15 5 9 1
GTurk 17 5) 11 1
ZTurk 17 5 11 1
DRop 16 6 9 1
Rop 16 6 9 1
Serial 2 1 1 0
Micro00 0 0 0 0
ICSEO01 1 0 1 0
FSE03 1 1 0 0

Figure 5.10. Oracle Information Provided

5.3.3 Assessment

The complete elimination of yellow nodes from the control flow graphs of the com-
mercial microcontrollers was the primary goal in the deadline analysis experiments,
and this was accomplished by the algorithms presented.

The high percentage of green and blue nodes makes it possible to completely
bound interrupt latency for some of the interrupt sources in some of the benchmarks,
and greatly decreases the remaining work to be done in bounding the others.

The low percentage of magenta nodes in the graphs, combined with the fact that
magenta nodes are constrained to a single, contiguous cloud in all of the benchmarks,
paves the way for being able to automatically bound these most troublesome parts
of the graph in the future. The only case where magenta levels reached a double
digit percentage was the FSEO3 example program, which was constructed to have a
prominent magenta segment. In many cases, the magenta section is small enough
that the total uninterrupted WCET of the magenta cloud could be less than the
minimum period of the interfering interrupt handler(s), which would make it possible
to reason about these sections with a first-orderworst-case response time analysis [94]
or by detailed simulation and testing.

The number of time summary oracle assertions necessary to eliminate yellow nodes
from the benchmarks is small and manageable. Well over half of the assertions are of
the type that could be automatically inferred by local data flow analysis.

5.4 User Experience

58

This section details the complete process of starting with a raw program, and
iterating with the deadline analysis to add time summary oracle assertions until all
yellow nodes are eliminated.

This example will use one of the medium sized benchmarks, Rop.

The initial run of the tool takes 23 seconds and outputs:

Border Yellow instructions:

L0667 :
LO675:
LOOD2:
LO66C:
LO67A:
L0312:
L062D:
L0268:
L0080:
LO2BA:
L034C:
L0396
LO4E6:

Edges = 24503
Nodes 18559
Percent =

JR
JR
JR
JR
JR
JR
JR
JR
JR
JR
JR
PUSH
DJNZ

Green
12522
67%

ULT,
ULT,
EQ,
UGT,
ULE,
C,
ULE,
UGE,
EQ,
UGE,
EQ,
%FBh
ri4,

Yellow
6029
32%

L0680
L0680
LOOE3
LO67C
L0681
L0308
L061C
LO2B7
LOOF2
L02C3
L0354

LO4EOQ
Magenta Blue

2 6
1% 1%

The list of potential yellow nodes is long for the initial run, because it is not trivial
for the tool to distinguish between key yellow loops that must be broken and loop
instructions that happen to be on the yellow border for other reasons.

Looking through some of the tool’s suggested locations in the code, the user’s
attention is immediately drawn to a potential loop to bound — the DINZ instruction
at LO4E6 is part of a double loop that debounces the input from a mechanical switch
attached to the system. The design of the system specifies that this mechanical
contact should not bounce for more than 10mS when in good working order.

The double loop is actually two intertwined loops (which would be difficult to im-
plement in most higher level languages), but can be bounded with a pair of assertions
to the time summary oracle:

[0x04E0] ->[0x04E8]=80000
[0x04DC] ->[0x04E8]=80000

; Debounce. (10mS) [EI]
; Debounce. (10mS) [EI]

59

The syntax on the left describes the source and destination nodes, and the length
of time to assert. To the right of the semi-colon, a comment documents the reason
for the assertion, and the time translated into seconds. (80,000 machine cycles equals
10 milliseconds with an 8MHz clock.) The full grammar of the time summary oracle
file format can be found in Appendix E.

The user reruns the tool, with the new oracle assertions. After 31 seconds, the
tool responds:

Border Yellow instructions:

LO667: JR ULT, L0680
LO675: JR ULT, L0680
LOOD2: JR EQ, LOOE3
LO66C: JR UGT, LO67C
LO67A: JR ULE, L0681
L0312: JR C, L0308
LO62D: JR ULE, L061C
L0268: JR UGE, LO2B7
LO080: JR EQ, LOOF2
LO2BA: JR UGE, L02C3
L034C: JR EQ, L0354
LO396: PUSH %FBh
LO4DA: JR NZ, L04D6
Edges = 24513 Green Yellow Magenta Blue
Nodes = 18559 12528 6023 2 6
Percent = 67% 32% 1% 1%

Note that the node total has remained the same, but six nodes that were yellow are
now green. The DJNZ instruction at LO4E6 is no longer listed as a border yellow node,
and a new border node is listed in its place. The tool also outputs the number of red
nodes in the graph, if any, but none of these graphs contained red nodes.

The loop at L04DA is a holding pattern that waits for the human operator to
release one of the push buttons. The user interface segments of this microcontroller
system are only executed when the system is in a programming mode, so attention
to interrupt handlers is not important here. The user assumes that no one is pushing
the button, and the branch will never be taken.

The loop at L0312 waits on an external device that the microcontroller has syn-
chronous communication with. The manufacturer guarantees a maximum 40ms$ delay
before the device responds.

The loop at L062D has a visible bound, but calls several levels of complex subrou-
tines. This is the sort of loop that would be extremely tedious to estimate by hand

60

with any accuracy, but which could probably be automatically bounded by a local
data flow analysis around the loop and its subroutines. For now, the user puts in an
outrageous overestimate of 3 full seconds; this area should be simulated in depth in
order to tighten the estimate later.

The jump instruction JR EQ, L0354 at L034C is part of a loop that writes ASCII
strings to a connected LCD panel one byte at a time. The number of iterations
for the loop is dependent upon the length of the string passed into the subroutine,
but the system is designed to have a 16 character LCD display, and none of the zero-
terminated ASCII string constants in the program are longer than 17 characters. The
subroutine called from within the loop is green from some other call sites, so with
some work, the user can conservatively bound the loop to be 17 characters times at
most 40mS, for a total of 680 mS.

The oracle is provided with the next set of assertions. The bracketed letters on
the far right of the comment are personal notes about the type of assertion. An “[E]”
indicates “external delay loops,” which are impossible to statically bound. An “[A]”
indicates loops dependent on internal data, and the letter “[D]” indicates a more
difficult class of internal data-dependent loops.

[0x04D6]->[0x04DC]=30 ; No button press. [E]
[0x061C]->[0x062F]=24000000 ; Punt. (3sec) [A]
[0x0308]->[0x0314]1=320000 ; Display. (40mS) [E]

[0x033D]->[0x03541=5440000 ; 17 char (680mS) [D]

This run takes 36 seconds, and has reduced the number of suggested border nodes
to look at. The PUSH instruction continues to appear in the list only because some
other yellow obstacle is preventing the slicer from identifying the correct segment to
which additional stack context should be added.

Border Yellow instructions:
L0396: PUSH %FBh

L0608: DJNZ ri2, L0601

L0650: JR ULE, LO63F

LO42A: JR zZ, L041C
Edges = 25044 Green Yellow Magenta Blue
Nodes = 18992 16470 2431 2 89
Percent = 86% 127 1% 1%

The loop at L042A is part of another software debouncing area. The user will
assume no button press.

61

The loop at L0650 is a twin to the loop at L062D above, so the user duplicates
the assertion edge with new source and destination addresses.

The DJNZ instruction at L0608 is part of a nested loop that was designed to wait
20mS before sending more data to a peripheral chip.

More assertions are added, and the tool is rerun.

[0x0420]->[0x0427]1=46
[0x0420]->[0x042C]=66
[0x063F]->[0x0652]=24000000
[0x0601]->[0x060A]1=166086
[0x0603]->[0x060A]1=166086

Border Yellow instructions:

L0396: PUSH %FBh

LOSE5: DJNZ ri3,

LOSF6: DJNZ ri3,
Edges = 25088 Green Yellow
Nodes = 19020 17562 1367
Percent = 927 h

b

b

b

(E]
(E]

No button press.
No button press.
Punt. (3sec) [A]

; EEPROM write (20mS) [A]
; EEPROM write (20mS) [A]

LO5D8

LOSEA
Magenta Blue
2 89
1% 1%

After 39 seconds of analysis, the percentage of green nodes has topped 90%, and
the remaining yellow nodes are in the single digit range. The user is in the home

stretch now.

Both of the suggested DJNZ instructions belong to loops with obvious bounds.
While somewhat tedious, the user is able to total up the execution time of the dozen
instructions in the bodies of the loops, and multiply them by the bounds.

[0x05EA]->[0x05F8]=144

; RDLP1 (8%18cyc=18uS) [A]

[0x05D8]->[0x05E7]1=1200 ; SENDBF (8%150c =150uS) [A]

Border Yellow instructions:

L0396: PUSH %FBh
L0490: DJNZ ri4,
Edges = 28728 Green
Nodes = 21837 21242 504
Percent = 97% 2%

L048D

Yellow Magenta Blue

2 89
1% 1%

After a 1 minute, 19 second analysis, the program has 97% green nodes.

62

The next border node belongs to a loop with obvious bounds calling a 40mS
subroutine. There are two very similar loops with slightly different bounds on the
page above L0490. The user adds assertions for all three.

[0x048D]->[0x0492]1=1601000 ; DSPBCK 5x (201mS) [A]
[0x046C]->[0x04711=1601000 ; DSPBCK 5x (201mS) [A]
[0x0445]->[0x044A1=1280800 ; DSPBCK 4x (161mS) [A]

The final run of the tool takes 1 minute, 26 seconds, but produces zero yellow
nodes.

63

Edges = 28731 Green Yellow Magenta Blue
Nodes = 21837 21746 0 2 89
Percent = 99% 0% 1% 1%

There is still much testing to be done for this embedded system. The user has
presented 16 assertions to the oracle, 10 of those based upon manual inspection of
the code, rather than external design criteria. Simulation and testing of the system
should aim to validate and/or tighten these unchecked assertions.

While the two magenta nodes in the system seem to be a small window of op-
portunity for interrupt starvation, they comprise an infinite loop with a non-green
interrupt source turned on. In other words, the system turns off all other interrupts,
and waits for a particular, different interrupt to occur before returning to normal op-
eration. Thus, deadline analysis for this system and this particular interrupt handler
depends ultimately upon knowing the upper bound on the time the system will have
to wait for this other interrupt source to be triggered.

Overall understanding of the example system’s timing behavior has increased as
a result of the deadline analysis. Testing and simulation can concentrate on the lines
of code for which assertions have been provided, and on the magenta nodes, both of
which comprise a tiny fraction of the total state space for the code. The prototype
implementation also produces flow graphs that depict the colors of code regions, or
can dump the graph in a flat file format suitable for import into other visualization
tools. Additional implementation details are presented in Chapter 6.

5.5 Summary

The algorithms presented in this chapter perform deadline analysis on interrupt-
driven assembly code. Static analysis was able to reduce the required testing effort
to concentrate on the validity of certain oracle assertions about timing.

In 30% of the analyses of a particular interrupt handler for a particular benchmark,
the deadline analysis was able to firmly bound maximum interrupt latency. In the
remaining 60% of the cases, the analysis reduced the size of the testing problem by
an average of 98%. While the testing of the oracles and remaining magenta nodes is
still a large task, it is several orders of magnitude smaller than the testing problem
without the deadline analysis presented in this chapter.

The multi-resolution analysis allows for compact and efficient representation of
timing properties while smoothly incorporating the oracles. For each of the test
inputs, less than 17 oracles are sufficient, and these can be added in an interactive
fashion until the deadline analysis is complete. In the experiments, it was observed
that an expert user can go from a bare program of about 1000 lines of assembly
code to a completed deadline analysis in less than an hour. (This does not include

64

the subsequent exhaustive testing of the oracles, which would normally be done even
without any analysis by ZARBI.)

While the current incarnation of the tool uses a Z86 front end, the abstractions
used in the graph analysis are applicable to a wide range of other processors which use
bit-maskable, vectored interrupt handling, such as the Motorola 68000 family [60,61],
the Intel 8051 family [45], the National Semiconductor COPSS8 family [64], as well as
several RISC DSP architectures, and other special purpose chips.

This chapter presents one of the first algorithms to allow deadline analysis of
interrupt-driven assembly code. The proof-of-concept implementation demonstrates
its usefulness when run on commercial-grade real-time software. ZARBI is also one
of the first tools to incorporate static analysis with testing oracles in an interactive
fashion.

The next chapter presents fine-grained details of the tools demonstrated above,
including implementation issues, limitations, and features intended for future use.

65

6 ZILOG ARCHITECTURE RESOURCE-BOUNDING INFRASTRUCTURE

The previous chapters have presented algorithms for stack size analysis and deadline
analysis at a high level of abstraction without focusing on implementation details.
This chapter is the compliment to that high level view, detailing the prototype tools
that implement the resource bounding analyses described earlier.

6.1 Data Structures

The primary data structures used in ZARBI are for storing and manipulating the
control flow graph representation. Four main classes are responsible for this function:
GraphNode, GraphEdge, GraphlD and GraphNexus.

The GraphNode is the central data structure and represents a single node in the
control flow graph. Each GraphNode has a unique GraphlD which contains the PC,
IMR, and stack context for the GraphNode. The GraphlD class exists to separate the
methods for storing, manipulating, and comparing this information from the methods
for graph building and traversals. GraphNodes have two arrays of GraphEdges: one
for incoming edges and one for outgoing edges. The GraphNode class implements the
GraphNodelnterface and can be used in the same graphs with other subclasses of the
GraphNodelnterface interface.

The GraphEdge class implements the GraphEdgelnterface and represents a di-
rected edge in the graph. GraphEdge has a reference to a source GraphNodelnterface
and a destination GraphNodelnterface.

The GraphNexus structure is a joining point for all of the GraphNodes that have
the same PC value. There is one GraphNexus for each line of code in the original
286 program, plus several special nexi for other lines in the original assembler file.
The GraphNexus serves as a bookkeeping entity, tracking data and statistics that all
of its GraphNode children have in common. The most common searches performed
on the graph during construction require finding a reference to particular GraphNode
given only a PC and an IMR value. In this way, the array of GraphNexus objects is
the backbone of the control flow graph, providing an organizational structure that is
reflected in many of the ZARBI visualization and analysis tools.

While the GraphID class is primarily concerned with the PC, IMR, and stack
values of GraphNodes, it also contains flow source pointers, references to the GraphID
belonging to the node which pushed the current top element on the stack. This
extra piece of information allows optimized construction of stack summary edges,
(Sections 4.3.2 and 3.1), because each node already has a reference to the source
node of the potential summary edge without executing an expensive search. The
flow source pointer also allows comparisons of GraphlD’s to differentiate between

66

identical top stack elements which were assigned by different source nodes. This
technique causes top stack elements from particular source nodes to be treated as
unique identifiers, which allows the stack size analysis to succeed in bounding the
stack for certain degenerate cases where spurious summary edges would otherwise be
constructed.

An abstract GraphTraversal class exists which allows both forward and backward
breadth-first traversals of the control flow graphs. At least seven concrete subclasses
of GraphTraversal exist, allowing many of the analysis passes in ZARBI to use a
uniform traversal mechanism.

6.2 Stack Size Checking Tools

The next four subsections describe the implementation of four major parts of the
stack size analysis presented in Chapter 4. The simplifier (Section 6.2.1) is a Z86
assembly language parser, which partially compiles the input programs and performs
error checking that need not be repeated in later phases of analysis. The simulator
(Section 6.2.2), state machine models (Section 6.2.3), and genetic search algorithm
(Section 6.2.4) were all key components for finding the realistic lower bounds on
maximum stack height presented in Chapter 4.

6.2.1 Simplifier

In order to avoid duplication of code and work in many of the tools in the ZARBI
suite, Z86 programs are first passed through a simplification stage — essentially par-
tially compiled — before being parsed in by later tools in the chain.

The simplifier expands all symbol table references to their final immediate values,
labels each line of executable code, and performs a variety of error checks before
passing the program on to the simulator, stack analysis, or deadline analysis engines.

The code for parsing raw Z86 assembly language files and building abstract syntax
trees was largely automatically generated with the Java Tree Builder [91], another
tool built at Purdue. Transformation of the abstract syntax tree into the simplified
tree is handled through extensive use of the “Visitor” design pattern [33] and the
Generic Java extension [13].

Error checking undertaken by the simplifier includes: ensuring that all arithmetic
constants are in range to be stored in the available register size, whether those con-
stants are expressed in binary, decimal, octal, or hexadecimal notation; checking that
all jumps and calls are to valid code addresses; and identifying any unresolvable
symbol references.

The simplifier outputs the partially compiled code into a file, which must then
be parsed back in by the stricter grammar of later tools in the chain. This keeps
compilation concerns like symbol table resolution completely separate from other

67

analyses in ZARBI, and alleviates the need for redundant error checking in other tool
components.
The output of the simplifier conforms to the grammar found in Appendix B.

6.2.2 Simulator

The ZARBI toolset includes a cycle-level simulator of the Z86E30 processor, con-
structed from Zilog’s specifications [100]. Building a simulator based upon published
specifications from the manufacturer can be error-prone, as such documents can be
vague, incomplete, or simply wrong [26]. In the many cases where specifications were
vague, the simulator was implemented with worst-case assumptions about the actual
hardware. Nevertheless, the ZARBI simulator has not been validated against real
Z86E30 chips in any way, and this would be an absolutely necessary step for an in-
dustrial strength version of ZARBI. The current simulator was intended primarily as
an exploratory tool for evaluating the role of such a simulator in resource-bounding
analyses. This simulator also does not implement several features of the Z86E30
architecture which are not used by the benchmark suite.

The simulator is approximately 7400 lines of Java code, not including the file
created by the parser-generator tool. Both a graphical user interface (pictured in
Figure 6.1,) and a command-line batch mode are available.

Upon graphical startup, the simulator reads in a simplified Z86 program and
displays the ROM, register and flag windows. Single-step and break-point execution
are available, with the various windows updating all register and flag values as the
program is stepped through.

The simulator interface allows the user to alter values in any Z86 register and ac-
curately displays processor state not otherwise available, even to the program running
on raw hardware. (For example, exact timer count values.)

One of the key benefits of the ZARBI simulator is cycle-accurate interrupt be-
havior. The commercially-available Zilog in-circuit emulator does not allow single-
stepping through interrupt handlers and does not maintain correct clock state when
single-stepping.

The absence of cycle-accurate simulators and models for many modern processors
is a major obstacle to verification of real-time software in practice.

When run in command-line mode, the simulator outputs maximum stack depth
for a given run, and may allow device models to output status information to the
console.

6.2.3 State Machine Models

All of the commercial benchmarks examined in this dissertation were written
for Z86 chips connected to other peripheral devices like analog-to-digital converters,
liquid crystal displays, universal asynchronous receiver/transmitters, and external

68

ﬂ (Zilog Control Centar M
[C]Show Register [_I]Show Flags [[]Show Status
[Show ROM [CIShow Stack [Show Coanfiguration

Load ASM Fila: lex2-simpla.s - | Load |

Load IRC) File: (casel.irg - | Load |

Step || Run || Stop || Resat |
ROM View

15[14(13[12[11/10/PC [BP Simplified Code | Original Code |
T o P [JLoola: LD %FBh, #%03h LD IMR, #(IRQO A| IRQL) a|
OO0« |0 Leoie: EI ET
L e |
(T [START: ; start of main program loop. i
110wl 1 -= [w] LoglC: DINZ r2, LOOLC DINZ rz, START i
(e} [JLOD1E: PUSH ri1 PUSH ri ; IT our counter expires,
i [JiLoozo: LD rl, %03h LD ri, P3 ;3 send this sensor's reading
0§ % % [JlLoozz: CALL LODZA CALL SEND ;3 to the output device.
1 | [JlLoozs: POP ril POP =1
O] [[OLeozz: 3p TRUE, LOO1C P START
L e | |
1 o | [1 SEND: ; Send Data to Dewvice 2. hd

(Register View
] O 7 =S 7= "0 - 16
00 04 |00 |00 (00 |00 oo |00 00 |00 oo |00 oo |00 64 |00 [s1s}

Tle

1 Joo oo (oo |oo |oo |oo |oo |oo |oo |00 oo |00 oo |00 |82 |00 oo

2 Joo oo (oo |oo |oo |00 |00 |00 |00 |00 (oo |00 |00 |00 |00 |00 |00

5 Joo oo (oo |oo |oo |00 |00 |00 |00 |00 |00 |00 |00 |00 |36 |00 |00

@ Joo oo |oo |00 (oo [oo (oo |00 oo |00 |oo oo |00 oo |00 |00 |00

5 oo oo Joo |00 (oo (00 (o0 (o0 (00 [o0 (oo (o0 (00 [o0 [2E [0 |00 2 (FiagView

£ Joo oo Joo |00 (0o [00 oo (o0 (00 [00 (oo (00 [00 [00 [04 (00 |00 TTan Name T e | value
7 oo 00 [o0 (oo |00 [oo [oo [00 [0o [o0 (oo (o0 (oo (00 (00 [oo [o0 User Flag 1 o O
2 oo 00 [o0 (oo |00 [oo [oo [00 [0 [o0 (oo (o0 (oo (00 |64 [oo [o0 User Flag 2 1 0
o Joo oo |oo (oo joo [oo (oo [oo oo [oo [oo oo (oo [so (oo oo [oo

— Half Carry Flag 2 N
A Joo oo (oo Joo (oo [oo (oo [oo [oo [oo Joo [oo oo [oo oo [os oo : -

E_ Joo 00 |00 |00 |00 |00 |00 (00 |00 |00 |00 |00 |00 |36 |03 |0z |00 ERE I AT FIE 3 J
© Joo oo (oo |oo |oo |oo (oo |00 |oo |oo |oo |oo |oo |60 |00 |60 |oo overflow Flag 4 O
o Joo oo [oo (oo (oo |oo (oo [oo (oo [oo (oo (oo oo [2E [oo |10 [oo Sign Flag 3 [
E Joo oo |oo (oo |oo [oo (oo [oo (oo (oo (oo (oo oo [os [zz (oo (oo Zero Flag 6 [vi
F_Joo oo |oo |00 (oo |oo oo |00 oo |00 |oo (oo |00 |00 |00 |E3 |00 Carry Flag 7 [

Figure 6.1. Screenshots from the ZARBI Simulator

memory devices. The exact functions of these various devices are unrelated to the
786 chip or its simulator, but the interactions they provide are necessary for the
software to exercise typical control flow paths. For example, most of the benchmarks
communicate with an intelligent LCD display over a 4- or 8-bit data bus. If the
display does not acknowledge each command, the control software does not proceed
to the main operating loop.

In order to address this problem, the ZARBI simulator includes an interface for
models of external chips to be plugged into the simulation.

The external device interface allows the simulator to reset external device models,
simulating a power cycle, or to pass information about elapsed time in the simulation.
In the real system hardware, external devices are not connected to the Z86’s internal
clock, but the simulator needs to pass a time reference to the device models.

69

The external device models are implemented as simple state machines in Java
code, which was sufficient for all of the external devices found in the benchmark
systems. They interact with the simulated Z86 through memory-mapped I/0, just
as in the actual systems.

This modular interface allows many kinds of external devices to be simulated
and permits the types, versions, and locations of external devices to be reconfigured
appropriately for each of the different benchmark systems.

The external device models, in turn, are separated from the concerns of the Z86
model and can perform their own functions. For example, the model of the external
LCD device can calculate based on internal state what text would appear on the LCD
panel in the real system and pipe this to standard output during simulation.

Accounting for external devices in embedded systems has proven to be an impor-
tant part of this project, despite the fact that these factors are overlooked in much
of the research in embedded systems research.

6.2.4 Genetic Algorithm

Searching for realizable paths that lead to a maximum stack height is intractable
in the general case (see Section 3.2). Exhaustive search for such a path is also im-
practical given the combinatorially explosive size of the state space. Instead, heuristic
searches must be relied upon to find realizable paths with large stack heights. Thus,
ZARBI employs what is known as a genetic or evolutionary search algorithm [34] to
find tight lower bounds on the maximum stack height of the benchmarks. Genetic
algorithms are a complex topic largely beyond the scope of this dissertation, but this
section outlines the major parameters supplied to the search heuristic for the sake of
completeness.

When performing a genetic algorithm search for interrupt schedules that yield
large maximal stack heights, the ZARBI Simulator backend is run without the graph-
ical user interface, in batch mode. A shell script manages the simulator runs, and
performs the evolutionary adjustments to the population of interrupt schedules.

Briefly, genetic algorithms use a fitness heuristic to select good solutions out of
diverse population of possible solutions. The search then merges and mutates the
qualities of good solutions in hopes of finding better solutions.

For the experiments in Chapter 4, the genetic algorithm searches were run for 25
generations, each with a population of 25 interrupt schedules. The initial population
was 400 randomly generated interrupt schedules. The simulator was run for 120
seconds of simulated time on each interrupt schedule, and the maximal stack size
during the run was taken to be the fitness function for the interrupt schedule. (It
is the nature of the commercial benchmarks that they have 1-second long operating
cycles. Thus, discounting a few seconds of startup time, it was expected that their
behavior would stabilize after each second, so 120 seconds of run time per individual
would be quite sufficient to observe maximal stack size under given conditions.)

70

From each generation to the next, the top three interrupt schedules were auto-
matically passed on to the next generation. The remainder of the new population
was generated using two parents selected from the old population using tournament
selection. The parental pair of schedules was merged using standard crossover, and
subjected to probabilistic mutation.

The full details of interrupt schedules are explained in Appendix C; crossover
between two interrupt schedules was defined as three separate random merges between
the three distinct classes of interrupt schedule lines.

Overall mutation rate for children was linearly decreasing from 10% in the first
generation, down to 4% in the final generation. Each of the three kinds of interrupt
schedule lines underwent specific mutation, in order to preserve the sense of its fitness.

The one-shot interrupt lines had a 20% chance of having the IRQ number randomly
permuted, and an 80% chance of having the trigger address shifted +/- 3 instructions.

Periodic address-triggered interrupt lines had a 10% chance of IRQ number mu-
tation, a 40% chance of trigger address shifting +/- 3 instructions, and a 40% chance
of period mutation by +/- 0.5% of maximum period.

Periodic time-triggered interrupt lines had a 10% chance of IRQ number mutation,
a 40% chance of trigger time shifting +/- 0.5%, and a 50% chance of period mutation
by +/- 0.5% of maximum period.

The parameters to the genetic search algorithm have not been closely examined
in these experiments, but were sufficiently suitable that the genetic search for each
benchmark yielded an interrupt schedule with as good or better maximal stack height
than manually selected expert interrupt schedules.

6.3 Deadline Analysis Tools

The second half of this chapter concerns implementation details for the major tools
used in the deadline analysis phases of ZARBI. Section 6.3.1 presents the implementa-
tion of graph coloring, while Section 6.3.2 describes the multiresolution analysis with
adaptive slicing. Sections 6.3.3, 6.3.4 and 6.3.5 outline the various graph visualization
and debugging mechanisms built into ZARBI.

6.3.1 Coloring Algorithm

The ZARBI algorithm for graph coloring is presented in CTL notation in Fig-
ure 5.6. This section details the actual implementation of the coloring decision in
pseudocode and explains the coloring traversal.

As the first step, all nodes in the graph are colored red, whether they are reachable
or not. This has the natural side effect that nodes which cannot be reached via
backward traversal from the interrupt handler will necessarily be red. As a result,
there are no rules for deciding to color a node red, because red nodes will not be
passed through the decision code.

71

All nodes corresponding to the first instruction in the interrupt handler of interest
are collected into a worklist and colored ultragreen.

A backward coloring traversal continues for as long as the worklist of nodes is
empty. Nodes are taken off of the worklist one at a time and are considered for
coloring. The coloring decision rules are given in Figure 6.2. After the node is given
an initial coloring, all of its incoming edges are visited. If the source node on an
incoming edge is not marked, the source node is put on the end of the worklist. After
all of the incoming edges have been visited, the current node is marked. (If the
node remains marked, this initial coloring will become its final color. Nodes are only
unmarked if one of their outgoing edges changes color.) The algorithm then iterates
to the next node in the worklist.

When an edge is visited, it is given the initial coloring of its destination node. If
this is a recoloring of the edge, the source node of the edge is explicitly unmarked so
that it can be re-examined when it is put back on the worklist.

1. n in first node of greenlRQ handler = n € UltraGreen
2. (Je € Q(n)).(e € UltraGreen) = n € Green
3. (Ve € Q(n)).(e € Green) = n € Green
4. (de € Q(n)).(Timesum(e) A (e € Green)) = n € Green
5. (de € Q(n)).(Timesum(e) A (e € Blue)) = n € Blue
6. (Ve € Q(n)).(~Push3(e)V

(Push3(e) A (e ¢ Red) A (e ¢ UltraGreen))))A

(Je € Q(n)). (e € Yellow) V (e € Magenta) = n € Magenta
7. (Ve € Q(n).(((e € Green) V (e € Magenta)V
(e € Blue)) A (mPush3(e))) = n € Blue

8. Else = n € Yellow

where (n) is the set of node n’s outgoing edges, and the predicates Push3(n) and
Timesum(n) are true for interrupt and time summary edges, respectively.

Figure 6.2. ZARBI Graph Coloring Decision Rules

The coloring algorithm terminates when all node colors stabilize. Termination is
guaranteed to take place because of the precedence of the coloring rules. Nodes that
are colored green are done — will not be recolored to some other color — as it can be
shown inductively that all downstream edges and nodes are also done in order for a
node to be colored green. Modulo green, magenta nodes are also done — that is, once
a node is magenta, it will either stay magenta or eventually become green. Similarly,
blue nodes are done modulo green, which leaves only yellow and red. There is no
rule for judging a node to be recolored red, so the coloring algorithm will eventually
converge and terminate.

72

6.3.2 Adaptive Slicing

repeat
BorderY ellowSet <= getBorderY ellow()
for all borderY ellow such that borderYellow € BorderYellowSet do
if borderYellow is a pop node then
if Jedge € Q(borderY ellow) such that destination(edge) € Yellow then
if destination(e) not in non-green handler then
for all node € destination(S2(borderY ellow)))) do
maxOutgoing K < max(context At(node), maxOutgoing K)
end for
if maxOutgoingK + 1 > context At(borderY ellow) then
deletionList < all nodes backward reachable from borderY ellow
without traversing push edges
rebuildList <= all nodes one push edge back from deletionList
delete the deletionList
buildContexrt <= maxOutgoing K + 1
rebuild graph segment with workList < rebuildList
end if
end if
end if
end if
end for
until No changes have been made in G

Figure 6.3. Adaptive Slicing Algorithm

The ZARBI deadline analysis includes adaptive slicing, an automated technique
for increasing the resolution of the analysis in areas of the graph where abstraction
causes ambiguity. An example is presented in Section 5.2.4; the details of the imple-
mentation are presented here, with pseudocode shown in Figure 6.3.

In the overall scheme of deadline analysis, multiresolution analysis takes place
after the initial coloring of the graph with respect to a given handler. The first pass
scans backward from the ultragreen handler to collect a list of all yellow nodes which
are one edge away from green or ultragreen nodes. These nodes are the border yellow
nodes and are the primary candidates for both adaptive slicing and time summary
oracle assertions.

73

Not all border yellow nodes can be recolored green through adaptive slicing or time
summary oracles — some could be yellow because of loops and path mergings elsewhere
in the graph. These are upstream yellow nodes, because their yellow classification
depends entirely upon structures elsewhere in the graph. However, regardless of
what percentage of the border yellow nodes is upstream yellow, it is still the case that
some number of border yellow nodes can be recolored green with the help of slicing
or oracles.

The multiresolution analysis next iterates through the list of border yellow nodes
and discards any nodes which are not pop nodes. Pop nodes correspond to one of
three opcodes in the Z86 assembly language - POP, RET, and IRET. Only the border
yellow pop nodes are of interest for adaptive slicing, because they are the merge points
in a backward traversal where stack context is lost. In other words, if a green node
in the program has an incoming pop edge from a yellow POP instruction, it is the
implicit merging of the node for the POP instruction with another node in a different
stack context which causes an artificial yellow cycle to appear in the graph.

While filtering non-pop nodes out of the list, the analysis also checks each border
yellow pop node candidate to see that it has at least one outgoing yellow edge that
does not lead to a non-green interrupt handler. Pop nodes that are yellow only because
of outgoing edges that lead in one step to a non-green interrupt handler cannot be
recolored green with additional stack context; they will be colored magenta in a later
graph coloring pass.

Finally, for each remaining candidate border yellow pop node, a maxQutgoing K
tally is made, giving the maximum stack context value of any node reachable in one
outgoing edge from the candidate. If a candidate node’s maxQOutgoingK is larger than
the candidate’s maximum stack context minus 1, the candidate is placed on the final
adaptive slicing list. This condition prevents adaptive slicing from taking place on
candidates where the stack context is already at least one more than all of the outgoing
edge destinations. These nodes cannot be successfully recolored through slicing, as
they already have full precision with regard to the stack information available at all
of their successor nodes. An important caveat is that these nodes may not be their
final color just because they were filtered out in the current pass; they may still need
additional stack context to be colored green, but not before some outgoing destination
node is itself sliced into nodes with greater context.

In practical terms, the mazOutgoing K test also provides an important component
to the stopping criteria for the multiresolution analysis. Without this test on candi-
date nodes, the analysis could loop indefinitely trying to add greater stack context to
a graph segment that is yellow for some other reason.

The multiresolution analysis iterates through the final list of nodes selected for
adaptive slicing. For each node in the list, two new lists are calculated: the deletion
list is the transitive closure of all nodes that can be reached by backward traversal of
non-push nodes; the rebuild list is the set of push nodes bordering the deletion list.
Push nodes can correspond to PUSH or CALL instructions. In the case where the

74

deletion list includes the first instruction of an interrupt handler, the push nodes can
be any instruction from which that interrupt handler can be reached in one edge.

The nodes on the deletion list are deleted. The nodes in the rebuild list are used
to seed the initial worklist when the graph builder is called to reconstruct the deleted
graph segment. Before reconstruction, however, the stack context ceiling is set to one
item higher than whatever the highest stack context number was among all the nodes
in the delete list. After reconstruction, the entire graph is recolored.

The overall stopping criteria for the multiresolution analysis is expensive to cal-
culate. Adaptive slicing on any given run can push back the green frontier to expose
new border yellow pop nodes that were not candidates in the previous scan. Thus,
the entire process must be repeated — the entire loop in Figure 6.3 — until the list of
final slicing candidates is of zero size.

The adaptive slicing algorithm is not optimal in that a lot of work is duplicated
during the analysis. In practice, large segments of graph can be built, deleted, rebuilt
with greater stack context, deleted again, and rebuilt with even more stack con-
text. A cleaner algorithm could instead update existing nodes with greater context,
rather than completely recalculating control flow each time. However, this would add
substantial complexity to the implementation, as the adaptive slicer would need a
different graph building engine, distinct from the main graph builder.

The complexity of the multiresolution analysis is surprisingly large, due both to
the complexity of the stopping criteria, and the complexity of completely recoloring
the graph after each slicing. Knowing when to stop looking for candidates for slicing
requires global knowledge of the graph, and thus cannot be inexpensively implemented
in a system that focuses on per-node operations.

6.3.3 Colordot

One of the daunting practical problems in deadline analysis of real interrupt-driven
programs is finding ways to make sense of the enormous amount of data available.
When a user is in the process of running the tool to discover yellow loops that re-
quire oracle assertions, even a small commercial example can present thousands of
lines of code, and potentially hundreds of thousands of nodes and edges to examine.
ZARBI provides several output modes which organize the analysis data into different
perspectives.

The colordot output tool takes advantage of the key observation that like-colored
nodes tend to occur in contiguous zones. A colordot dump of the analysis prints out
dots for each combination of PC and IMR that exists in the program; the color of the
dot is an attempt to summarize the colors of the possibly many nodes in the graph
with matching PC/IMR values.

The rationale behind providing this graphical representation is that with relatively
little practice, users of ZARBI can quickly learn to identify trouble spots in the graph
that will require greater attention.

75

imr = 00
LO00C ||
LOOOF ||
L0012 ||
imr = 00 81
L0015 |
L0017 [
L0019 [
LO01B ||
LOO1E ||
L0020 ||
imr = 00 81 83
L0023 [
L0026 ||
L0028 ||
LO02A ||
imr = 00 81 83 01 03
LO02B [11
L002C [
imr = 00 81 83 01 03

Figure 6.4. Colordot Output for FSE03

The colordot output for FSE03, (described in Figure 5.2,) with the green interrupt
defined as TRQ1, is shown in Figure 6.4.

The format of the output can be read as a two-dimensional table, with executable
code labels printed in ascending order down the vertical axis, and IMR values printed
at regular intervals along the horizontal axis in the order in which they were encoun-
tered.

Thus, the program in Figure 6.4 begins with the instruction at label “000C”, with
an IMR value of “00”. Scanning linearly down the executable addresses, the first
non-zero IMR. value of “81” appears at label “0015”, and so on.

A new horizontal legend (starting with “imr = ...”)) is printed each time a new
IMR value is encountered, or every 25th line of output, if no changes take place.

A third important axis in the colordot output is not visible in Figure 6.4; as the
name implies, the dots in the display are colored. (Also, they are not dots. ASCII pipe
characters proved to be more easily visible in long dumps, but the name “colordot”

76

imr = 00
L0O00C BB
LOOOF BB
L0012 BB
imr = 00 81
L0015 MM
L0017 MM
L0019 MM
LOO1B YY
LOO1E YY
L0020 GG
imr = 00 81 83
L0023 GG
L0026 BB
L0028 BB
LO02A BB
imr = 00 81 83 01 03
LO02B BB GG

L002C XX
imr = 00 81 83 01 03

B = Blue; M = Magenta; Y = Yellow; G = Green; X = Ultra Green

Figure 6.5. Colordot Output for FSE03 with Colors Abbreviated

was already entrenched in the documentation.) Figure 6.5 recasts the output of
Figure 6.4 with the bars replaced by color descriptions.

In a color display, the colordot output can be quickly interpreted to see that label
1E is the transition point between well-behaved green nodes and the rest of the graph.
Furthermore, it can quickly be seen that the initialization section prior to label 15
probably needs no additional attention.

In the example above, each pair of dots is the same color. That is, for any given
PC/IMR combination, there are two identical dots. While this is true of all of the
toy examples shown in previous chapters. it is not generally true for many nodes in
the commercial benchmarks.

In complex graphs where a PC/IMR pair may contain hundreds of nodes differ-
entiated only by stack context, there may be several different colors of nodes present.
In these cases, the colordot tool outputs two different colored dots for the high and

77

low colors of the many nodes at that location. Thus, a PC/IMR pair that has both
green and yellow nodes would have a green and a yellow dot in the associated dump.
This information is especially useful when scanning the analysis dump looking for
subroutines which are called from contexts of several different colors.

The colordot output format is but one possible view of the formidable data avail-
able during the ZARBI deadline analysis. It has proven useful in practice for quickly
identifying segments of the graph which require additional time summary oracle as-
sertions. However, the colordot output format has several weaknesses which make it
necessary to rely on other auxiliary display formats during serious deadline analysis.

Colordot does not show control flow edges, and is therefore difficult to interpret
in program areas where dominant control flow is not in a straight line.

Colordot gives no indication of how many nodes are collected together under a
given PC/IMR pair, thereby disguising program “hot spots” which often warrant
additional manual attention.

The high/low color scheme is not well defined, as there does not appear to be
any ordering of the node colors which allows the high /low scheme to provide the best
summary information in all desirable contexts. In cases where nodes of more than
two colors must be represented, it is not obvious which color should be hidden. Slight
perturbations of the colordot high/low preferences can substantially alter the overall
appearances of the more complex graphs.

The colordot tool has no provisions for displaying graphs with more IMR values
than can conveniently fit across the viewable text terminal. In practice, this has not
proven to be a significant limitation.

Despite these shortfalls, colordot has proven to be a quick and effective tool for
visualizing the deadline analysis data in the ZARBI prototype.

6.3.4 Graph Crawler

When more detailed visualization of the deadline analysis graph is required than
can be provided with the colordot tool, ZARBI provides a graph crawler.

The crawler is a command-line interface that allows the user to navigate the
nodes and edges of the graph in complete detail. The crawler state machine moves
through the graph based upon commands from a command-line interface, as shown
in Figure 6.6

A typical crawler interaction on the FSE03 benchmark is shown in Figure 6.7.

The partial transcript in the figure starts at the nexus for label “0023”, and
displays the corresponding assembly language for reference. The user selects “P” to
print the current nexus out, but there is only one node to display. Choosing the only
available node, the corresponding graph notation for the node is displayed. The users
requests “O” for outgoing edges, and the three outgoing edges from this node are
displayed. By selecting one of the edges, the crawler will move on to the destination
node of the chosen edge.

78

Nexus | Display| Display
Menu Nexus

Incoming

Choos
Node

Jump
to new
Node

Choose| Display

Outgoing

Figure 6.6. Crawler State Machine

The command-line interface displays nodes and edges in full color, corresponding
to their final status in the deadline analysis.

The primary disadvantage of the crawler is that it is difficult to visualize the
state of nodes that are nearby, but more than one edge away from the current node.
Also, the listing of nodes and edges can be many times longer than the available
text window in complex graphs; these long listings appear to the untrained eye to be
largely identical, making navigation a slow, “crawling” process.

Despite its drawbacks, the crawler makes it possible to drill down into the heart
of complex graphs while still being able to visualize the status of adjacent nodes and
edges. Experimentally, the crawler has proven essential both during the debugging
stages of ZARBI development, and when trying to unravel complex yellow control
flow during deadline analysis.

6.3.5 Graph File Format

ZARBI has a flat ASCII file format into which it can dump the final graph, as
given by the grammar in Figure 6.8. This format has proven amenable as input to
other prototype model checking utilities and visualization tools.

79

Current Nexus is L0023: JP TRUE, L0023
P Print current Nexus
J Jump to Nexus
7p
0 [0x0023,0x83,{}]
7?0

? Current Node is [0x0023,0x83,{}]

I Print current Node incoming edges
N Go to parent Nexus

0 Print current Node outgoing edges

70
0 [0x0023,0x83,{}] -> [0x0023,0x83,{}] = (12,0x00,0x0000)
1 [0x0023,0x83,{}] -> [0x002B,0x03,{0x0023}] = (24,0x13,0x0023)
2 [0x0023,0x83,{}] -> [0x002C,0x03,{0x0023}] = (24,0x13,0x0023)
Figure 6.7. Crawler Interface

Goal() == (Edge())* EOF

Edge() == Vertex() — Vertex() = Value()
Vertex() == [Word() , Byte() , { Word() (, Word())* } (, Pair())* |

I [Word() , Byte() , { } (, Pair())* |

Value() == “(“ Byte() , Byte() , Word() (, Byte())* «)”

Pair() == Byte() : Byte()

Byte() == An 8-bit quantity.

Word() == A 16-bit quantity.

Figure 6.8. ZARBI Graph File Format

While not used in the current prototype, the format includes provisions for arbi-
trary pairs of bytes to be appended to each node. This is intended to support slicing
and unrolling of loops; current loop nodes would be duplicated and annotated with

80

information of the form, “rx : y”, where 2 would be the loop register, and y would
be the precise values it could be unrolled into.

The graph file format output of FSEO03, used as the running example throughout
Chapters 5 and 6, is shown in Figure 6.9.

6.4 Summary

The Zilog Architecture Resource-Bounding Infrastructure is just that —a collection
of tools and data structures that provide general support for control flow graph-based,
resource-bounding analyses of Zilog-based microcontroller systems. The current pro-
totype is targeted to the Z86E30, but the backend analysis tools operate on the CFG
abstractions presented in Chapter 3 and are less dependent on Z86 assembly syntax.

Components within ZARBI include parsers, a partial compiler, a graph building
engine, a simulator, general traversal tools, several kinds of data visualization tools,
not to mention the actual stack-size and deadline analysis engines.

Many of the components have been constructed with modularity and future ex-
pansion in mind.

81

[0x000C,0x00,{}] -> [0x0026,0x00,{0x000F}] = (20,0x12,0x000F)
[0x000C,0x00,{}] -> [0x000F,0x00,{}] = (00,0x40,0x0000)
[0x0026,0x00,{0x000F}] -> [0x002A,0x00,{0x000F}] = (00,0x40,0x0000)
[0x0026,0x00,{0x000F}] -> [0x0028,0x00,{?,0x000F}] = (10,0x11,0x0000)
[0x000F,0x00,{}] -> [0x0026,0x00,{0x0012}] = (20,0x12,0x0012)
[0x000F,0x00,{}] -> [0x0012,0x00,{}] = (00,0x40,0x0000)
[0x002A,0x00,{0x000F}] -> [0x000F,0x00,{}] = (14,0x22,0x000F)
[0x0028,0x00,{?,0x000F}] -> [0x002A,0x00,{0x000F}] = (10,0x21,0x77)
[0x0026,0x00,{0x0012}] -> [0x002A,0x00,{0x0012}] = (00,0x40,0x0000)
[0x0026,0x00,{0x0012}] -> [0x0028,0x00,{?,0x0012}] = (10,0x11,0x0000)
[0x0012,0x00,{}] -> [0x0015,0x81,{}] = (10,0x00,0x0000)
[0x002A,0x00,{0x0012}] -> [0x0012,0x00,{}] = (14,0x22,0x0012)
[0x0028,0x00,{?,0x0012}] -> [0x002A,0x00,{0x0012}] = (10,0x21,0x7?7?)
[0x0015,0x81,{}] -> [0x0017,0x81,{}] = (10,0x00,0x0000)
[0x0015,0x81,{}] -> [0x002B,0x01,{0x0015}] = (24,0x13,0x0015)
[0x0017,0x81,{}] -> [0x0019,0x81,{}] = (10,0x00,0x0000)
[0x0017,0x81,{}] -> [0x0015,0x81,{}] = (12,0x00,0x0000)
[0x0017,0x81,{}] -> [0x002B,0x01,{0x0017}] = (24,0x13,0x0017)
[0x002B,0x01,{0x0015}] -> [0x0015,0x81,{}] = (16,0x23,0x0015)
[0x0019,0x81,{}] -> [0x001B,0x00,{}] = (06,0x00,0x0000)
[0x0019,0x81,{}] -> [0x002B,0x01,{0x0019}] (24,0x13,0x0019)
[0x002B,0x01,{0x0017}] -> [0x0017,0x81,{}] (16,0x23,0x0017)
[0x001B,0x00,{}] -> [0x001E,0x00,{}] = (10,0x00,0x0000)
[0x002B,0x01,{0x0019}] -> [0x0019,0x81,{}] = (16,0x23,0x0019)
[0x001E,0x00,{}] -> [0x0020,0x00,{}] = (10,0x00,0x0000)

[0x001E, 0x00,{}] -> [0x001B,0x00,{}] (12,0x00,0x0000)
[0x0020,0x00,{}] -> [0x0023,0x83,{}] (10,0x00,0x0000)
[0x0023,0x83,{}] -> [0x0023,0x83,{}] (12,0x00,0x0000)
[0x0023,0x83,{}] -> [0x002B,0x03,{0x0023}] (24,0x13,0x0023)
[0x0023,0x83,{}] -> [0x002C,0x03,{0x0023}] (24,0x13,0x0023)
[0x002B,0x03,{0x0023}] -> [0x0023,0x83,{}] (16,0x23,0x0023)
[0x002C,0x03,{0x0023}] -> [0x0023,0x83,{}] (16,0x23,0x0023)

Figure 6.9. ZARBI Graph File Format Dump of FSE03

82

7 SUMMARY AND FUTURE WORK

7.1 Summary

Static checking can provide safe and tight bounds on stack usage and execu-
tion times in interrupt-driven systems. This dissertation presents algorithms for re-
source bound analyses; also presented is ZARBI, a prototype implementation which
statically computes stack size and execution time bounds for a benchmark suite of
commercially-deployed, interrupt-driven systems. Advanced knowledge of resource
bounds enables real-time system designers to eliminate whole classes of errors from
their software before testing begins, thereby reducing the testing effort necessary to
achieve confidence in their system.

Despite the ubiquity of hardware interrupts in real-time systems, little prior re-
search has dealt with interrupt-driven software. The commercial benchmark suite
examined here included proprietary Z86-based microcontrollers programmed in as-
sembly language, with multiple vectored interrupt sources, a shared system stack,
extensive use of unstructured loops, and no formal loop annotations.

The stack analysis presented by this dissertation bounds the maximum stack size
to within one byte of the true maximum in all but one of the commercial benchmarks.
The deadline analysis found firm worst-case latencies in 30% of the cases; in the
remaining 70% of the cases, the analysis reduced the size of the testing problem by
an average of 98%. While the testing effort still required for these systems is large,
it is several orders of magnitude smaller than the testing problem without deadline
analysis.

This dissertation presents novel algorithms for bounding stack height and maxi-
mum interrupt latency. This is the first such work on tractable control-flow analysis
in the presence of vectored interrupt handling.

A secondary contribution of this dissertation is a proof-of-concept implementation
of the novel analyses. The implementation is one of the first tools to give an efficient
and useful static analysis of assembly code, and the first to analyze interrupt-driven
assembly code. The prototype presented here is also among the first to incorporate
static analysis with testing oracles in an interactive fashion.

The analysis algorithms also check for several classes of semantic errors in the
286 program, including using simple types to detect stack manipulation errors. In
addition, ZARBI contains components for enhanced visualization and debugging of
control-flow graph “problem areas” during the interactive process of interrupt latency
analysis.

The current incarnation of the tool uses a Z86 front end, but the abstractions used
in the graph analysis are applicable to a wide range of other processors which use bit-

83

maskable, vectored interrupt handling. Examples include the Motorola 68000 family
[60,61], the Intel 8051 family [45], the National Semiconductor COPS8 family [64],
as well as several families of special purpose chips.

7.2 Future Work

The success of the analyses presented here paves the way for many areas of po-
tential future work. Other researchers have already begun to reference the paper [14]
on ZARBI’s stack analysis, and to build this technology into their own analysis
tools [63,82]. Related papers have examined the complexity of the stack analysis
first presented here [18], or have rephrased the model checking approach as a type-
checking problem [73].

The existence of an analysis infrastructure than can answer questions about WCET
in interrupt-driven software enables many new questions to be asked. Many proces-
sors used in real-time applications have hardware watch-dog timers — a sort of software
dead-man’s switch, which resets the processor state if a particular opcode is not exe-
cuted within a given period. Watch-dog timers are deployed in most of the systems
in the ZARBI test suite, but little prior work has addressed the kind of errors that
this feature can cause. The techniques presented in this dissertation could be applied
to the watchdog timer question; rather than calculating worst-case interrupt latency,
the analysis could search for code segments that are more than = cycles away from a
WDT instruction, where x is the maximum watch-dog period.

Real-time software without interrupts has been analyzed in great depth, and re-
source bounds can now be calculated for some systems where pipeline and cache
effects contribute significantly to WCET analysis. With ZARBI as a baseline, it may
be possible to extend these techniques to account for pipeline and cache effects in
systems with vectored interrupt handling.

Combining the current analysis with meta-information about minimum interrupt
periods and interrupt priority could result in an analysis that would be able to bound
resources in more complex systems, or eliminate more magenta nodes in the current
systems. Automatic discovery of internal and data-dependent loop bounds would
improve the tool’s ease of use by inferring many of the assertions that are currently
provided to the time summary oracles.

Recursion is uncommon in real-time systems, but not unheard of [25]. Extensions
to the analysis algorithms to allow recursive functions would also apply to iterative
loops with non-zero stack behavior, as found in “FANO005”, the one member of the
commercial benchmark suite which has defied analysis thus far.

Any complex analysis of real systems can produce copious amounts of data, as
is the case with the deadline analysis presented here. While ZARBI includes several
tools to assist the user in visualizing and comprehending this data, better visualization
techniques are possible. Work is in progress on a three-dimensional representation
of the deadline analysis CFG output, with the goal of making border yellow nodes
easier to identify and eliminate.

84

The dream of building a “push-button” resource-bounding tool for real-time sys-

tem designers remains beyond the reach of research this author is familiar with.
Real-time systems are inherently complex, and the questions a designer would like to
ask of an analysis are often highly specific to the given system. Even so, the prototype
implementation shown here demonstrates that a general purpose framework can be
built which allows someone with expertise in real-time systems to use static analysis
without having to become an expert in static analysis. The prototype presented in
this dissertation is not industrial strength, but the principles it demonstrates may one
day influence real tools. Better tools for bounding resource usage in real-time systems
would benefit system designers, and ultimately, consumers of embedded, reactive, and
interrupt-driven systems.

LIST OF REFERENCES

1]

[10]

85

LIST OF REFERENCES

Agere Systems, Inc. APP550 Student Training Guide. 1905A Kramer Lane
Suite 100, Austin, Texas 78758, May 2003.

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley, 1985.

Martin Alt, Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Cache
behavior prediction by abstract interpretation. In Proceedings of SAS 96: Inter-
national Static Analysis Symposium, volume 1145 of Lecture Notes in Computer
Science, pages 52-66. Springer, 1996.

Peter Altenbernd. On the false path problem in hard real-time programs.
In Proceedings of ERTS 96: FEighth EuroMicro Workshop on Real-Time
Systems, pages 102-107, June 1996. URL http://citeseer.nj.nec.com/
altenbernd96false.html.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Com-
puter Science, 126(2):183-235, 1994. URL http://citeseer.nj.nec.com/
alur94theory.html.

Rajeev Alur and Thomas A. Henzinger. Logics and models of real time: A
survey. In J. W. de Bakker, Cornelis Huizing, Willem P. de Roever, and Grze-
gorz Rozenberg, editors, Real-Time: Theory in Practice, volume 600 of Lecture
Notes in Computer Science, pages 74—106. Springer-Verlag, 1992.

George S. Avrunin, James C. Corbett, and Laura K. Dillon. Analyzing partially-
implemented real-time systems. IFEFE Transactions on Software Engineering,
24(8):602-614, August 1998.

lain Bate, Guillem Bernat, and Peter Puschner. Java virtual-machine support
for portable worst-case execution-time analysis. In Proceedings of ISORC 02:
Fifth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, page 83, Washington D.C., USA, April 2002.

William S. Beebee, Jr. and Martin Rinard. An implementation of scoped mem-
ory for real-time Java. In T.A. Henzinger and C.M. Kirsch, editors, Proceedings
of EMSOFT 01: First International Workshop on Embedded Software, volume
2211 of Lecture Notes in Computer Science, pages 289-305, Tahoe City, Cal-
ifornia, October 2001. Springer-Verlag. URL http://citeseer.nj.nec.com/
beebeellimplementation.html.

Guillem Bernat, Alan Burns, and Andy Wellings. Portable worst-case exe-
cution time analysis using Java byte code. In Proceedings of 12th Euromi-
cro Conference on Real-Time Systems, pages 81-88, Stockholm, Sweden, June
2000. URL http://www.computer.org/Proceedings/euromicro-rts/0734/
0734toc.htm.

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[21]

86

Gérard Berry and Georges Gonthier. The Esterel synchronous programming

language: Design, semantics, implementation. Science of Computer Program-
ming, 19(2):87-152, 1992.

Greg Bollella, Ben Brosgol, Steve Furr, David Hardin, Peter Dibble, James
Gosling, Mark Turnbull, and Rudy Belliardi. The Real-Time Specification for
Java. Addison-Wesley, June 2000.

Gilad Bracha, Martin Odersky, David Stoutamire, and Philip Wadler. Mak-
ing the future safe for the past: Adding genericity to the Java programming
language. In Proceedings of OOPSLA 98: 15th Annual ACM SIGPLAN Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications,
pages 183-200, 1998. URL http://www.cis.unisa.edu.au/"pizza/gj/.

Dennis Brylow, Niels Damgaard, and Jens Palsberg. Static checking of interrupt
driven software. In Proceedings of ICSE 01: 23rd International Conference on
Software Engineering, pages 47-56, June 2001. URL http://citeseer.nj.
nec.com/brylowOlstatic.htm.

Dennis Brylow and Jens Palsberg. Deadline analysis of interrupt-driven soft-
ware. In Proceedings of FSE 03: 11th ACM SIGSOFT International Symposium
on the Foundations of Software Engineering, Helsinki, Finland, September 2003.
URL http://esecfse.cs.helsinki.fi/.

Alan Burns and Andy Wellings. Real-Time Systems and Programming Lan-
guages. Addison Wesley, 3rd edition, 2001.

Luca Cardelli. Type systems. In Allen B. Tucker, editor, The Computer Science
and Engineering Handbook, chapter 103, pages 2208-2236. CRC Press, Boca
Raton, Florida, 1997.

Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A. Hen-
zinger, and Jens Palsberg. Stack size analysis of interrupt driven software. In
Proceedings of SAS 03: Tenth Annual International Static Analysis Symposium,
volume 2694 of Lecture Notes in Computer Science, pages 109-126, San Diego,
California, June 2003.

Edmund Clarke, Orna Grumberg, and Doron Peled. Model Checking. MIT
Press, Cambridge, Massachusetts, January 2000.

Matteo Corti, Roberto Brega, and Thomas Gross. Approximation of worst-
case execution time for preemptive multitasking systems. In Proceedings of
LCTES 00: ACM SIGPLAN Workshop on Languages, Compilers and Tools
for Embedded Systems, volume 1985 of Lecture Notes in Computer Science,
pages 178-198. Springer-Verlag, 2000. URL http://link.springer.de/link/
service/series/0558/tocs/t1985.htm.

Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Proceedings of POPL 77: Fourth Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, pages 238—
252, Los Angeles, California, 1977. ACM Press, New York, NY. URL http:
//www.di.ens.fr/~cousot/COUSOTpapers/POPL77.shtml.

[22]

23]

[24]

[25]

28]

[29]

[30]

[31]

87

Karl Crary and Stephanie Weirich. Resource bound certification. In Proceedings
of POPL 00: 27th Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 184-198, 2000. URL http://citeseer.nj.
nec.com/crary0Oresource.html.

Matthew B. Dwyer. Data Flow Analysis For Verifying Correctness Properties of
Concurrent Programs. PhD thesis, University Massachusetts, Amherst, Septem-
ber 1995. URL http://www.cis.ksu.edu/"dwyer/papers/thesis.ps.gz.

E. Allen Emerson. Temporal and modal logic. In J. van Leeuwen, A. Meyer,
M. Nivat, M. Paterson, and D. Perrin, editors, Handbook of Theoretical Com-
puter Science (vol. B): Formal Models and Semantics, pages 995-1072. MIT
Press, 1990.

Jakob Engblom. Static properties of commercial embedded real-time programs,
and their implication for worst-case execution time analysis. In Proceedings
of RTAS 99: Fifth IEEE Real-Time Technology and Applications Symposium,
pages 46-55, Vancouver, Canada, June 1999. URL http://citeseer.nj.nec.
com/engblom99static.html.

Jakob Engblom. On hardware and hardware models for embedded real-
time systems. In Proceedings of RTES 01: IEEE Workshop on Real-Time
Embedded Systems, December 2001. URL http://citeseer.nj.nec.com/
engblomOlhardware.html.

Jakob Engblom and Andreas Ermedahl. Modeling complex flows for worst-case
execution time analysis. In Proceedings of RTSS 00: 21st IEEE Real-Time
Systems Symposium, November 2000. URL http://citeseer.nj.nec.com/
engblomOOmodeling.html.

Jakob Engblom, Andreas Ermedahl, and Peter Altenbernd. Facilitating worst-
case execution time analysis for optimized code. In Proceedings of ERTS 98:
Tenth EuroMicro Workshop on Real-Time Systems, Berlin, Germany, June
1998. URL http://citeseer.nj.nec.com/engblom98facilitating.html.

Jakob Engblom, Andreas Ermedahl, Mikael Sjodin, Jan Gustafsson, and Hans
Hansson. Worst-case execution-time analysis for embedded real-time systems.
Software Tools for Technology Transfer, 14, 2000. URL http://citeseer.nj.
nec.com/engblomOOworstcase.html.

Jakob Engblom and Bengt Jonsson. Processor pipelines and their properties
for static WCET analysis. In A. Sangiovanni-Vincentelli and J. Sifakis, edi-
tors, Proceedings of EMSOFT 02: Second International Conference on Embed-
ded Software, volume 2491 of Lecture Notes in Computer Science, pages 334—
348, Grenoble, France, October 2002. Springer-Verlag. URL http://link.
springer.de/link/service/series/0558/tocs/t2491 htm.

Christian Ferdinand, Reinhold Heckmann, Marc Langenbach, Florian Martin,
Michael Schmidt, Henrik Theiling, Stephan Thesing, and Reinhard Wilhelm.
Reliable and precise WCET determination for a real-life processor. In T.A.
Henzinger and C.M. Kirsch, editors, Proceedings of EMSOFT 01: First In-
ternational Workshop on Embedded Software, volume 2211 of Lecture Notes
in Computer Science, pages 469-485, Tahoe City, California, October 2001.
Springer-Verlag.

32]

33]

[34]

[36]

37]

[38]

[39]

[40]

[41]

[42]

88

Christian Ferdinand, Florian Martin, and Reinhard Wilhelm. Applying com-
piler techniques to cache behavior prediction. In Proceedings of LCTRTS 97:
ACM SIGPLAN Workshop on Languages, Compilers and Tools for Real-Time
Systems, pages 37-46, Las Vegas, Nevada, 1997.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

Jan Gustafsson, Bjorn Lisper, Nerina Bermudo, Christer Sandberg, and Linus
Sjoberg. A prototype tool for flow analysis of C programs. In Proceedings of
WCET 02: Second IEEE International Workshop on Worst Case Fxecution
Time Analysis, pages 10-13, Vienna, Austria, June 2002.

Samuel Z. Guyer and Calvin Lin. Client-driven pointer analysis. In Radhia
Cousot, editor, Proceedings of SAS 03: Tenth Annual International Static Anal-
ysis Symposium, volume 2694 of Lecture Notes in Computer Science, pages
214-236, San Diego, California, 2003. Springer-Verlag.

Mary Jean Harrold, James A. Jones, Tongyu Li, Donglin Liang, and Ashish Gu-
jarathi. Regression test selection for Java software. In Proceedings of OOPSLA
01: 16th Annual ACM SIGPLAN Conference on Object-Oriented Programming
Systems, Languages, and Applications, pages 312-326. ACM Press, 2001. URL
http://doi.acm.org/10.1145/504282.504305.

Christopher A. Healy, Mikael Sjodin, Viresh Rustagi, David B. Whalley, and
Robert van Engelen. Supporting timing analysis by automatic bounding of
loop iterations. Journal of Real-Time Systems, 18(2/3):129-156, 2000. URL
http://citeseer.nj.nec.com/healyOOsupporting.html.

Christopher A. Healy and David B. Whalley. Automatic detection and exploita-
tion of branch constraints for timing analysis. IEEE Transactions on Software
Engineering, 28(8):763-781, August 2002.

Thomas A. Henzinger, Benjamin Horowitz, and Christoph Meyer Kirsch.
Giotto: A time-triggered language for embedded programming. In T.A. Hen-
zinger and C.M. Kirsch, editors, Proceedings of EMSOFT 01: First Interna-
tional Workshop on Embedded Software, volume 2211 of Lecture Notes in Com-
puter Science, pages 166-184, Tahoe City, California, October 2001. Springer-
Verlag. URL http://citeseer.nj.nec.com/henzinger0Ogiotto.html.

Thomas A. Henzinger and Christoph M. Kirsch. The embedded machine: Pre-
dictable, portable real-time code. In Proceedings of PLDI 02: International

Conference on Programming Language Design and Implementation, pages 315—
326. ACM Press, 2002.

Nat Hillary and Ken Madsen. You can’t control what you can’t measure, or
why it’s close to impossible to guarantee real-time software performance on a
cpu with on-chip cache. In Proceedings of WCET 02: Second IEEE Interna-
tional Workshop on Worst Case Execution Time Analysis, pages 45-48, Vienna,
Austria, June 2002.

[43]

[44]

[45]

[49]

[50]

[51]

89

Erik Yu-Shing Hu, Andy Wellings, and Guillem Bernat. A novel gain time
reclaiming framework integrating WCET analysis for object-oriented real-time
systems. In Proceedings of WCET 02: Second IEEE International Workshop
on Worst Case Erecution Time Analysis, pages 14-20, Vienna, Austria, June
2002.

ILOG. CPLEX mixed integer optimizer. URL http://www.ilog.com/
products/cplex/product/mip.cfm.

Intel Corporation. MCS 51 Microcontroller Family User’s Manual. Mt.
Prospect, Illinois, February 1994. URL http://developer.intel.com/
design/mcs51/manuals/272383.htm.

Eugene Kligerman and Alexander D. Stoyenko. Real-time Euclid: A language
for reliable real-time systems. IEEE Transactions on Software Engineering,
SE-12(9):941-949, September 1986.

Yau-Tsun Steven Li and Sharad Malik. Performance analysis of embedded
software using implicit path enumeration. In Proceedings of DAC 95: ACM
32nd Design Automation Conference, pages 456-461, June 1995.

Sung-Soo Lim, Young Hyun Bae, Gyu Tae Jang, Byung-Do Rhee, Sang Lyul
Min, Chang Yun Park, Heonshik Shin, Kunsoo Park, Soo-Mook Moon, and
Chong-Sang Kim. An accurate worst case timing analysis for RISC processors.
IEEE Transactions on Software Engineering, 21(7):593-604, 1995. URL http:
//citeseer.nj.nec.com/lim95accurate.html.

Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification.
Addison-Wesley, Reading, Massachusetts, 2nd edition, April 1999.

Yanhong A. Liu and Gustavo Gomez. Automatic accurate time-bound analysis
for high-level languages. In Proceedings of LCTES 98: ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Embedded Systems, volume 1474 of
Lecture Notes in Computer Science, pages 31-40. Springer-Verlag, 1998. URL
http://citeseer.nj.nec.com/liu98automatic.html.

Thomas Lundqvist and Per Stenstrom. Integrating path and timing analy-
sis using instruction-level simulation techniques. In Proceedings of LCTES
98: ACM SIGPLAN Workshop on Languages, Compilers and Tools for
Embedded Systems, volume 1474 of Lecture Notes in Computer Science,
pages 1-15. Springer-Verlag, 1998. URL http://citeseer.nj.nec.com/
lundqvist98integrating.html.

Sharad Malik, Margaret Martonosi, and Yau-Tsun Steven Li. Static timing
analysis of embedded software. In Proceedings of DAC 97: ACM 3jth Design
Automation Conference, pages 147-152, June 1997. URL http://citeseer.
nj.nec.com/malik97static.html.

David McAllester. On the complexity analysis of static analyses. In Proceedings
of SAS 99: International Static Analysis Symposium, volume 1694 of Lecture
Notes in Computer Science, pages 312-329. Springer-Verlag, 1999. URL http:
//citeseer.nj.nec.com/mcallester99complexity.html.

[54]

[55]

[56]

[57]

[61]

[62]

[63]

90

Patrick C. McGeer and Robert K. Brayton. Integrating Functional and Tem-
poral Domains in Logic Design, volume 139 of Kluwer International Series in
Engineering and Computer Science. Kluwer Academic Publishers, May 1991.

Tulika Mitra and Abhik Roychoudhury. A framework to model branch pre-
diction for WCET analysis. In Proceedings of WCET 02: Second IEEE In-
ternational Workshop on Worst Case Ezecution Time Analysis, pages 6871,
Vienna, Austria, June 2002.

Jeffery C. Mogul, Richard F. Rashid, and Michael J. Accetta. The packet filter:
An efficient mechanism for user-level network code. In Proceedings of SOSP 87:
11th ACM Symposium on Operating Systems Principles, pages 39-51, 1987.
URL http://citeseer.nj.nec.com/mogul87packet.html.

Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Fred-
erick Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALxS86:
A realistic typed assembly language. Technical report, Cornell University, 1999.
URL http://citeseer.nj.nec.com/morrisett99talx.html.

Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed
assembly language. In Workshop on Types in Compilation, Kyoto, Japan, March
1998.

Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system
F to typed assembly language. In Proceedings of POPL 98: 25th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 85-97, 1998.

Motorola, Inc. M68000 8-/16-/32 Bit Microprocessor User’s Manual, 9 edition,
1993. URL http://ebus.motorola.com/brdata/PDFDB/MICROPROCESSORS/
32_BIT/68K-COLDFIRE/M680X0/MC68000UM. pdf.

Motorola, Inc. MC68328 DragonBall Microprocessor User’s Manual (prelim-
inary), November 1997. URL http://ebus.motorola.com/brdata/PDFDB/
MICROPROCESSORS/32_BIT/68K-COLDFI%,RE/M683XX/MC68328P . pdf.

Steven Muchnick. Advanced Compiler Design and Implementation. Morgan
Kaufmann, 1997.

Mayur Naik and Jens Palsberg. Compiling with code-size constraints. In Pro-
ceedings of LCTES 02: ACM SIGPLAN Workshop on Languages, Compilers
and Tools for Embedded Systems, joint with SCOPES 02: Software and Com-
pilers for Embedded Systems, pages 120-129. ACM Press, June 2002. URL
http://doi.acm.org/10.1145/513829.513851.

National Semiconductor Corporation. COP8SBRY9/COPS8SCR9/COP8SDRY
8-Bit CMOS Flash Based Microcontroller with 32k Memory, Virtual EEP-
ROM and Brownout. Santa Clara, California, April 2002. URL http:
//www.national.com/ds.cgi/C0/COP8SBRY.pdf.

Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. Data flow analysis for
checking properties of concurrent Java programs. In Proceedings of ICSE 99:
21st International Conference on Software Engineering, pages 399-410, May
1999.

[66]

[67]

[68]

[69]

[70]

[71]

[72]

73]

[76]

[77]

91

Gleb Naumovich and Lori A. Clarke. Extending FLAVERS to check properties
on infinite executions of concurrent software systems. Technical Report TR-
CIS-2000-02, Polytechnic University, April 2000. URL http://cis.poly.edu/
tr/tr-cis-2000-02.htm.

George Necula. Proof-carrying code. In Proceedings of POPL 97: 24th An-
nual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, pages 106-119, 1997.

George Necula and Peter Lee. The design and implementation of a certifying
compiler. In Proceedings of PLDI 98: ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 333344, 1998.

George C. Necula and Peter Lee. Safe kernel extensions without run-time check-
ing. In Proceedings of OSDI 96: Second Symposium on Operating Systems De-
sign and Implementation, pages 229-243, Berkeley, California, 1996. USENIX.
URL http://citeseer.nj.nec.com/article/necula96safe.html.

Flemming Nielson, Hanne Riis Nielson, and Chris Hankin. Principles of Pro-
gram Analysis. Springer, 1999.

Jurg Nievergelt and Klaus H. Hinrichs. Algorithms € Data Structures With
Applications To Graphics and Geometry. Prentice-Hall, 1993.

Peter Notebaert. lp_solve: Mixed integer linear program solver. URL ftp:
//ftp.es.ele.tue.nl/pub/lp_solve.

Jens Palsberg and Di Ma. A typed interrupt calculus. In Proceedings of
FTRTFT 02: Seventh International Symposium on Formal Techniques in
Real-Time and Fault Tolerant Systems, volume 2469 of Lecture Notes in
Computer Science, pages 291-310, Oldenburg, Germany, September 2002.
Springer-Verlag. URL http://www.springer.de/cgi-bin/search_book.pl?
1sbn=3-540-44165-4.

Jens Palsberg and Patrick O’Keefe. A type system equivalent to flow analy-
sis. ACM Transactions on Programming Languages and Systems (TOPLAS),
17(4):576-599, July 1995. URL http://doi.acm.org/10.1145/210184.
210187.

Jens Palsberg and Michael I. Schwartzbach. Object-oriented type infer-
ence. In Proceedings of OOPSLA 91: Sizth Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages, and Applica-
tions, pages 146-161. ACM Press, 1991. URL http://citeseer.nj.nec.com/
palsberg9lobjectoriented.html.

Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type in-
ference. Information and Computation, 118(1):128-141, 1995. URL http:
//citeseer.nj.nec.com/palsberg95safety.html.

Stefan Petters and Georg Farber. Making worst case execution time analysis
for hard real-time tasks on state of the art processors feasible. In Proceedings
of RTCSA 99: Sixth International Conference on Real-Time Computing Sys-
tems and Applications, pages 442-449, 1999. URL http://www.computer.org/
proceedings/rtcsa/0306/0306toc.htm.

78]

[81]

82]

83]

[84]

[85]

[86]

87]

38

[89]

92

John Plevyak and Andrew A. Chien. Precise concrete type inference for object-
oriented languages. In Proceedings of OOPSLA 94: Ninth annual conference
on Object-Oriented Programming Systems, Language, and Applications, pages
324-340. ACM Press, 1994.

Andreas Podelski. Model checking as constraint solving. In Proceedings
of SAS 00: International Static Analysis Symposium, volume 1824 of Lec-
ture Notes in Computer Science, pages 22-37. Springer-Verlag, 2000. URL
http://citeseer.nj.nec.com/podelskiOOmodel .html.

Peter Puschner and Christian Koza. Calculating the maximum execution time
of real-time programs. Journal of Real-Time Systems, 1(2):159-176, September
1989. URL http://www.vmars.tuwien.ac.at/.

Peter P. Puschner and Anton V. Schedl. Computing maximum task execution
times - a graph-based approach. Journal of Real-Time Systems, 13(1):67-91,
1997. URL http://citeseer.nj.nec.com/puschner97computing.html.

John Regehr, Alastair Reid, and Kirk Webb. Eliminating stack overflow by
abstract interpretation. In Proceedings of EMSOFT 03: Third International
Conference on Embedded Software, 2003. to appear.

Thomas Reps. Program analysis via graph reachability. Information and Soft-
ware Technology, 40(11-12):701-726, November 1998. URL http://www.cs.
wisc.edu/wpis/papers/tr1386.ps.

Thomas Reps. Undecidability of context-sensitive data-independence analy-
sis. ACM Transactions on Programming Languages and Systems (TOPLAS),
22(1):162-186, 2000. URL http://doi.acm.org/10.1145/345099.345137.

Debra J. Richardson, Stephanie Leif Aha, and T. Owen O’Malley. Specification-
based test oracles for reactive systems. In Proceedings of ICSE 92: 14th Inter-
national Conference on Software Engineering, pages 105-118. ACM Press, 1992.
URL http://doi.acm.org/10.1145/143062.143100.

Stuart J. Russell and Peter Norvig. Artificial Intelligence: A Modern Approach.
Prentice Hall, 1995.

Robert Sedgewick. Algorithms in C, Part 5: Graph Algorithms. Addison-
Wesley, third edition, 2001.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis.
In Steven Muchnick and Neil Jones, editors, Program Flow Analysis, Theory and
Applications. Prentice Hall, Englewood Cliffs, New Jersey, 1981.

Alan C. Shaw. Reasoning about time in higher-level language software.
IEEE Transactions on Software Engineering, 15(7):875-889, 1989. URL http:
//citeseer.nj.nec.com/shaw89reasoning.html.

Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
CMU, May 1991. CMU-CS-91-145.

Kevin Tao, Wanjun Wang, and Jens Palsberg. Java tree builder. Code available
for download, 1997. URL http://www.cs.purdue.edu/jtb/.

[92]

93]

[94]

[95]

[100]

93

David Tennenhouse. Intel developer forum. Keynote address transcript, August
2001. San Jose, California.

Henrik Theiling, Christian Ferdinand, and Reinhard Wilhelm. Fast and precise
WCET prediction by separated cache and path analyses. Journal of Real-
Time Systems, 18(2/3):157-179, 2000. URL http://citeseer.nj.nec.com/
theiling99fast.html.

K. W. Tindell, A. Burns, and A. J. Wellings. An extendible approach
for analysing fixed priority hard real-time tasks. Journal of Real-Time
Systems, 6(2):133-152, March 1994. URL http://citeseer.nj.nec.com/
tindell92extendible.html.

Frank Tip and Jens Palsberg. Scalable propagation-based call graph con-
struction algorithms. In Proceedings of OOPSLA 00: 15th Annual ACM
SIGPLAN Conference on Object-Oriented Programming Systems, Languages,
and Applications, pages 281-293, 2000. URL http://citeseer.nj.nec.com/
tipOOscalable.html.

Sreeni Viswanadha, Sriram Sankar, and Sun Microsystems. Java compiler com-
piler. Code available for download, 1997. URL http://www.webgain.com/
products/java_cc/.

Emilio Vivancos, Christopher Healy, Frank Mueller, and David Whalley. Para-
metric timing analysis. In Proceedings of LCTES 01: ACM SIGPLAN Work-
shop on Languages, Compilers and Tools for Embedded Systems, pages 88-93.
ACM Press, 2001.

Joachim Wegener and Frank Mueller. A comparison of static analysis and
evolutionary testing for the verification of timing constraints. Journal of Real-
Time Systems, 21(3):241-268, November 2001.

Zhichen Xu, Barton P. Miller, and Thomas Reps. Safety checking of machine
code. In Proceedings of PLDI 00: ACM SIGPLAN Conference on Programming
Language Design and Implementation, volume 35, pages 70-82, 2000. URL
http://citeseer.nj.nec.com/xu00safetychecking.html.

Zilog, Incorporated. Z86E30/E31/E40 Preliminary Product Specification.
Campbell, California, 1998. URL http://www.zilog.com/pdfs/z8otp/
303140 pdf.

APPENDICES

94

APPENDIX A MICRO00 EXAMPLE PROGRAM

Much of the benchmark suite used throughout this dissertation is either proprietary
code which cannot be published, or toy examples which have been presented without
sufficient detail to be actual Z86 programs.

For completeness, this appendix presents the “Micro00” benchmark in its entirety.
While still a small toy problem, the code is complete — it can be compiled to Z86 object
code, burned to a Z86E30 “one-time programmable” chip, and run on bare hardware.

A.1 Example System Overview

Input Device Input Device
Sensor Dev(Dev Sensor
Z86 Sensor
Dev2

Output Device

Figure A.1. Conceptual Diagram for Micro00 Example

The example system has three external devices and three sensors as illustrated in
Figure A.1. The example hardware is wired as shown in Figure A.2. For clarity of
presentation, the text will not dwell on the details of the other three devices in the
system. All that matters is that Device 0 and Device 1 have some kind of data that
they regularly pass to the Controller. The Controller forwards this data, along with
some of its own, to Device 2, which could be any kind of output device.

95

CS

d Dev(
iBu

DS

Z86

I 4 |Devl
P {Bu

i CS

DevZ

1 Bus

1DS

Figure A.2. Hardware Configuration for Micro00 Example System

The electrical protocol observed by these devices is simple. When a device wishes
to relay data to the controller, it requests an interrupt with its Data Strobe line. The
controller indicates that it is ready by strobing the corresponding device’s Chip Select
line. The Controller is the “Bus Master”, and devices do not speak unless spoken to,
via the CS line.

If actually deployed, this type of configuration could be seen in a hierarchical
arrangement of environmental controls, where each separate controller relays its sensor
data to a logging entity.

Figure A.3 explains the 12-instruction subset of the Z86 assembly language used
for the Micro00 example software.

Twenty of the Z86’s 256 registers have special purposes, such as port I/O, timer
control, or stack management. The relevant special register identifiers for this example
program are listed in Figure A.4.

When an interrupt arrives, the controller clears bit 7 of the IMR register, (the
equivalent of a DI instruction), and jumps to the correct handler. An IRET instruc-
tion sets the bit again, (the equivalent of an EI instruction.)

96

AND src, dst Binary AND the src and dst, store result in dst.

CALL label Call procedure. Stores return address on stack,
and jumps to label.
DI Disable Interrupts.

DJNZ dst, label | Decrement, Jump Not Zero. Decrements dst register,
and jumps to label if result is non-zero.

El Enable Interrupts.

IRET Return from Interrupt Handler. Pops condition codes and
return address off of stack, continues execution.

JR cc, label | Jump Relative. If condition code cc is true, jumps to label.

If omitted, cc is assumed true.
LD dst, src Loads register src into dst.

POP dst Pops value off of stack, into dst. (dst = reg[SP++])
PUSH src Pushes src register onto stack. (reg[-SP] = src)
RET Return from procedure. Pops return address off of stack,

and continues.
™ dst, src Test Mask. Binary AND’s the src and dst;
affects condition codes, but does not store result.

Figure A.3. Z86 Instructions Used in Micro00 Example System

Note that there are two return instructions, “RET” and “IRET”. “RET” corre-
sponds to the “CALL” instruction; “CALL” and “RET” procedure calls do not guar-
antee preservation of any registers across the call. The “IRET” instruction, however,
does not correspond to an explicit “CALL” instruction. The Z86 has true vectored
interrupt handling, which means that control can transfer to any interrupt handler
after any opcode, given that the interrupts are enabled. Interrupt handlers preserve
the processor condition code register on the stack, but otherwise do not guarantee
any other register to be preserved across the call. This means that programmers must
work carefully to ensure that their interrupt handlers do not corrupt state information
during delicate computations in the non-interrupt code.

A.2 Example System Program

The overall structure of the example program is illustrated by the partial call graph
in Figure A.5. The figure does not show control-flow transfers due to interrupts.

Figures A.6, A.7 and A.8 show the Micro00 example program. The program makes
communication between the controller and the three devices possible. After a brief
initialization segment from lines 17 - 23, the program enters an infinite loop, from
which it occasionally breaks in order to relay sensor data from Port 3 (line 27) to
Device 2.

97

IMR | Interrupt Bits 0-5 individually enable each of the
Mask 6 interrupt sources. Bit 7 enables vectored interrupt
Register processing. Bit 7 normally enabled with the EI

instruction, and disabled with DI.

IRQ | Interrupt When interrupt signals arrive, the corresponding bits
Request in the IRQ register are set. This allows interrupts
Register to be handled via polling, and makes visible pending,

disabled interrupts.

PO Port 0 In the example, Port 0 connects to Chip Select lines

on each of the three external devices.

P2 Port 2 In the example, Port 2 is the 8-bit data bus connecting

the controller to all of the external devices.

P2M | Port 2 Mode P2M allows each of the lines on P2 to be configured
Control as input (data in to Z86), or output (data out of Z86.)
P3 Port 3 In the example, Port 3 is connected to the Data Ready
strobes for the external devices. This means that
Device 0 can raise Interrupt Request 0, and

Device 1 can raise IRQ1.

RP | Register Pointer | Selects register bank for local addressing mode.

SPL | Stack Pointer Stores Stack Pointer value to be used for internal stack.

Figure A.4. Z86 Special Registers Used in Micro00 Example System

When the main loop calls SEND (line 28), SEND in turn calls DEVOUT (line
35), which calls PULSE (line 40). In the PULSE procedure, interrupts are globally
disabled with the DI instruction (line 55) prior to initiating the Chip Select pulse to
the output device. This operation must not be interrupted, because this could result
in confusing signals being sent to the output device. After the pulse is complete,
interrupts are re-enabled by DEVOUT (line 42), and the main loop continues on its
merry way.

In the background, vectored interrupt handlers IRQ0 and IRQ1 wait for data to
come in from either of the other two devices. When it does, the appropriate handler
saves all of the important state registers on the stack, and calls the SEND procedure
to relay the data to Device 2.

Note that IRQ1 defers to IRQO in lines 76 and 77, dropping the data from Device
1 if Device 0 already has data waiting.

A cursory analysis of the control flow of the code shows that when the EI at line
42 is reached, any one of the four possible combinations of IRQ0 and IRQ1 could be
enabled. Even in this small example, it is not immediately clear whether or not the
correct combination is always present. The SEND procedure can be called from the

main loop, or from IRQVCO or from IRQVCI; further, under certain circumstances,
it can be called from IRQVCO from within IRQVC1, or from TRQVCI, from within

98

Init
Y
> Start IRQVCO
— ¢
Y

Send <— Commonr= IRQVC1
Y Y
DevOut Devin
Pulse

Figure A.5. Partial Call graph for the Micro00 Example Program

IRQVCO. To make things worse, the double interrupt case can take place when the
main program is already several CALL levels down into the SEND sequence.

As though static analysis of this example code were not difficult enough to begin
with, testing the maximal stack size by simulating interrupts is not straight forward
either. Interrupt handlers can have subtle additive and subtractive interactions. As
shown by IRQ1 deferring to IRQO at line 77, simulating all interrupts firing as often
as possible does not necessarily yield the maximum stack size. In practice, interrupts
often represent error conditions of some kind, and their handlers can act to slow down
normal computation or adjust the stack size arbitrarily.

In short, reliable, precise analysis of the maximal possible stack size, even in
relatively small programs, makes for a challenging problem.

A.3 ZARBI results

The ZARBI stack height analysis returns the results shown in Figure A.9 for the
Micro00 benchmark.

99

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

; Constant Pool (Symbol Table).
; Bit Flags for IMR and IRQ registers.
IRQO .EQU #00000001b
IRQ1 .EQU #00000010b
; Bit Flags for external devices on Port O and Port 3.
DEVO .EQU #00000100b
DEV1 .EQU #00001000b
DEV2 .EQU #00010000b
; Interrupt Vectors.
.ORG %00h
.WORD #IRQVCO ; Device 0
.WORD #IRQVC1 ; Device 1
; Main Program Code.
.0RG 0OCh
INIT: ; Initialization section.
LD SPL, #0FOh ; Initialize Stack Pointer.
LD RP, #10h ; Work in register bank 1.
LD P2M, #00h ; Set Port 2 to all outputs.
LD IRQ, #00h ; Clear any interrupt requests.
LD IMR, #(IRQO ~| IRQ1)
EI ; Enable Interrupts O and 1.
START: ; Start of main program loop.
DJNZ r2, START
PUSH ri ; If our counter expires,
LD rl, P3 ; send this sensor’s reading
CALL SEND ; to the output device.
POP rl
JR START

Figure A.6. Micro00 Example Program

100

32 SEND:
33

34

35

36

37

38 DEVOUT:
39

40

41

42

43

44 DEVIN:
45

46

47

48

49

50

51

52

53 PULSE:
54

55

56

57

58

59

60

PUSH
LD
CALL
POP
RET

LD
CALL

EI
RET

DI
LD
CALL

LD
LD
EI
RET

PUSH
DI
LD
LD
POP
RET

; Send Data to Device 2.

r0 ; Save rO on Stack.

r0, #DEV2 ; Select control line for Dev 2.
DEVOUT ; Send out to Device.

r0 ; Restore rO to value before

; SEND was called.

; Send data out to a Device.

P2, ri ; Output data.

PULSE ; Pulse device control line to
; inform device data awaits.
; Reactivate interrupts,
; 1f disabled.

; Receive data from a Device.
; Disable interrupts.

P2M, #0FFh ; Set Port 2 lines to all inputs.
PULSE ; Pulse control line to inform

; device controller awaits data.
rl, P2 ; Input data.
P2M, #00h ; Set Port 2 lines to all outputs.

; Reactivate interrupts.

; Pulse control line of a device.

IMR ; Remember interrupt mask.

; Musn’t interrupt during pulse.
PO, r0 ; Control line determined by roO.
PO, #00h
IMR ; Reactivate interrupts.

Figure A.7. Micro00 Example Program (continued)

101

61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

IRQVCO:

COMMON :

IRQDN:

IRQVC1:

.END

PUSH
AND
PUSH
LD
PUSH
LD
CALL
CALL
POP
POP
POP
IRET

™
JR
PUSH
AND
PUSH
LD
JR

; Interrupt for Device O.

IMR

IMR,#°C IRQO ; Ensure interrupt is not re-fired.
r0 ; Save registers from squashing.
r0, #DEVO

rl

r2, #00h ; Reset counter in main loop.
DEVIN

SEND

rl ; Restore all the saved registers,
r0 ; including the IMR,

IMR ; to their pre-interrupt values.

; Interrupt Handler is domne.

; Interrupt for Device 1.

IRQ, #IRQO ; If Interrupt O already pending,
NZ, IRQDN ; Cancel this handler.

IMR

IMR,#°C IRQ1 ; Ensure interrupt is not re-fired.
r0 ; Save registers from squashing.
r0, #DEV1

COMMON

Figure A.8. Micro00 Example Program (continued)

102

Max Stack Height = 37 at [0x004A,0x80,{0x80}]
(Guessing path)
[0x004A,0x80,{0x80}]
[0x0048,0x80,{0x0038}]
[0x0035,0x80,{0x00303}]
[0x002D,0x80,{?}]
[0x0029,0x80,{0x00661}]
[0x0063,0x80,{?}]
[0x005C,0x00,{?}]
[0x0077,0x00,{0x023}]
[0x0072,0x02,{0x00473}]
[0x0047,0x82,{0x0063}]
[0x0060,0x02,{?}]
[0x005C,0x02,{?}]
[0x0058,0x02,{0x03}]
[0x0053,0x03,{0x001C}]
[0x001C,0x83,{}]

Coloring graph, IRQ=0: [0K]
Edges = 619 Green Yellow Magenta Blue Red

Nodes = 339 191 0 17 131 0

Percent = 567% 0% 5% 38% 0%

Figure A.9. Micro00 Example Program Stack Height Results

103

APPENDIX B SIMPLIFIED Z86 GRAMMAR

The ZARBI Simplifier takes as input the Z86 Assembly Language described in [100]
and emits syntax compliant with the grammar below. The many other ZARBI tools
parse in this stricter grammar, thereby avoiding duplicated work like symbol table
resolution.

Goal() == Line() Goal()

Goal() == Code() EOF

Code() == LabelDef() Line() Code()
| .END

Line() := Directive()
| Instruction()

LabelDef() := Label() :
Instruction() == CLR()

I LD()

104

105

STOP()

WDH()

WDT()

IRET

RET

CCF

DI

ElI

HALT

NOP

RCF

SCF

STOP

WDH

WDT

INC G_IA_Operand()
INCW rr Dec_Reg_Pair()
CALL Label()

CALL @ rr Dec_Reg_Pair()
CALL @ CharSymbol()
CLR G.IA_Operand()
COM G_IA_Operand()
DA G_IA _Operand()
DEC G_IA_Operand|()
DECW 11 Dec_Reg_Pair()
POP G_IA_Operand()
PUSH G_IA_Operand()
RL G_IA_Operand|()
RLC G_IA _Operand|()

RR
RRC
SRA

SWAP
SRP
JP

NN N N N N
— N N S S

JR
DJNZ
AND
OR
XOR
ADD
SUB
ADC
SBC
CP
TCM
™
LD

AN TN N AN N N N N N N S N N
N e e e e e N e N e e S

LDL()

LDC()

106

RR G_IA_Operand()

RRC G_IA_Operand()

SRA G_IA_Operand()

SWAP G_IA _Operand()

SRP # CharSymbol()

JP Condition() , Label()

JP Condition() , rr Dec_Reg_Pair()
JP Condition() , CharSymbol()

JR Condition() , Label()

DJNZ r Dec_Reg() , Label()

AND AND_Operand()

OR AND_Operand()

XOR AND_Operand|()

ADD AND _Operand()

SUB AND_Operand()

ADC AND_Operand()

SBC AND_Operand()

CP AND_Operand()

TCM AND_Operand|()

TM AND_Operand|()

LD AND_Operand|()

LD @ r Dec_Reg() , r Dec_Reg()
LD @ CharSymbol() , r Dec_Reg()
LD @ r Dec_Reg() , CharSymbol()
LD @ CharSymbol() , CharSymbol()
LDL rr Dec_Reg_Pair() , Label()
LDL CharSymbol() , Label()

LDC r Dec_Reg() , @ rr Dec_Reg_Pair()
LDC r Dec_Reg() , @ CharSymbol()

LDCI()

G_IA_Operand|()

AND _Operand()

Condition()

LDCI @ r Dec_Reg() , @ rr Dec_Reg_Pair()
LDCI @ r Dec_Reg() , @ CharSymbol()
LDCI @ CharSymbol() , @ rr Dec_Reg_Pair()
LDCI @ CharSymbol() , @ CharSymbol()
r Dec_Reg()

CharSymbol()

@ r Dec_Reg()

@ CharSymbol()

@ r Dec_Reg() , # CharSymbol()

@ CharSymbol() , # CharSymbol()

r Dec_Reg() , @ r Dec_Reg()

r Dec_Reg() , @ CharSymbol()
CharSymbol() , @ r Dec_Reg()
CharSymbol() , @ CharSymbol()

r Dec_Reg() , # CharSymbol()
CharSymbol() , # CharSymbol()

r Dec_Reg() , r Dec_Reg()

r Dec_Reg() , CharSymbol()
CharSymbol() , r Dec_Reg()
CharSymbol() , CharSymbol()

F

C

NC

Z

NZ

PL

MI

)Y

NOV

107

Directive

CharSymbol

()
0

EQ

NE

GE

GT

LE

LT

UGE

ULE

ULT

UGT

TRUE

. WORD # Label()

. ASCII # CharSymbol()

% Hex h()

% Bin_b()

% Dec_d()

An identifier.

A register in decimal notation.
A register pair in decimal notation.
An integer in binary notation.
An integer in decimal notation.

An integer in hexadecimal notation.

108

109

APPENDIX C INTERRUPT SCHEDULE FILE FORMAT

The ZARBI Simulator accepts as input three kinds of interrupt sequences that can
be specified in an interrupt schedule file. This appendix gives an example of the
interrupt schedule files used for the genetic algorithm search used to find lower bounds
on maximum stack heights.

The first kind of interrupt sequence that can be specified indicates that a particular
interrupt will fire just before a certain address in the program is executed. The
interrupt will fire each time this address is about to be executed.

The other two kinds if interrupt sequences are periodic. They will start firing
a specified time after the start of the program or just before a certain address is
executed. Besides an initial firing point, these interrupt sequences specify a period in
clock cycles.

An interrupt schedule file contains an arbitrary number of single-shot interrupt
sequences and periodic interrupt sequences, as illustrated by Figure C.1.

Single-shot interrupt sequences are in the first block of Figure C.1. IRQ means
interrupt and ADDR means address. All addresses are in hexadecimal. The first line
says interrupt number 5 will be fired each time the simulator is about to execute the
instruction at address 00E4.

The second block in Figure C.1 contains the periodic interrupt sequences that are
started just before a specified address is executed. The number after EACH specifies
the number of cycles before the interrupt should be fired again. The first of these
interrupt sequences specifies that interrupt 5 will fire just before address 04BC is
executed the first time, and then subsequently every 35,721 clock cycles after that.

The third block in Figure C.1 contains the periodic interrupt sequences that are
started a fixed number of cycles after the controller begins program execution. The
first of these interrupt sequences says that interrupt 1 will fire after the first 703,529
cycles of execution, and will subsequently fire again every 700,748 cycles.

110

IRQ
IRQ
IRQ
IRQ
IRQ

IRQ
IRQ
IRQ
IRQ
IRQ

IRQ
IRQ
IRQ
IRQ
IRQ

S P - 01O,
e 0 © © ©

D O - Wb O

© © 0 0 ©

N DN -
© © © © ©

ADDR
ADDR
ADDR
ADDR
ADDR

ADDR
ADDR
ADDR
ADDR
ADDR

TIME
TIME
TIME
TIME
TIME

OOE4
05D6
0298
03D5
0710

04BC EACH 35721

00D5 EACH 511911
0620 EACH 617499
0B2A EACH 254317
OA1D EACH 366248

703529 EACH 700748
418949 EACH 754244
701474 EACH 978065
424882 EACH 601242
193234 EACH 317528

Figure C.1. Example Interrupt Schedule

111

APPENDIX D FLOW ORACLE GRAMMAR

The ZARBI graph builder uses a “flow oracle” to answer questions about the very
small number of indirect jumps contained in the commercial benchmarks. The gram-
mar accepted by the ZARBI Flow Oracle is shown in Figure D.1.

Goal() == Line() Goal()
| EOF
Line() := Reg() @ Label() : Info()
Info() == TItem() , Info()
I Ttem()
Item() == Range()
| Loop()
| Atom()
Atom() == Label()
I Hex()
Loop() == Hex() TO Hex()
| Hex() DOWNTO Hex()
Range() == Hex() .. Hex()
Label() ::= The syntax of a Z86 program label
Hex() ::= 8-bit, unsigned integers in hexadecimal
Reg() == Z86 assembly syntax for a register

Figure D.1. Flow Oracle Input Grammar

In practice, the current version of the flow oracle is used only to provide lists
of possible target addresses for indirect jump instructions. Only one of the seven
commercial benchmarks, “Fan005”, used indirect jumps at all. In Fan005, the register
with the jump target was loaded only with immediate constants, and no pointer
arithmetic was performed on its values. Calculating all possible indirect jump targets
for a Z86 program is an infeasible data flow analysis problem in the general case, but
becomes feasible when the expressive power of the language is sufficiently constrained.

Because data flow analysis is tangential to the primary thrust of this dissertation,
the current version of ZARBI takes a shortcut around the problem, and allows “man-
ual” data flow analysis to be specified through the flow oracle. Figure D.2 shows the
only flow information used in the experiments presented in this dissertation.

112

%AEh © LOACS8: {LOACB, LOADD, LOAF6, LOB08, LOB67, LOB7E, LOB88}

Figure D.2. Flow Oracle Input Example

The flow information provided by Figure D.2 states that register pair “%AEh”
will contain one of the seven address labels to the right of the colon at program point
“LOACS8”. This flow information is provided to the graph builder for the Fan005
benchmark, which allows the proper edges to be constructed when the analysis reaches
the indirect call instruction at address 0xOACS8 in the program.

Information provided by the flow oracle must be safe in order for the entire deadline
and stack-size analyses to be safe. Automating conservative data flow analysis of this
kind is beyond the scope of this dissertation.

The flow oracle’s syntax was designed to allow flow information for loop variables
to be passed to the graph builder for automated loop unrolling, but this has not been
implemented in the current version of ZARBI. Automated unrolling of internally-
bounded loops could eliminate up to two thirds of the time oracle assertions provided
for deadline analysis, as section 5.2.3 described.

The syntax provided by the flow oracle would allow flow information of the form
shown in Figure D.3, which states that the loop variable in register 12 at instruction
345 goes from 5 down to 1.

%12h @ L0345: 05 DOWNTO 01

Figure D.3. Flow Oracle Loop Bound Syntax

The flow oracle interface has allowed manual data flow analysis to be used in the
prototype system, but would permit automated analyses to interact with the graph
builder in the same fashion.

113

APPENDIX E TIME ORACLE GRAMMAR

The ZARBI graph builder uses a “time oracle” to answer questions about maximum
latency while building the deadline analysis graph. The grammar accepted by the
ZARBI Time Oracle is shown in Figure E.1.

Concrete examples of input to the time oracle are provided throughout section 5.4.

Goal() == Line() Goal()
| EOF
Line() := GraphNode() — GraphNode() = Int()
GraphNode() == [Label(), Mask(), StackList() |
Mask() == Var()
| Hex(
StackList() == Var()
| { Label() }
I { Hex() }
Label() := 16-bit, unsigned integers in hexadecimal
Hex() == 8-bit, unsigned integers in hexadecimal
Var() == alphabetic variable name

Figure E.1. Time Oracle Input Grammar

VITA

114

VITA

Dennis William Brylow was born in Milwaukee, and grew up in Greendale, Wisconsin.

Under the tutelage of Gordon Kraemer and his successors at the Greendale High
School educational access TV station, Dennis learned about television production,
audio and video technology, electronics and computers. He designed and fabricated
his first circuit boards the summer of 1989.

Dennis graduated from Rose-Hulman Institute of Technology in 1996 with Bach-
elor of Science degrees in computer science and electrical engineering. As an under-
graduate, his side jobs included lab assistant, documentation manager, and system
administrator. In his spare time, he worked for the institute’s solar race car project,
where he specialized in embedded radio telemetry systems. He spent the summer of
1996 studying abroad in Kanazawa, Japan.

Returning to America, Dennis worked full time for Greenhill Manufacturing, Ltd.
Having spent four previous summers at the small company, he quickly became an
R & D engineer, participating in all facets of planning, designing, prototyping, pro-
gramming, fabricating and testing of embedded control systems.

Dennis began graduate study at Purdue University in 1997, where he spent
semesters as a teaching assistant, course coordinator, and eventually primary in-
structor for introductory programming courses. In his spare time, he integrated
Linux workstations into the department computing infrastructure and designed cir-
cuit boards for specialty instructional laboratories.

As a research assistant under Jens Palsberg, Dennis earned his Master of Science
in 1999, and his Doctor of Philosophy in computer science in August of 2003.

His interests include real-time, embedded, and interrupt-driven systems, software
engineering, type systems, and UNIX system administration.

