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ABSTRACT
Effective ranking functions are an essential part of com-
mercial search engines. We focus on developing a regres-
sion framework for learning ranking functions for improv-
ing relevance of search engines serving diverse streams of
user queries. We explore supervised learning methodology
from machine learning, and we distinguish two types of rel-
evance judgments used as the training data: 1) absolute
relevance judgments arising from explicit labeling of search
results; and 2) relative relevance judgments extracted from
user clickthroughs of search results or converted from the
absolute relevance judgments. We propose a novel optimiza-
tion framework emphasizing the use of relative relevance
judgments. The main contribution is the development of an
algorithm based on regression that can be applied to objec-
tive functions involving preference data, i.e., data indicating
that a document is more relevant than another with respect
to a query. Experimental results are carried out using data
sets obtained from a commercial search engine. Our results
show significant improvements of our proposed methods over
some existing methods.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and
Retrieval—Retrieval functions; H.4.m [Information Sys-
tems]: Miscellaneous—Machine learning

General Terms
Algorithms, Experimentation, Theory

Keywords
ranking function, machine learning, absolute relevance judg-
ment, relative relevance judgment, preferences, clickthroughs,
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1. INTRODUCTION
Research and experiments in information retrieval have

produced many fundamental methodologies and algorithms
enabling the technological advances in the current commer-
cial search engines. Ranking functions are at the core of
search engines and they directly influence the relevance of
the search results and users’ search experience. In the past,
many models and methods for designing ranking functions
have been proposed, including vector space models, prob-
abilistic models and the more recently developed language
modeling-based methodology [17, 16, 2]. In particular, learn-
ing ranking functions within the framework of machine learn-
ing have attracted much interest long before the recent ad-
vances of Web search [10, 6, 5, 11, 22, 19]. The trend con-
tinues to this day and several methods have been proposed
incorporating many of the recent advances in machine learn-
ing such as SVM and gradient boosting [7, 4, 19].

Machine learning approaches for learning ranking func-
tions, in particular, the supervised learning approaches, en-
tails the generation of training data, in the form of labeled
data explicitly constructed from relevance assessment by hu-
man editors. As an example, labels or grades such as perfect,
good, or bad, can be assigned to documents with respect to a
query indicating the degree of relevance of documents. With
labels associated with query-document pairs, we are using
the absolute relevance framework where judgments are made
with respect to whether a document is or is not relevant to
a query. Acquiring large quantities of absolute relevance
judgments, however, can be very costly because it is neces-
sary to cover a diverse set of queries in the context of Web
search. An additional issue is the reliability and variability
of absolute relevance judgments.

One possibility to alleviate this problem is to make use
of the vast amount of data recording user interactions with
the search results, in particular, user clickthroughs data [1].
Each individual user click may not be very reliable, but the
aggregation of a great number of user clicks can provide
a very powerful indicator of relevance preference. In this
regard, Joachims and his coworkers have developed meth-
ods for extracting relative relevance judgments from user
clickthroughs data [13, 14, 20, 15, 21]. Particularly, the
relative relevance judgments are in the form of whether a
document is more relevant than other documents with re-
spect to a query. The benefit for using relative relevance
judgments are the potential unlimited supplies of user click-



throughs data and the timeliness of user clickthroughs data
for capturing user searching behaviors and preferences. The
drawback for using relative relevance judgments are that
user clickthroughs data tend to be quite noisy, especially
we also need to deal with fraudulent clicks. Although there
have been some research on how to extract relative relevance
judgments from user clickthroughs data, much research is
still needed to make the extraction process more effective.

Once relative relevance judgments are extracted from user
clickthroughs data, the next question is how to use them for
the purpose of learning a ranking function. This falls under
the general framework of learning ranking functions from
preference data and several algorithms have been proposed
in the past: Joachims and his coworkers used RankSVM
based on linear SVM for learning ranking functions. To in-
corporate nonlinear interactions of features in RankSVM, ei-
ther more complicated features need to be devised or some
kind of kernels used [13, 14, 15]. RankNet, developed by
a group from Microsoft Research, proposed an optimiza-
tion approach using an objective function based on Bradley-
Terry models for paired comparisons and explored neural
networks for learning the ranking functions [4]. The clos-
est to our proposed method is RankBoost discussed in [8],
using ideas of Adaboost for learning ranking functions for
preference data. The choice for selecting weak learners for
RankBoost as discussed in [8] is very limited and is less flexi-
ble to deal with the complicated features used in Web search
context.

The main contribution of our work is the development of
a learning framework for preference data using regression as
the basic ingredient. For example, the ranking functions are
represented as a combination of regression trees when we
use gradient boosting for regression [9]. More interestingly,
our experimental results also show that even with absolute
relevant judgments, it is more advantageous to first convert
them into preference data and apply our proposed methods
than to treat the ranking problem with absolute relevant
judgments as a regression problem.

The rest of the paper is organized as follows: section 2
develops the main algorithmic contribution of the paper; we
start with a brief review of the basic idea of gradient descent
in function spaces [9]. We then propose an objective func-
tion, the optimization of which will lead to the construction
of the ranking function. We apply functional gradient de-
scent methodology to the objective function and transform
the problem of learning ranking functions as a sequence of
problems of learning regression functions. For concreteness,
we use gradient boosting regression as an illustration of the
general methodology. In section 3, we present a detailed ex-
perimental study using data from a commercial search en-
gine. In the last section, we make some concluding remarks
and also point out several directions for future research.

2. A REGRESSION FRAMEWORK FOR
LEARNING FROM PREFERENCE DATA

Our basic premise is that ranking and regression are fun-
damentally different problems, but regression can be used
to solve ranking problems using preference data. Our main
contribution is a framework for solving ranking problems
with regression using relative judgments and the regression
methods used can be be chosen to tailor to the specific ap-
plications. For concreteness, we will discuss the framework

using gradient descent, and we start with a brief introduc-
tion of gradient descent in function spaces [9]. We then
propose a new objective function for learning ranking func-
tions using preference data and develop an algorithm that
adapts functional gradient descent for optimizing the pro-
posed objective function.

2.1 Functional gradient descent
We first give a brief discussion of gradient descent for un-

constrained optimization of a multivariate function [3]. To
this end, suppose we want to solve minx∈Rd F (x), where
F (x) is a d-variable function. The idea of gradient descent
is to start with an initial guess x0 of a minimizer, and at
each step compute the gradient of the objective function F
at the current iterate xk, say ∇F (xk), and use the negative
gradient as the search direction to obtain the next iterate

xk+1 = xk − αk∇F (xk),

where αk is the step size which can be chosen, for example,
by a line-search.

In the context of regression, we are given a training set
{(xi, gi)}

N
i=1, and we seek to find a function h such that

gi ≈ h(xi), i = 1, . . . , N . For simplicity we use the square
loss function, i.e., we measure the discrepancy between gi

and h(xi) by (gi − h(xi))
2. Then we need to find a function

h(x) to solve the following minimization problem,

min
h∈H

L(h) ≡ min
h∈H

1

2

N�
i=1

(gi − h(xi))
2,

where H is a pre-defined function class such as the class
of polynomials not to exceed certain degree. We can apply
gradient descent in function space to minimize the functional
L(h), i.e., compute the gradient of L(h) with respect to h
at the current iterate hk(x) and form the next iterate as

hk+1(x) = hk(x) − αk∇L(hk(x)).

The problem is that, we can not compute ∇L(hk(x)) at all
x, but rather we can only compute it at a finite sample,

∇L(hk(xi)) = −(gi − hk(xi)), i = 1, . . . , N.

The crucial idea of functional gradient descent is to find a
function that interpolates/approximates the above sample
values and therefore obtain an approximation of the nega-
tive gradient −∇L(hk(x)) to form the next iterate. As an
illustration, we explain the details of the algorithm when the
interpolation/approximation is done by fitting a regression
tree to the sample values, as is easily seen other regression
methods can also be used here [9]. We summarize the above
in the following and label it as GBT (Gradient Boosting
Trees).

Algorithm. (Gradient Boosting Trees [9])

1. Initialize h0(x) = � N

i=1 gi/N .
2. For k = 1, . . . , M : (number of trees in gradient boost-

ing)

(a) For i = 1, . . . , N , compute the negative gra-
dient

rik = gi − hk−1(xi)

(b) Fit a regression tree to {rik}i=1,...,N giving
terminal regions Rjk, j = 1, . . . , Jk.



(c) For j = 1, . . . , Jk, compute

γjk =
�

xi∈Rjk

(gi − hk−1(xi))/|{i : xi ∈ Rjk}|,

average of the residual in each terminal region.

(d) Update

hk(x) = hk−1(x) + η(

Jk�
j=1

γjkI(x ∈ Rjk)),

where η is the shrinkage factor, and I(·) is the
indicator function.

There are two parameters M , the number of regression
trees and η, the shrinkage factor that need to be chosen by
the user. In general, we use cross-validation for choosing the
two parameters.

2.2 Ranking with relative judgments
As we mentioned before, the relative relevance judgments

are in the form of whether a document is more relevant than
other documents with respect to a query. We encode this
information as follows: given the feature vectors for two
query-document pairs x and y (see Section 3 for details on
extraction of query-document features), we use x � y to
mean that x is preferred over y, i.e., x should be ranked
higher than y. Simply put, this means that the document
represented by x is considered more relevant than that rep-
resented by y with respect to the query in question.

We denote the set of available preferences based on the
relative relevance judgments as

S = {〈xi, yi〉 | xi � yi, i = 1, . . . , N}.

We formulate the problem of learning ranking functions as
computing a ranking function h ∈ H, H a given function
class, such that h match the set of preferences, i.e., h(xi) ≥
h(yi), if xi � yi, i = 1, . . . , N , as much as possible. We
propose to use the following objective function to measure
the risk of a ranking function h,

R(h) =
1

2

N�
i=1

(max{0, h(yi) − h(xi)})
2, (1)

the motivation is that if for the pair 〈xi, yi〉, h matches the
given preference, i.e., h(xi) ≥ h(yi), then h incurs no cost
on the pair, otherwise the cost is given by (h(yi) − h(xi))

2.
Direct optimization of the above can be difficult, the basic
idea of our regression framework is to fix either one of the
values h(xi) or h(yi), e.g., replace either one of the function
values by its current predicted value, and solve the problem
by way of regression.

Remark. To avoid obtaining an optimal h which is con-
stant, we actually need to optimize, for 0 < τ ≤ 1,

R(h, τ) =
1

2

N�
i=1

(max{0, h(yi) − h(xi) + τ})2 − λτ2,

Our implementation in the sequel corresponds to setting τ
to be a fixed constant.

To this end, we use the idea of functional gradient descent
as reviewed in the previous section. We consider

h(xi), h(yi), i = 1, . . . , N,

as the unknowns, and compute the gradient of R(h) with
respect to those unknowns. The components of the negative
gradient corresponding to h(xi) and h(yi), respectively, are

max{0, h(yi) − h(xi)}, −max{0, h(yi) − h(xi)}.

Both of the above equal to zero when h matches the pair
〈xi, yi〉, and therefore, in this case no modification is needed
for the components corresponding to h(xi) or h(yi). On
the other hand, if h does not match the pair 〈xi, yi〉, the
components of the gradient are

h(yi) − h(xi), h(xi) − h(yi).

The above tells us how to modify the difference of function
values, to know how to modify the function itself we need to
translate those gradient components into modification to h.
We adopt the following simple approach: we set the target
value for xi as h(yi)+τ and that for yi as h(xi)−τ for some
fixed τ . Then, we obtain the following set of data that need
to be fitted at each iteration,

{(xi, h(yi) + τ), (yi, h(xi) − τ)}, (2)

where h does not match pair 〈xi, yi〉.
When some feature vectors xi or yi can appear more than

once in S, there will be several components of the negative
gradient of R(h) that will involve xi or yi. When translat-
ing the gradient components to modification of h, we may
end up with inconsistent requirements. One approach will
be to compute an average taking into account of all the re-
quirements. This is a local approach using information in
the training data related to the feature vectors in question.
A better alternative approach is to add all the different and
potentially inconsistent requirements in the training set, and
let the regression methods such as GBT to handle the in-
consistency using more global information based on all the
training data. We summarize the algorithm, again using
GBT for regression as an illustration, as follows which we
label as GBrank.

Algorithm. (GBrank) 1

Start with an initial guess h0, for k = 1, 2, . . . ,

1) using hk−1 as the current approximation of h, we sep-
arate S into two disjoint sets,

S+ = {〈xi, yi〉 ∈ S | hk−1(xi) ≥ hk−1(yi) + τ}

and

S− = {〈xi, yi〉 ∈ S | hk−1(xi) < hk−1(yi) + τ};

2) fitting a regression function gk(x) using GBT and the
following training data

{(xi, hk−1(yi)+τ), (yi, hk−1(xi)−τ) | (xi, yi) ∈ S−};

3) forming (with normalization of the range of hk)

hk(x) =
khk−1(x) + ηgk(x)

k + 1
,

where η is a shrinkage factor.

Remark. We want to point out that the above framework
is generic in the sense that it can use any application-specific
regression method for learning the regression function gk(x).
1If the preferences 〈xi, yi〉 are converted from absolute rel-
evance judgments, we multiple τ by the absolute value of
grade difference between xi and yi



3. EXPERIMENTAL RESULTS
We carried out several experiments illustrating the prop-

erties and effectiveness of GBrank. We also compared its
performance with some existing algorithms such as GBT
and RankSVM.

3.1 Data Collection
We first describe how the data used in the experiments

are collected.

3.1.1 Feature vectors
As we mentioned before, each query-document pair is rep-

resented by a feature vector. For query-document pair (q, d),
a feature vector x = [xQ, xD, xQD] is generated and the fea-
tures generally fall into the following three categories:

• Query-feature vector xQ which comprises features de-
pendent on the query q only and have constant values
across all the documents d ∈ D, for example, the num-
ber of terms in the query, whether or not the query is
a person name, etc.

• Document-feature vector xD which comprises features
dependent on the document d only and have constant
values across all the queries q ∈ Q, for example, the
number of inbound links pointing to the document, the
amount of anchor-texts in bytes for the document, and
the language identity of the document, etc.

• Query-document feature vector xQD which comprises
features dependent on the relation of the query q with
respect to the document d, for example, the number
of times each term in the query q appears in the doc-
ument d, the number of times each term in the query
q appears in the anchor-texts of the document d, etc.

The preference data for training are extracted from the
follow two sources: absolute relevance judgments arising
from editorial labeling, and relative relevance judgments ex-
tracted from user clickthroughs data.

3.1.2 Preference data from labeled data
A set of queries are sampled from query logs, and a cer-

tain number of query-document pairs are labeled according
to their relevance judged by human editors. A 0-4 grade is
assigned to each query-document pair based on the degree of
relevance (perfect match, excellent match, etc), and the nu-
merical grades are also used as the target values for GBT re-
gression. We use a data set from a commercial search engine
which contains 4,372 queries and 115,278 query-document
pairs.

We use the above labeled data to generate a set of pref-
erence data as follows: given a query q and two documents
dx and dy. Let the feature vectors for (q, dx) and (q, dy) be
x and y, respectively. If dx has a higher grade than dy, we
include the preference x � y while if dy has a higher grade
than dx, we include the preference y � x. For each query, we
consider all pairs of documents within the search results ex-
cept those with equal grades. This way, we generate around
1.2 million preferences in total.

As we will see later, the labeled data not only provide us
with preference data, they also allow us to compare GBrank
based on converted preference data and GBT regression us-
ing the labeled data.

3.1.3 Preference data from clickthroughs data
We also examined a certain amount of clickthroughs data

and extracted a set of preference data as follows. For a
query q, we consider two documents d1 and d2 among the
top 10 results from Yahoo! web search. Assume that in the
clickthroughs data, d1 has c1 clicks out of n1 impressions,
and d2 has c2 clicks out of n2 impressions. We want to
consider document pairs d1 and d2 for which either d1 or d2 is
significantly better than the other in terms of clickthroughs
rate. To this end, we assume that clicks in user sessions obey
binomial distribution. Denote the binomial distribution by

B(k; n, p) = � n
k � pk(1 − p)n−k

We apply likelihood ratio test (LRT) and compute,

λ ≡
B(c1 + c2; n1 + n2, (c1 + c2)/(n1 + n2))

B(c1;n1, c1/n1)B(c2;n2, c2/n2)
→ −χ2.

We consider a pair d1 and d2 when the above is greater
than a threshold, and we say the pair is significant. Among
the significant pairs, we apply rules similar to those in [15]
such as Skip-Above to extract preference data. In total we
extracted 20,948 preferences.

3.2 Evaluation Metrics
The output of GBrank is a ranking function h which is

used to rank the documents x according to h(x). Therefore,
document x is ranked higher than y by the ranking function
h if h(x) > h(y), and we call this the predicted preference.
We propose the following three metrics to evaluate the per-
formance of a ranking function with respect to a given set
of preferences which we considered as the true preferences.

• Number of contradicting pairs: for a pair of documents
if the predicted preference is different from the true
preference, the pair is a contradicting pair.

• Precision at K%: for two documents x and y (with
respect to the same query), it is reasonable to assume
that it is easy to compare x and y if |h(x) − h(y)| is
large, and x and y should have about the same rank
if h(x) is close to h(y). Base on this, we sort all the
document pairs 〈x, y〉 according to |h(x) − h(y)|. We
call precision at K%, the fraction of non-contradicting
pairs in the top K% of the sorted list.2

• Discounted Cumulative Gain (DCG): DCG has been
widely used to assess relevance in the context of search
engines [12]. For a ranked list of N documents (N is
set to be 5 in our experiments), we use the following
variation of DCG,

DCGN =
N�

i=1

Gi

log2 (i + 1)
,

where Gi represents the weights assigned to the label of
the document at position i, e.g. 10 for Perfect match,
7 for Excellent match, 3 for Good match, etc. Higher
degree of relevance corresponds to higher value of the
weight. We will use the symbol dcg to indicate the
average of this value over a set of testing queries in our

2Notice that precision at 100% corresponds to the percent-
age of contradicting pairs.
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Figure 1: Number of contradicting pairs in training set against GBrank iterations (left), number of contra-
dicting pairs in testing set against GBrank iterations (middle), DCG on testing data againt GBrank iterations
(right)
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experiments. In our experiments, dcg will be reported
only when absolute relevance judgments are available.

3.3 Experiment Design and Results
The following questions guide the design of the experi-

ments we carry out:

1. What is the convergence behavior of GBrank, will the
number of contradicting pairs decrease in the training
data? in the test data?

2. Quantitatively, what is the effect of the training data
size on the performance of GBrank in terms of the
three metrics we proposed?

3. When we have absolute relevance judgments, we can
also use a regression method such as GBT to learn
the ranking function based on the assigned numerical
grades [7, 19]. How does GBT learned with absolute
relevance judgments compare to GBrank learned with
relative relevance judgments converted from the same
set of absolute relevance judgments?

4. RankSVM based on linear SVM is a popular method
for training ranking functions using preference data.
How does GBrank compare with RankSVM?

For GBT and RankSVM, we tuned the parameters to get the
best performance. For GBrank, we just used the parameters

tuned for GBT: we use 100 trees each with 15 leaf nodes,
and the shrinkage factor is set to be 0.05. All the experi-
ments were conducted on a 2.4Ghz 4-cpu AMD server with
4G RAM. GBT training will take about 15 minutes while
the training time for GBrank would be a few hours depend-
ing on the number of iterations and number of preferences.
The testing time for GBT is only a few minutes and that
for GBrank would be the number of iterations multiplied by
the above time for GBT. Both training and testing time for
GBrank could be significantly reduced by using less number
of trees for each iteration, e.g. single tree instead of GBT.
Our more recent experiments showed that GBrank using sin-
gle tree with a few hundred iterations achieves comparable
dcg-5 while reducing the time complexity a great deal.

3.3.1 Experiments with labeled data
For the first two questions, we generate the training and

testing data as follows: we randomly split the labeled data
described in section 3.1.1 by query into training set (60% of
labeled queries, 71,338 query-documents and 753,976 pref-
erences) and testing set (the remaining 40% queries, 43,940
query-document pairs and 465,893 preferences).

From the left panel of Figure 1, we can see that the num-
ber of contradicting pairs monotonically decreases iteration
by iteration during training, which indicates the convergent
trend of GBrank. As for now, we always use a validation set



Table 1: Number of contradicting pairs (CP) and
precision (Prec) at K% for GBrank and GBT

%K num pairs GBrank GBT
CP Prec CP Prec

10% 46590 225 0.9952 949 0.9796
20% 93179 1095 0.9883 3313 0.9644
30% 139768 5695 0.9593 8718 0.9376
40% 186358 15324 0.9178 18340 0.9016
50% 232947 28117 0.8793 30865 0.8675
60% 279536 46334 0.8434 43776 0.8342
70% 326126 61189 0.8124 63711 0.8046
80% 372715 80726 0.7834 82976 0.7774
90% 419304 101601 0.7577 103530 0.7531
100% 465893 123939 0.7340 126188 0.7291

to decide when to stop the iteration. The middle panel of
Figure 1 shows the number of contradicting pairs on the test-
ing data first decreases and then gradually increases after a
certain number of iterations. Since we also have available
the absolute relevance judgments, we plot the dcgs against
each iteration in the right panel of Figure 1. The dcg plot
is almost a mirror image along the horizontal axis of the
contradicting pairs plot on testing data. We mention that
we have observed similar trends on other data sets we have
tested.

In order to demonstrate the effect of training data size,
we randomly sample increasing percentages of training data
and generate the corresponding pairwise preference data as
described in section 3.1.1. The experimental results on the
same testing data are reported as follows:

The left panel of Figure 2 shows the number of contradict-
ing pairs in the testing data decreases with the increasing
size of training data. The dcg-5 for different training data
size was shown in the right panel of Figure 2, which indi-
cates a strongly positive correlation between the dcg gain
and the increase of training data size.

Although our major concern is about GBrank using rela-
tive relevance judgments, it is actually rather instructive to
see how it compares with GBT when trained on the same
absolute relevance judgments, of course for GBrank, we will
need to convert the absolute relevance judgments to rela-
tive relevance judgments. This experiment is aimed at the
third question. One interesting observation is that GBrank
underperforms GBT when the training data size is small.
One plausible explanation for this is that to rank objects
according to a set of preferences, there needs to be enough
overlaps among the preferences, for small amount of data,
the overlaps are weak and hence the poorer performance.
Why would GBrank outperform GBT when there are plenty
of training data? We suspect the deeper reason lies at the
fundamental difference between a ranking problem and a
regression problem. GBT is designed for regression prob-
lems and is therefore not necessarily the optimal choice for
ranking problems.

We elaborate on this point a bit more now: ranking web
search results is fundamentally a preference learning prob-
lem rather than a regression problem, i.e., we just want to
rank more relevant results higher than those less relevance
ones, we do not need to care about predicting the grades of

the documents very accurately. Let us illustrate this using a
simple example [19]. Consider two queries q1: “harvard uni-
versity” and q2: “college of san mateo”. q1 is more popular
than q2 generating about 13 million search results while re-
sults for q2 are two orders of magnitude less. For simplicity
we consider a ranking function h(x) using a single feature x
which counts the number of inbound links to a document.
Now let us examine the top three results di1, di2, di3, i = 1, 2,
for each of the query. Assume di1 is ranked perfect, di2 is
ranked excellent, and di3 is ranked good, and we convert the
labels to numerical values as follows,

0 ⇔ perfect, 1 ⇔ excellent, 2 ⇔ good.

Since q1 is very popular, each of the top three results gener-
ate high feature values, say, x = 100000, 80000, 50000 while
for q2 the corresponding feature values are x = 1000, 800, 500.
Assume x is negatively correlated with the label, i.e., small
x values tend to indicate better relevance, then we will need
to find a monotonically decreasing function h such that for
q1

h(100000) ≈ 0, h(80000) ≈ 1, h(50000) ≈ 2

and for q2,

h(1000) ≈ 0, h(800) ≈ 1, h(500) ≈ 2.

The major issue comes from the difference of popularity of
the queries. This could partially explain why ranking func-
tions could be better learned using GBranking with pref-
erence data than GBT regression with absolute relevance
judgments.

In our experiments, we exclude all tied data (pairs of docu-
ments with the same grade) when converting preference data
from the absolute relevance judgments, which is a significant
information loss especially when the training data are small.
Adding those tied data will certainly increase the overlaps
among the training preferences. Including those tied data
in GBrank learning will be part of our future work.

We now turn to the precision at K% metric: Table 1
presents the number of contradicting pairs and precision at
K% for GBT learned with all of training data and GBrank
learned with the corresponding preference data. This again
shows that GBrank outperforms GBT with respect to the
precision at K% metric.

To further explore the third and the last questions, we con-
duct an experimental comparison among GBrank, GBT, and
RankSVM in a 5-fold cross-validation setting. Again, the 5-
fold splitting is on queries using the data described in section
3.1.1. Figure 3 and 4 show the results using the two met-
rics, dcg-5 and number of contradicting pairs, for GBrank,
GBT, and RankSVM, from which we can see GBrank is the
best performer and RankSVM is worse than both GBrank
and GBT. Average over the 5-folds, dcg-5 for GBrank is
1.2% better than GBT with p-value equal to 0.0005, and
5.7% better than RankSVM with p-value close to zero. As
a baseline comparison, the dcg-5 difference among the top
search engines on this data set is about 2-3%.

3.3.2 Experiments with clickthroughs data
We also use the preference data extracted from user click-

throughs data as described in section 3.1.2. The compari-
son is for RankSVM and GBrank in a 5-fold cross validation
setting. For this data set, we can no longer use GBT since
we do not have the absolute relevance judgments. Tables



2 and 3 present the results with respect to the number of
contradicting pairs metric as well as the precision at K%
metric. Both tables again show that GBrank outperforms
RankSVM.

DCG for GBRank, GBT, and RankSVM in 5-fold cross validation
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Figure 3: DCG for GBrank, GBT and
RankSVM in 5-fold cv
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Figure 4: Number of contradicting pairs for
GBrank, GBT, and RankSVM in 5-fold cv

4. CONCLUSIONS AND FUTURE WORK
In this paper we proposed a general regression framework

for learning ranking functions from preference data. In par-
ticular, we developed GBrank, a specialization of our frame-
work using gradient boosting trees as the regression method.
When only preference data are available, GBrank provides a
more flexible and effective solution to the problem of learn-
ing ranking functions. Even when absolute labels are avail-
able, our experiments suggest that it is preferable to first
convert them into preference data and apply GBrank over
them than directly apply GBT to the original aboslute la-
bels.

There are several directions we can pursue to further en-
hance our approaches: 1) when converting absolute rele-
vance data, we can overweigh the document pairs with larger
grade difference. 2) weigh each error term in the loss func-
tion defined in Equation (1) with the DCG difference. Specif-
ically, assume we have two documents: d1 and d2. At the
current iteration, d1 and d2 were ranked at position i and
j respectively, where i < j. Suppose the resulted predicted
preference contradicts with the true preference. Their dcg
contribution with respect to the wrong ordering would be

G(d1)
log2i+1

+ G(d2)
log2j+1

while that for the correct ordering should be

G(d1)
log2j+1

+ G(d2)
log2i+1

. The DCG difference caused by the wrong

ordering is therefore |G(d1)−G(d2)|[
1

log2i+1
− 1

log2j+1
]. Dur-

ing training, we can weigh each error term according to that
difference. When the absolute relevance judgments are not
availabe, we can just remove |G(d1) − G(d2)|. 3) We men-
tioned that we can also include the tied data, pairs 〈xi, yi〉
with the same grade. One way to do that is to add the fol-
lowing to the set in Equation (2) to construct the training
set for computing the regression function at each iteration,�

(xi,
hk−1(xi) + hk−1(yi)

2
), (yi,

hk−1(xi) + hk−1(yi)

2
) � ;

4) as we mentioned before, our framework including GBrank
is very flexible for combining relative and absolute relevance
judgments. With any query-document feature vector xi and
its grade gi, we just need to add (xi, gi) to the set in Equa-
tion (2), and there is no need to modify the objective func-
tion. Such flexibility is desirable considering there are many
queries having a single document with absolute relevance
judgment(or documents with same absolute relevance judg-
ment), and we could not extract any preference data from
that.
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