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Abstract— Many machine learning problems involve changes in to manually judge and label the training examples, it isrofte
both feature distribution and label distribution, such as domain  desired to reuse existing labeled training data frsimilar
adaptation and leaming drifting concepts from data streanms.  4omgains to improve the model in the target domain [1], [18]
Correctly detecting, identifying, and understanding the dianges 41 1201 1251, [12]. [10]. H blindl iarating d ts’t !
of data distributions can help us properly select data samms [4], [20], [25], [ _]’ [10]. However, ”_1 y migrating _a ets
or algorithms for learning models. However, since the trainng from one domain to another domain may result in useless
datasets are often in high dimensionality and large size, ihas models. An important step to successfully perform domain
been difficult to effectively analyze them. Furthermore, tfe joint  adaptation is to understand how similar the candidate dugnai
distribution between features and labels makes the problem are [20], [10], where visualization tools can help.

more difficult to handle. In this paper, we propose a visual | llaborati . . td . "
analysis method (VisGBT) that combines the gradient-boogtg- n a collaboralive mining scenario, we want domain experts

trees (GBT) modeling method, regression analysis, and mut (maybe from different application domains) to understand
dimensional visualization to capture the mismatches betven and monitor the mismatch between the data and the model
datasets and models. The GBT model consists of a series ofor petween datasets, and thus be able to properly renovate
trees with a predefined number of terminal (leaf) nodes per tee. the model or adapt to changes in minimum cost. In this

These terminal nodes partition the high dimensional space ith . .
a few most informative features to minimize the label predition paper, we propose the VisGBT method to visualize the data

error. VisGBT maps various kinds of detailed model information ~ distribution based the Gradient Boosting Trees (GBT) [14]
to the terminal node matrix (TNM) and visualizes it with an learning model. There is extensive research in visualizing
appropriate design. With this visual analysis method, we ca multidimensional data [30] and visualizing learning magel

easily find out the detailed differences between datasets thithe such as decision tree models [2]. However, to our knowledge,

help of a learned model. We will illustrate the use of various th - ll-d | dvi lizati thod f ..
visual patterns and in particular show how this method can hé ere is no well-developed visualization method for vigiag

us analyze domain similarity for domain adaptation. the change of data distribution for machine learning. The
challenge of this problem lies in two aspects. First, viiira)
. INTRODUCTION multidimensional data in general is well recognized as a

In traditional machine learning problems, we often assundaéficult problem. It is still one of the major research cleaiges
that the underlying data distribution does not change when \n visual analytics [30], [23], [28]. Second, since eacliniray
apply the learned model to new data. However, the assumptsample consists of a feature vectarand a label, or target
does not hold when we want to learn models for similaralue, y;, it is difficult to design appropriate visualization
domains with significant differences or for data streamsrehemethods to capture the differences in the joint distributid
concepts (models) keep changing. In such a setting, an @étures and labels in a useful and scalable manner.
model may need to be renovated to adapt to the changes ofhe basic idea of our proposed approach is to use the
data distribution, or datasets from one domain is adopted 8BT learning method to partition the multidimensional teat
another domain for learning models, i.e., so caldsthptive space of one training dataset, while minimizing the préalict
learning However, model renovation or adaptation may berror on its label distribution. With the trained model, wanc
difficult and costly to perform for several reasons. map another dataset onto this partitioned subspaces ta-unde

First of all, renovating models often involves significanst stand the difference of both sample distributions and label
in training data collecting, model training, model validat distributions between the two datasets. The unique bersefit i
and deployment. If the change is not significant, or causétht GBT will automatically pick up a few most important
by noises, we may want to apply existing models to differeféatures among possibly hundreds or thousands of feaiares,
domains or keep using existing models for a data stream.mbdeling the corresponding label distribution. Thus, wa ca
is thus important to help domain experts understand how taeplore the high-dimensional space with much less number
data change happens and determine what model renovatioofifeatures that are most relevant to the model. Concredely,
required. Visualization will be an ideal tool for servingcbu GBT model consists of a series of regression trees [15] and
a purpose under a collaborative environment. each tree has a fixed number of terminal nodes, i.e., leafsode

Second, since in supervised learning labeled training exaRigure 1 shows a typical regression tree and how it cuts the
ples are often expensive to obtainwe need domain expertsspace. Since each training example will be directed to ode an



only one of the terminal node for each tree, the terminal nodéth the real application, angl is the target value that we want
becomes the most informative unit in the model. to predict. The difference between regression modeling and
classification modeling is the type of labels. For regrassjo

Fe P Pu is continuous or ordinal (ordinal regression [16]) in a coafl
%:‘1220 ves o domain._For classificatiop; _is categorical and the number of
by ° coce @ classes is often small. In this paper, we assume the featees
eldeloocelo numerical, i.e., continuous or ordinal values, and caiegbr
AR A 7\ features have been transformed to boolean features, so that
e 3 & the described method can be applied. As a convention, we will
R if use capitals to represent variables and lower cases tosexyre
* Colors represent different target values Mean of the target
valugs of the points Constants
in the area
Fig. 1. A perfectly fitted tree perfectly partitions the data B. Regression Tree Modeling

space according to the joint feature-label distribution. Figure 1 shows a sample regression tree. which is a binary

tree with one predicate at each internal node. The predicate

Our visual analysis method is based on the terminal noggnsists of a variable (feature) and a splitting value, dgtby
matrix (TNM) (the number of trees the number of terminal in form of F < 2. In such a tree, an internal tree node
nodes per tree). We can map various types of informatigartitions the training data that reach the node into twdspar
derived from the terminal node matrix (TNM) to a “bar matriX'with the predicate. The tree is grown with a top-down manner,
and visually compare different sets of information on the b@e  starting from the root and terminating when the fixed
matrix. In particular, we will describe how to apply TNM-number of terminal nodes, i.e., leaf nodes, is reached.én th
based visualizations to characterize the fithess of a mmxjelf(t,nowing, we describe how the training algorithm decides
datasets and analyze domain similarity for domain adaptati \yhich feature and splitting value are used for growing child

The rest of the paper is organized as follows. Section 2 givggdes.
some background knowledge about the gradient-boosteestr  spjitting a leaf node to grow a tree should give some kind
modeling method. In Section 3, we start with the problemst “gain”, namely, optimizing the goal of regression, i.e.,
with the mismatch of data and model, and then developpginimizing the square error between the predicted value and
visual analysis method based on the GBT model to addrgsg target value. We assume that theresaréraining records
these problems. Section 4 is dedicated to some use Cagfghing the nodeé, each of which,x;, has a target value
and show how this visual analysis method can be possib% to fit at the nodei. r;; = y;, if the current node is the
used to improve the understanding and capture the changeggf, otherwisey;; is the residual by fitting the parent node.
the underlying datasets. Section 5 will show one applicatiqt represents how well this example is fit so far from the
of the visual analysis method to a real dataset for domaiisting part of tree. The best-effort predictor for all oets
adaption in the ranking problem. Section 6 will give somgyjiing onto the current node is the mean of al}, i.e.,
related work in domain adaptation, drifting concept leagni 7. — nl Z;};l ri; [15]. With #;, the square errof for the
and multidimensional data visualization. current node is

Uz
[I. PRELIMINARY E= Z(Tij —74)?
j=1

In this section we will give the definition of the training dat
and briefly cover the knowledge of the regression tree modginding the Best Split for a Node.
ing and the gradient-boosting-trees method, to help utateds Let I, denote the feature ang , is a feasible value fof;,.
the visual analysis methods. The reason of using the GBFy, vy ) partitions the data into two parts: those records with
method is for its unique benefits (1) The boosting methodk, < v, go to the left subtree and the rest records go to
including the GBT method, give high-quality models, witithe right subtree. After performing this partition, simija we
low overfitting [27], [14], among the best learning algonits, can get the square errds, for the left subtree, and’r for
such as Support Vector Machine(SVM). (2) Although it ighe right subtree. We define the gain by splitting this node
designed for regression modeling, the GBT method can aR®gain = E — E;, — Er. By scanning through all possible
be applied to solve classification problems as well. (3) Eaépatures and feasible splitting values for each featurecave
regression tree in the GBT model partitions the featurearecfind the best splitting condition, which satisfies
space geometrically, which makes visualization possib$, [ ; .
while it is hard to visualize learning models like SVM. argming, v, ) {Er + Er},for all possiblep, g.

o ) ] With the above criterion, a greedy but efficient search

A. Training Data and Regression Modeling procedure is often used to determine the leaf nedénd the

In supervised learning, i.e., regression or classificatioane that brings the highest gain among all existing leaf sode
each training example is represented{és;,y;)}, wherex; for splitting. It is a hill-climbing procedure, which doe®tn
represents the feature vector describing the featuresiatst necessarily result in the globally optimal tree. Howeveisi



efficient since the cost is linear to the number of featureb atrees.

often the result is very satisfactory. Figure 1 shows a ptfe B b

fitted tree to the underlying target value distribution. Xte@d H(x) = thi (x)

it to general multidimensional cases, we can understand tha ) ) =t o

each node represents a “multidimensional bounding bowhere~: is the leaming rate, which is often small, e.g., 0.05.
defined by the disjointed partitioning conditions along thé formal description of the training algorithm can be found
path from the root to that node. For example, the leaf nod® the literature [14]. The GBT learning method trains the

labeled with R, in Figure 1 is defined by the bounding box:-th tree, based on the previous trees 1 < j < k, with a
FiL <ahFy<b. set of random samples from the training dataset. The steps

can be briefly described as follows.

D - D\ 1) randomly sample the training data with certain sample
rate to get a subset of training exampl®s

2) set the target; of the example inS; to the original
I_l targety; for k=1, or to the residual of the previous trees
hj, fork>1,1< 7 < k,ri = Yi — E];;ll 'yjhj(xi).

3) train the regression trég, with the exampleg (x;,7;)},

X; € Sk.
Fig. 2. Imagine the multidimensional Note these trees are highly relatedthe treei is trained to
space is partitioned by a regression tree fit th iduals f h . Th f .
and each block has different target val- fit the residuals from the previous— 1_tre¢s. erefore, it
ues which are represented by different is meaningful to observe the data distribution over a sarfes
colors. trees.
In Figure 2, we use the small blocks to illustrate the Ill. VISGBT: A VISUALIZATION APPROACH FOR
local areas in the high-dimensional space (i.e., “the high- ANALYZING LEARNING MODELS

dimensional bounding boxes” in regression tree modeling)To trace the change of data distribution for models, two
that are covered by the training data. Different colongy distributions should be monitored: the feature vector
represent different target values for the blocks. In regogs gjstribution and the label distribution. We will discusssto
tree modeling, each leaf node tries to approximately modghserve these distributions and derive other informatiéth w
one of these blocks, and each internal node groups a fgyk visualized Terminal Node Matrix (TNM). First, we will

nearby blocks with close target values. present the basic method for using the TNM to observe the
_ overall and local fitness of the model. Three simple syntheti
Calculating Leaf Node Response. datasets will be used to demonstrate how a TNM looks like

In the above algorithm, during the growing phase the predictaccording to the underlying data distribution. Second, ans
value; for the node: is recorded, and the residuals —7;  the basic method for detecting the change of feature vector
are used as the new target values for its child nodes{vfét“—ff, distribution and label distribution.

node: in the path from the root to any node} denote the ) )

predicted values along the path from the root to the leaf nofle Properties of Trees in the Model

t. The final predicted responge, for the leaf nodev is The rationale of the TNM-based visualization method is
R - () based on the properties of regression tree and the GBT model.
w = Zﬂ- Let's revisit the meaning of a node in a regression tree.

Let d represent the total number of features, andge(F;)

When a training example (a feature vector) is directed to thgpresent the value range @t selected by the conditions
terminal nodew according to the conditions, the val&, is  along the path from the root to the node. Note that the same
given as the predicted target value of the regression tree. feature may appear several times in the path, which results i

Note that regression tree can be used to model both regrgsontinuous range. A typical range is likg; < F; < v; o,
sion and classification problems. For a classification mnobl wherev; ; can be—oco andw; » can be+oco, according to the
there are methods to transform the class labels or to char@gtting process. If the feature does not appear in the path
the loss function [15]. For simplicity, we will only discussfrom the root to the node, we considernge(F;) containing
regression modeling in this paper. the full range ofF; values. Therefore, we have the following
Lemma

Lemma 1:A node represents a partiti(irjjl:1 range(F;)

Gradient boosting trees are a series of regression trees, @&d this partition is continuous.
noted byh;(x). The final function is based on these regressid®ased on the definition of the tree, we can also derive

C. Gradient Boosting Trees



Lemma 2:The entire feature space is completely parti- ’9)\
tioned by the terminal nodes in the same tree. ONE)
From the construction process described in the Preliminary ‘/é

section, it is straightforward to derive these two lemmas. W
will ignore the proofs. 1
In addition, the GBT modeling process also implies the 1) @ ®)

following prOperu?S . . Fig. 4. (1) Terminal nodes (leaf nodes) are labeled in the
« A new tree tries to fit the residuals of the target values order from left to right. (2) showing two contrasting mesric

from the previous trees for the sampled training data.  for each cell. (3) showing one metric for each cell.
Ideally, if there exists a meaningful model, the residuals

are decreasing with the increasing number of trees. he b trix based visualizati Iso b bined
« Since we use the same sample rate crossing trees, eac € bar-malrix based visualization can aiso be combine

tree uses a same number of samples, which allows usvéﬁg our previously developed_VISTA cluster rendering syst

normalize the data distribution crossing trees. [ tq explore the.subset of points that are coyere.d by thgetar
terminal node (Figure 5. In the VISTA visualization, onleth

In summary, with appropriate normalization and a“gnmenﬁelected features in the path from the root to the termindéno

:he at:jO\ﬁhpropertlTls dallto'vk\)/ l:_s to lfjfﬁ t?e E[ermlnaltnodzgat Ife used in exploration, while other features can certdiely
0 modet the overal distribution of the teature vectors added later if the user is interested in them. Each pointén th

labels. VISTA visualization is colored according to its target valu
B. The Basic Visual Design (for tree 1, it is the original target value; for trégi > 1, it is
Concretely, we use the “bar matrix” to represent the metrifa€ residual from previous trees). Since the focus of thiepa
defined on the terminal node matrix. Figure 3 shows the bal§cOn the VISGBT method, we will ignore the detail of the
design. In the bar matrix, columns represent the nodes aAP A Visualization. Interested user can refer to our poei

rows represents the trees. For each tree, we order the ndef@ers [8], [9]. In addition, the specific information abéue
by their positions from the left to right and encode therfode will be shown when the user points to a particular node.

by the sequencél..m], wherem is the number of terminal
nodes per tree (Figure 4). The node ID is mapped to the
column ID. Each cell in the the matrix can be used to show
either a pair of metrics to contrast them or to show just one
metric to see the overall patterns crossing nodes and fraes.
lengths of the bars can be normalized according to the dveral
value distribution of the represented metric. The advantag
of bar matrix is that we can accommodate a large number
of trees easily and we can easily see the overall distributio
crossing nodes and trees, while the detailed information of
each node can also be observed under its context, i.e., thex
neighboring nodes in the same tree and crossing neighboring
trees. Note that we haven't discussed what the bars regresenFig. 5. Using the VISTA system to explore the subsect of jgoint
— the concrete design will depend on the semantics we Wanttnhoedzeéi‘;tefetﬁ[)ngé”rslegoﬁég Tﬁecﬂgg'rt'ggﬁ,]tfi?];gt%"ﬁ::h:gjf.m'nal
to represent. We leave the details in later discussion.

Tree:33, Node:9

# Samples: 356
MSE: 0.0042
Response: 0.031

# of nodes per tree One column C. Basic Visual Analysis Methods

l In this section, we demonstrate a few use cases for the
TNM-based model visualization method. We will show how
to use the visualization to analyze the fitness of the model
to a dataset. Note the datasets can be the training dataset
that is used to generate the model, or a pair of datasets, the
training dataset and the candidate dataset for compaingen.
will particularly discuss how to compare two datasets intnex
section.

1) Basic Metrics Visualized with TNMThree basic metrics
can be visualized with the TNM structure. The first one is
the number of samples falling on the terminal node, i.e.,
the feature vector distribution, which is visualized withet

Fig. 3. Mapping metrics to the terminal node matrix single-bar method ( (3) in Figure 4). We name it Feature-

Mass visualization. This visualization gives an overadiliieg

# of
trees
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of data distribution. The longer the bar is, the more sampleees x 10 nodes setting to generate the GBT model. Figure 7

the terminal node has. shows the Feature-MSE-contrast visualization and the MSE-
The second one is the metric representing model fitnessily visualization. According to the node generation pchoe

Let R; represent the response value of the terminal ngdeand the node labeling sequence, the data should distributed

and there are,; samples reaching this terminal node. kgt symmetrically around the middle node in the tree. The result

represent the target value of the pojntwWe define the mean confirms that most samples are in the middle terminal nodes.

square error (MSE) of the terminal nodeas follows. The MSE visualization also shows some unique pattern that
| o is very different from the pattern from uniform data.
MSEl = — Z(’I’ij - Rl)Q
(3 j:1

SinceM SE is the loss function the regression modeling want: } ‘
to minimize,M SE; is used to represent the fithess of this nod: .
to the training examples. Note that a perfect node splittin F
in growing the tree will result in zeraW/ SE in the two i 3
new terminal nodes. We name such a visualization as a MSe * ¥
visualization. It is also visualized with the single-barth@®. Fig. 7. For the Gaussian dataset, left: Feature-MSE-cemtrisualization;
The third one is the combination of the feature vectdight: MSE-only visualization
distribution and model fithess, which is visualized with the
contrasting-bar method ( (2) in Figure 4). We uBESF; to The third dataset is similar to the Gaussian dataset. How-
categorize the samples into two categories: those havigig thever, we tune the feature value distribution to a skewed-long
errors greater thad/SE; are counted by the red bar andail distribution (Figure 8). The target value of a featusetor
the remaining are counted by the green bar, i.e., the red kmdefined as the distance of the feature vector to the mean
represents the examples not well fitted by the model. We nameWe also add in 10% noises, of which the target values
this visualization as MSE-contrast visualization. are perturbed randomly. We use the same setting to generate
Overall, the combination of the three types of metrics cdhe GBT model. Figure 9 shows the Feature-MSE-contrast
help us visually understand the underlying data and thesitnevisualization and the MSE visualization. Now the mass of
of the model to the data. data has been moved to the first few terminal nodes of the
2) Observing Distributions:We will use three simple syn- tree, which matches our expectation.
thesized datasets to show how the visualizations look Alde.
of the three datasets have 10 feature dimensions and 10,000
samples. The first dataset is generated by randomly fetching
feature values from uniform distribution U(0,1) and thegtr
values are generated in the same manner. Therefore, theve is
meaningful model in the data. We use a 100 trees x 10 nodes
setting to generate the GBT model. Figure 6 shows that in
its MSE-contrast visualization the bars are almost disted Fig. 8. Skewed long tail distribution
uniformly randomly. Most importantly, the MSE visualizaxti
shows that MSEs are almost same crossing different nodes

i

i

and different trees, which indicates no meaningful model. 1 PLiiotg !
we see any dataset has a similar visualization like this, ave c ‘ i :,; i ;;
assert there is no meaningful model with the dataset. ESERBEFER %
" E w T 7 A
SR N A
Pt .+ EBEEEEBEEE f;éu"?%l‘*‘?
i1F i JHTER
o :L T Fig. 9. For the long-tail dataset, left: Feature-MSE-casitrvisualization;
T 1 i S right: MSE-only visualization
' i ==
= i
Fig. 6. For the uniform dataset, left: Feature-MSE-contrasualization; _We_use these examples to dem(_)nStrate tha_t the pr_oposed
right: MSE-only visualization visualizations can well capture the fitted modelsf there is

one, and each meaningful model will have a particular “isua
The feature values in the second dataset follow a standaignature”.
Gaussian distribution with mean 0 and variance 1, N(0,1& Th 3) Observing Noises.Note that the Feature-MSE-contrast
target value of a feature vector is defined as the distancevigualization can also be used to detect noises. Within the
the feature vector to the centér Similarly, we use the 100 subspace (the bounding box) defined by the terminal node,



noises are those samples that have their target valuedisigeiustering structures in multidimensional large datag8is
cantly deviated from the MSE of that terminal node. If noisdsut data analysis for supervised learning (classificatind a
exist, the length difference between the red and green basgression) imposes very different challenges, which irequ
might be significant. We use a new design called Featumifferent visual design.

MSE-difference visualization to observe the possible eois We design a visualization method for evaluating the dataset
distributions. Let the length of the original red bar andegre similarity based on the TNM visualization and regression
bar bel, andi,, respectively. We define the length of red/greemodeling. The basic idea can be described as follows. Let's

bar, notated ag. and/; in the visualization as follows. take one of the two domains as the reference domain. Without
loss of generality, we usB, domain for the reference domain,
I, =1 —lg,l; =0 ifl. >l and the other domain i®;. We train a GBT model with
I = O,Z’g =1, —1,, otherwise the domain-specific data fromw,. Then, we use this GBT

.model as the reference model and map the data from the
'Both domains onto the subspaces formed by the terminal
UBdes. This mapping of records is easily done by following

the condition on each internal node. After all records are

mapped, the mean target value for each terminal node can
be calculated for both domains, respectively. We compage th

| feature vector distributions and the label distributiorssedl

: on TNM visualizations. Below we discuss the metric design

first and then describe the visual design.

Note that the long-tail dataset contains 10% noises, offwh
the target values are perturbed randomly. Using the Feat
MSE-difference visualization, we can clearly observe that
long-tail dataset contains a significant amount of noisdslew
the Gaussian dataset almost has no noise (Figure 10).

i
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A. Metric Design

| We generate a couple of statistics to describe the samples
from one domain using the terminal node information. het

Fig. 10. Feature-MSE-difference, left: the Gaussian @atass no noise; be the number of terminal nodes per tree.

right: the long-tail dataset has many noises 1) The normalizednumber of samples falling onto each
terminal node,n;,¢ = 1...p. Since the total number

of samples may not be the same for a pair of domains,
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IV. ANALYZING THE SIMILARITY OF TRAINING DATASETS we need to normalize this number. Assume the sample is
FORDOMAIN ADAPTATION uniformly drawn from the domain, i.e., with the increase
It is well known if the training data are not sufficiently of total population, the samples in each subspace will
large, the generated models might be of low quality. In be increased proportlonally. Let the ratdetween two
domain adaptation, it is preferred to pool small labeleihing sample sets is” = N,/N;, where N; and N are
datasets from similar domains to create a larger trainingseh the number of samples in the domain; and Dts,
in the hope of achieving better models [20], [10]. However, i respectively. The number of domaid, samples;.”,

is also risky because one domain’s data may not necessarily is normalized tor x n?,
help the other, and sometimes it may deteriorate the quality2) The mean square errors (MSE),7 = 1...p. Since a
of the data. The key of effective model adaptation is to find ~ terminal node models a part of the regression function,
out domains that (1) similar feature vectors from different it is also meaningful to compare the terminal-node-level
domains should give similar labels, (2) for less-overlappe  response and modeling error for both the source and
or non-overlapped feature subspaces, one domain’s data can target domains.
complement the other’s. In other words, if feature distiims For each domain we will get two sets of the above metrics,
overlap the two domains should agree on labels, otherwise, 02; and e;, notated by(®) and () for the domainD, and
set of data should dominate the other. The TNM visualizatiol;, respectively. According to the definition, we have the
model can be used to identify both types of training exampldsllowing interpretation to the above vectors: the difiece

It is difficult to compare the similarity of two datasetsof n§S> and nl(.t) series can roughly describe the difference
and finding out the dissimilar subspaces in terms of theetween the sample feature distributions, while the difiee
joint distribution of feature vectors and labels. For a &ng betweenez(.s) and e§t> series represents the difference between
dimension, it is quite easy to compare a pair of distribigiorjoint feature-label distributions. Therefore, with thgmession
and see the similarity/dissimiarity of label distribut®nA tree structure, we can reduce the complicated high dimeakio
normal way is to plot two two-dimensional figures (e.g., xsax distribution analysis to a comparison between the series of
is the investigated feature dimension and y-axis is the)dtwe values. By visualizing these series of values and contmsti
the two datasets, respectively, and compare their digivinst them between two domains, we can find whether they are
However, it would be tedious to do so for hundreds dfimilar overall and dissimilar in particular subspaces.
dimensions and it is also difficult to synthesize the differes Similar data distributions will surely give similat; and
from so many dimensions. There are tools for visualizing series, while the difference observed in the comparison can



help us understand the domain disimilarity/similarity.rake We can synthesize the comparisons on sample distributions
the result easier to visually understand and analyze, wéheseand MSE distributions into one visualization. Figure 11vgho

following visual design. how such a composite visualization is designed. We use red to
_ _ represent the source domain and green to represent thé targe
B. Visual Design and Analysis domain. For the same cell, the left bar is used to represent th

First, we design two basic TNM visualizations. The firstample difference- if the source domain has more samples,
TNM visualization visualizes the series® andn!”. On the it is painted red, otherwise green. The right bar is used to

same terminal node;'® is represented as the red bar on theepresent the MSE difference and the same coloring scheme
! is applied. If the target domain has no samples on some nodes,

en the color of both bars is yellow.

o . o We can also use TNM visualizations to identify special
Linking the two visualizations together, we can get severta}laining examples. Let andv be some small values much

important indications. The final composite visualizatioill w less than 1. (1) Those terminal nodes satisfying the con-
be designed to capture the following information. First, we. ‘ ) @

look at the sample distributions. (1)If we see well matche§ftions: — “wr— > 7 (significant label difference) and
sample distributions in the first TNM visualization, we haven!” —n{"|

good chances that the label distributions will be matched as|»”

well. (2) If we see some nodes do not have samples frdii potential conflicts of interes_t. In _dpmain adaptati_on, we
the target domain, this may be caused by several reasons %_exclude the source domain trammg examples in thes.e
indicate some opportunities. The missing samples areIc;d;;!ssiter'ﬁn'naI nodes, becau_se they contra_dlct_ the target ‘E'Qma'”
caused by small sample size or incomplete sampling duel‘wgls‘ ((3) Those terminal nodes satisfying the conditions
the scale and the complexity of the domain. This pattelllql% <= 7 (no significant label difference) and
indicates a good opportunity that the source domain data) _, ® N .
can possibly complement the target domain dataset. DomzﬁW 1 — v (dominating source domain samples)
adaptation [20], [10] may help the target domairthe missing indicate that the source domain may contain complementary
part can be possibly patched by the source domain data wi¥gmples at these nodes. It is possible that adding only
appropriate domain adaptation algorithms. these complementary examples to the target domain will be
If the sample distributions are very similar except for someufficient to improve the model quality.

missing parts, we can turn to check the MSE distributioy; gyperimeNT: VISUALIZING DOMAIN DIFFERENCE FOR
(1) If we see MSE distributions have no big difference, it is LEARNING TO RANK
highly possible that the two domains are very similar and the ) ) ,
In last section, we present the basic methods for visually

source domain function can often be directly applied to the ) g . . o
target domain. (2) If the MSEs of the target domain are mu alyzing domain similarity with TNM based visualizations

higher than that of source domain data, it is confirmed that tHF' this section, we will show _hOW to apply thesg methods to
label distribution of the target domain is very differenrr some real da_tasets fqr I-earnmg to rank [26]. First of all, we
that of the source domain. The source domain data may IWJF give a brief description about these datasets. The majo
help in modeling. (3) In some rare cases, we can also see is to understand the similarity between domains for the
target domain data have lower MSEs on average, which meéﬂel_(ing problem and ex_plore the relation_ship betw_een domai
the reference model fits the target domain even better than ﬁl!“"a“ty and the effectiveness of domain adaptation.
original source domain. This can happen if the source domain patasets

labels are noisier than the target domain. In this situatioa
two datasets may also have high similarity.

left andngt) the green bar on the right. In a similar design, thhﬁ
second TNM visualization is used to visualizl@) and egt).

<= v (no significant sample difference) are marked

We will use the preprocessed TREC web track data in
the publicly available LETOR datasets [26] for experiments

TREC web track datasets are designed to study the retrieval
right: sample difference  Left: MSE difference

Y behaviors when the collection to be searched is in a large

H | hyperlinked structure such as the World Wide Web. There

% Vellow: are three search tasks in TREC Web track: topic distillation

Target Domain (TD), homepage finding (HP) and named page finding (NP).

0 % [ nesnosamples Topic distillation aims to find a list of entry points for good

I $;§geent=domam websites principally devoted to the topic. Homepage finding
[E has higher value task is required to return the homepage of the query, and
i (Sample orMSE) named page finding task aims to return the page whose name
| \;‘i}cedomam is exactly the query. Generally speaking, there is only one

?saShi%herK:;:)e answer for homepage finding query or named page finding
ample orl . . . . . .

P query, while topic distillation may have multiple answers.
Fig. 11. Composite visualization for comparing both sample _TREC evaluatprs prowde two-grade JUdgments for thesest‘_"‘Sk
distributions and MSE distributions. i.e.,{relevant, irrelevarjt The recent LETOR datasets (version



3.0) include six TREC web track datasets, i.e., 2003/2004 |

TD/HP/NP data. Note that the same type of datasets may

have different distributions from year to year due to the

evolution of the Web. Because they share the same set of

features, we are able to use them to simulate six different do I
mains{TD03,HP03,NP03,TD04,HP04,NPp4These datasets

are used in two sets of experiments: (1) for studying the

similarity between these domains with the proposed methods r

relevance correlation and sample distribution similaatal-

ysis; (2) for verifying the results from the simulated domai F

similarity. |
In the LETOR package, each dataset has been randomly

sampled and partitioned to generate five folds for cross Fig. 12.  Comparison on TD04 and HPO4.

validation. All of our results are the average performance

over the five folds. We use the normalized version that has

all values normalized to the range [0,1], to maximize the

possibility of the overlapping on feature vector distribat

between the source and the target domain. Readers can find

detailed information in the paper [26] or from the web Site [
Features for Learning to Rank The features for learning to

rank are generated in three categories: query-only, doatime

only, and query-document. We briefly describe these three

categories of features. (1) Features that model the usey que [
only do not change over different documents in the document F

set, such as the number of terms in the query and the frequency

of a term in the corpus. (2) Features that model the web
document only are constant across all the queries, sucteas th
number of inbound links to the document and PageRank. (3)

Features that model the query-document relationship #escr ¢ composite visualization on NP04 (the reference model)

the matching between the query _and th_e document, such_as; HpPo4 shows a very special pattern (Figure 14), where
the frequency of each query term in the title of the documejiy the sample distributions and the MSE distributions are
The list of features defined in LETOR datasets can be fougdyy similar, i.e., the differences are small as shown in the
in LETOR description|[26]. Figure. We then look at the sample distributions (left salpbr

B. Similarity Analysis and Effectiveness of Adaptation at Figure 15) and MSE distributions (right subgraph Figuse 1

We study three pairs of domains, which have been sho®fParately. It shows that most samples are absorbed byshe fir
with different level of domain similarity in terms of traing Nnode of each tree, while only a few nodes show large MSEs.
ranking functions [7]: HP04 and TDO4 with high similarity,'t seems both datgsets have the particular distributiodgtas
TDO4 and TDO3 with very low similarity, and NP04 and HPo4€ference model fits both datasets very well.
with medium high similarity.

We use the composite visualization (as shown in Figure
11) to compare both the difference of sample distributions
and the difference of label distributions. For the pair TD04 }
and HPO4, we use TD04 data to train the reference model
(presented in red), with parameters: 10 trees and 10 tefrmina
nodes. Figure 12 shows that HP04 and TDO04 have very similar }
sample distribution (left columns that represent the diffice
of sample distributions are almost empty) and HP04 data also
have lower MSEs on TD04 model (most right columns are
red).

Again, we use TDO04 as the reference model to compare the
pair TD04 and TDO03. Figure 13 shows that TD04 and TD03
have very different sample distributions and MSE distiiitms.
Even on some nodes, TD03 has no samples. The visualizatio
confirms that TD04 and TDO3 may have low similarity.

T
T

[ —

Fig. 13. Comparison on TD04 and TDO3.

Fig. 14. Comparison on NP04 and HPO4.

I:]'he experimental study on model adaption has shown that
the effectiveness of domain adaptation could be charaetri
Lhitp://research.microsoft.com/users/LETOR/ by the domain similarity [7]. We include some of the experi-



0.75 ;
- --HP04 Function
—m— Trada on HPO4
0.7 1 —4A—HP04+NP04 Combination
Lo
O
00.65 -
o)
Fig. 15. Comparison on NP04 and HPO04 (left: sample 4
distribution, right, MSE distribution). 0.6
mental results that are related to the three pairs of dataset 055
make the comparison more |nt§rest|ng. _ 5 10 20 30 20
We test two adaptation algorithms in the experiment: data # of NP04 Training Queries

combination [20] and Trada [10], and use the source domain

function (applylng the Sour(.:e domain funq'uon directly mt Fig. 17.  NPO04 and HP04 have medium high correlation.

target domain) as the baseline for comparison. In applyieg t Applying NP04 function directly to HPO4 yields moderate

Trada algorithm, we also use the baseline function as the bas  performance. With the increase of data size, data combmati

function in training [10]. All models use the setting of 100 becomes worse than Trada. Trada can generate statistically
) . significant improvement on larger target training data.

trees and 10 terminal nodes per tree. Figures 16, 17, and 18

show the performance of different adaptation algorithnos. F

] ; ; intinn i ; 0.5
each figure, we algo_glye a brlef_descrlptlon in the caption. - o - TD03 Function
Due to the space limitation, we will not go to detalils. 045 | — - HPO4 Eunction
—m— Trada, Base model TD03
0.4 1 —A— TD03+TD04 combination
0.4
(3 0.35 1
Q
2 o3|
To)
o 0.25
O 0.3
a 021 @ --- ®--—--- & --—--- - <
= .
--¢--HPO04 Function 015
—m— Trada on HP0O4 ‘ 5 10 20 30 40
—A— HP04+TD04 Combination # of TDO4 Training Queries
0.2 T T T T
5 10 20 30 40 Fig. 18. TD04 and TDO02 have low correlation. Domain
# of TD04 Training Queries adaptation helps in this case. However, it will not be better

than the function from a highly correlated domain (i.e., AP0
function used for TD04).

Fig. 16. TDO04 and HP04 have high ranking correlation [7].
Using TDO04 data can generate good models for both domains.

Data combination can slightly help and it is slightly betteain . .
Trada (not statistically significant). recognition [25], [12], and learning to rank [10], [7]. In el

adaptation, we try to reuse the training samples or models
from one domain to enhance the models in another domain.
VI. RELATED WORK From domain to domain, both the feature distribution and the
Visual analytics [30] studies techniques that combine iabel distribution change. Thus, understanding how simila
formation visualization with statistical analysis, datanmng between the two domains is critical to the performance of
and machine learning. Visually analyzing multidimensionanodel adaptation. It has been observed that the effectgene
data is one important issue in visual analytics. The majef model adaptation may vary from dataset to dataset [20],
techniques include parallel coordinates [19], star cawtdis [10]. The proposed visual analysis method can be applied to
[22], [8], [29], and Grand Tour [11]. We have studied th@nalyze domain similarity as we have shown in the experiment
interactive visualization techniques for cluster analyf3], Concept drifting is a well known problem with learning
[9]. In this paper, we study the classification problem witfrom data streams [33], [17], which is also characterized by
the combination of visualization, statistical analysisdahe changing feature/label distributions. There are two typgs
Gradient Boosting Trees method [14]. concept drift: sudden drift or gradual drift. The challerige
Model adaptation has been of great interest in some aredistinguishing between true concept drift and noise, siihce
such as natural language processing [1], [18], [4], [20esih is often difficult to tell sudden drift from noise. Concepifdr



caused by the change of underlying data(feature) distoibig  [8]
also called virtual concept drift, since the real labelrnifisttion

may not change [33]. Therefore, it is important to monitartsu (9]
cases and not overact to any change of data. The common
approaches to learning drifting concepts are sample satect [10]
sample weighting [24], and ensemble learning [32]. Ensembl
learning methods include boosting and bagging [3], [27].
Gradient boosting trees [14] is one type of boosting methodst]
Understanding the change of concepts and distinguishiag re
concept drift and noisy drift are two important topics insthi[12]
area. We will investigate these topics with the proposedalis

analysis method as well. (13]

VIlI. CONCLUSION [14]

Understanding the similarity between datasets is impar-
tant for many learning problems, such as domain adaptati%fr"l]
and concept drift learning, where the underlying featurd ane)
label distributions between datasets may change. However,
due to the complexity of multidimensional data distribatio [17]
it has been difficult to effectively analyze such changes.
We propose a visual analysis method VisGBT based @3]
the gradient-boosting-trees (GBT) learning model. The GBT
learning model consists of an array of trees, each of whi
has fixed number of terminal nodes. We map the important
statistics onto the matrix of terminal nodesTerminal Node [20]
Matrix (TNM), so that the multidimensional data distritwrii
and the model fitness information can be visualized in gy
convenient way. We also showed how to use this technique to
perform model fitness analysis and domain similarity anslys!?2]
The TNM based visualization can be combined with other
point-wise exploration tools, such as VISTA cluster reivapr [23]
system [8], to conveniently provide more information. Fur-
ther study will be performed on enhancing the interactivé
operations, exploring more analytic tasks with the VisGBps;
method, and providing a toolkit for conveniently integnati
this method into real applications. 26]
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