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Abstract

The problem of determining the optimal number of clusters is important but mys-
terious in cluster analysis. In this paper, we propose a novel method to find a set of
candidate optimal number Ks of clusters in transactional datasets. Concretely, we
propose Transactional-cluster-modes Dissimilarity based on the concept of coverage
density as an intuitive transactional inter-cluster dissimilarity measure. Based on the
above measure, an agglomerative hierachical clustering algorithm is developed and
the Merge Dissimilarity Indexes, which are generated in hierachical cluster merging
processes, are used to find the candidate optimal number Ks of clusters of trans-
actional data. Our experimental results on both synthetic and real data show that
the new method often effectively estimates the number of clusters of transactional
data.

Key words: Transactional-cluster-mode, Transactional-cluster-modes
Dissimilarity, Merging Dissimilarity Index, Differential MDI curve

1 Introduction

Clustering is an important tool in data analysis. It uses data similarity mea-
sures to partition a large dataset into a set of disjoint data clusters such that
data points within the clusters are close to each other and the data points
from different clusters are dissimilar from each other in terms of the similarity
measure used. There have been a lot of data clustering algorithms developed
in recent years including numeric data clustering and categorical data cluster-
ing [1,3–6,8,9,11–14,16,18,19,?,20]. However, the problem of determining the
number of clusters is still pending. Most of the algorithms mentioned above
need a user-specified number of K clusters or implicity cluster number control
parameters in advance. For numerical data clustering, the inherent distance
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feature is utilized and the number of clusters can be validated through geome-
try shape or density distribution [5,?,12,17]. The techniques used in numerical
data clustering are not suitable for categorical data clustering because of the
lack of the distance meaning for the categorical data. [9] develops a visualiza-
tion tool for clustered categorical data to find the optimal number of clusters
by involving human subjective judgement. But it cannot find the optimal
number of clusters automatically.

Recently the Best K method BKPlot has been developed at Georgia Tech
[?]. The BKPlot method studies the entropy difference between the cluster-
ing structures with varying K and reports only those Ks where the clustering
structure changes dramatically as the candidate best Ks, which greatly re-
duces the search space of finding the domain-specific candidate best Ks. A
hierarchical entropy-based algorithm ACE proposed in [?] to generate high-
quality approximate BKPlot, which can capture the candidate best Ks with
small errors.

Transactional data is a kind of special categorical data, which can be trans-
formed to the traditional row by column table with Boolean values. Usually
the transformed dataset has two features: large volume and high dimensional-
ity. For instance, a market basket dataset may contain millions of transactions
and thousands of distinct items, although each transaction usually contains
only about tens of items. The transformation to Boolean data increases the
dimensionality from tens to thousands. Can the BKPlot find the significant
clustering structures in transactional data? The SCALE framework for clus-
tering transactional data in [?] integrates the BKPlot to assess the number
of clusters in transactional datasets and help clustering free from parameter
tuning. The experimental results in [?] show the predefined class numbers are
usually included in the candidate cluster numbers provided by the BKPlot.
However, we noticed two weaknesses of BKPlot on dealing with transactional
datasets.

First, the BKPlot produces noisy candidate cluster numbers even in a very
well-structured transactional dataset. For example, the BKPlot recommends
{2,5} for transactional dataset {1100000000, 0011000000, 0000110000, 0000001100,
0000000011}, where “1100000000” means the first two items are in the first
transaction. Similarly, for a one layer structure transactional dataset, which
has 1000 items and 20 clusters defined with a structure similar to Figure 11,
the candidate cluster numbers are {2, 5, 10, 20}. Obviously, these {2,5,10} are
not significant structures.

Second, the BKPlot becomes time-consuming while BKPlot deals with trans-
action datasets with large number of items. According to [?], the time complex-
ity of hierarchical entropy-based ACE, which is used to generate approximate
BKPlot, is O(dmN2logN). In the above time complexity expression, d is the
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dimension of dataset, m is the average column cardinality, and N is the num-
ber of records. Analyzing the above time complexity expression, we can see
parameter d also has great influence on the efficiency of ACE algorithm espe-
cially when d is extremely large in the case of transactional data. BKPlot will
be very time-consuming when it is applied to the transactional data, which
has to be transformed to high dimensional Boolean data in advance.

Our goal is to design a new method especially for transactional data, which
can find significant clustering structures with less noisy candidates and more
efficiently. We first propose the concept of Transactional-cluster-modes Dissim-
ilarity based on the concept of Coverage Density [?], which intuitively reflects
the inter-cluster dissimilarity of transactional data. Then we use this dissimi-
larity measure to develop an agglomerative hierachical transactional clustering
algorithm ACTD (Agglomerative Clustering algorithm with Transactional-
cluster-modes Dissimilarity). Since the Transactional-cluster-mode of a clus-
ter is just a subset of cluster items, only part of items are involved in the
computation of dissimilarity of two modes. Suppose the average length of a
cluster mode is M , then the cost of Transactional-cluster-modes Dissimilarity
computation is O(M), which is often hundreds of times faster than the en-
tropy computation cost factor O(dm) used in BKPlot method. In the course
of ACTD clustering, a set of MDI (Merging Dissimilarity Indexes) values is
generated during the hierachical cluster merging process. Similar to the ratio-
nale behind BKPlot, where the cluster dissimilarity changes dramatically, the
significant clustering structure emerges. We analyze these MDI values and plot
the differential MDI (DMDI) curve to identify the candidates of the optimal
number of clusters. Our experimental results on both synthetic data and real
data show that the DMDI curve effectively indicates the significant clustering
structures of transactional data with higher quality result.

The rest of the paper is organized as follows. Section 2 gives the notations
used in this paper and defines an intuitive concept of inter-cluster dissimi-
larity, i.e. Transactional-cluster-modes Dissimilarity. The SCALE framework
and the concept of Coverage Density are also briefly introduced in this section.
Section 3 details the agglomerative hierarchical clustering algorithm and the
differential MDI curves used for identifying the significant clustering struc-
tures. We report our initial experimental results in Section 4 and summarize
our approach in Section 5.
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2 Transactional-cluster-modes Dissimilarity

2.1 Notations

We first define the notations of transactional dataset and transactional clus-
tering result used in this paper. A transactional dataset D of size N is defined
as follows. Let I = {I1, I2, . . . , Im} be a set of items, D be a set of N transac-
tions, where transaction tj (1 ≤ j ≤ N) is a set of items tj = {Ij1, Ij2, . . . , Ijl},
such that tj ⊆ I. Let |tj| be the length of the transaction. A transaction
clustering result CK is a partition of D, denoted by {C1, C2, . . . , CK}, where
C1

⋃
. . .

⋃
CK = D, Ci 6= φ,Ci

⋂
Cj = φ.

2.2 Overview of the SCALE Framework

We briefly describe the design of SCALE (Sampling, Clustering structure As-
sessment, cLustering and domain-specific Evaluation)[?], a fully automated
transactional clustering framework, before we discuss in detail the design
and implementation of our new clustering structure assessment method. The
SCALE framework is designed to perform the transactional data clustering in
four steps as shown in Figure 1.
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Fig. 1. The SCALE framework

SCALE uses the sampling step to handle large transactional dataset. Standard
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sampling techniques are used in the sampling step to generate some sample
datasets from the entire large dataset. The framework assumes the primary
clustering structure (with small number of large clusters) is approximately
preserved with appropriate sample size.

In the clustering structure assessment step, SCALE determines the candidates
of significant clustering structure and generates the candidate “best Ks” based
on sample datasets. In our conference version prototype implementation, the
BKPlot method [?] is integrated directly into the SCALE and the hierarchi-
cal algorithm ACE [?] is used to generate high-quality approximate BKPlots
graph, which can capture the candidate best Ks with small errors. The ex-
perimental results in [?] show that the predefined class numbers are usually
included in the candidate cluster numbers provided by the BKPlot.

However, the ACE becomes time-consuming on dealing with transactional
datasets with large number of items at this step. In this paper, we design a
transactional data specific method, i.e. the DMDI method, to do clustering
structure assessment. Similarly, a hierarchical algorithm ACTD, which is based
on the concept of Transactional-cluster-modes Dissimilarity, is developed to
generate DMDI curves. The experimental results show that ACTD is faster
than ACE in dealing with transactional datasets with large number of items.

Both ACE and ACTD also generate a hierarchical clustering tree, where the
cluster seeds can be found at different Ks. The clustering structure assessment
step outputs the best Ks and the cluster seeds at the best Ks to the clustering
step.

The clustering step applies the WCD [?] clustering algorithm to perform ini-
tial cluster assignment. The initial assessment result is then used to guide
the WCD clustering over the entire dataset in an iterative manner until no
transaction is moved from one cluster to another in one pass with respect to
maximizing WCD. At the end of iterative assignment refinement, a small num-
ber of candidate clustering results are generated. Finally, we use the domain-
specific measures (AMI and LISR)[?] to evaluate the clustering quality of the
candidate results produced in the clustering step and select the best one.

We call the SCALE using BKPLot method as SCALE-ACE and the SCALE
using DMDI method as SCALE-ACTD. In this paper, we mainly present our
design principles of DMDI method and algorithmic details of ACTD algorithm.
And our experimental results are the performance and quality comparison of
two frameworks in their clustering structure assessment step.
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2.3 Concept of Coverage Density

In this section we briefly introduce the concept of Coverage Density (CD)[?].
To provide an intuitive illustration of our development of CD concept, let us
map the transactions of D onto a 2D grid graph. Let the horizontal axis stand
for items and the vertical axis stand for the transaction IDs, and each filled
cell (i, j) represents the item i is in the transaction j. For example, a simple
transactional dataset {abc, bc, ac, de, def} can be visualized in Figure 2.
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Fig. 2. An example 2D grid graph

If we look at the filled area in the graph carefully, two naturally formed clus-
ters appear, which are {abc, bc, ac} and {de, def} indicated by two rectangles
in Figure 2. In the original graph there are 18 cells unfilled, but only 3 in the
two partitioned subgraphs. The less the unfilled cells are left, the more com-
pact the clusters are. Therefore, we consider that the problem of clustering
transactional datasets can be transformed to the problem of how to obtain
the minimized unfilled number of cells with appropriate number of partitions.
This simple example also shows that it is intuitive to visualize the cluster-
ing structure of the transactions when they have already been ordered in the
specific way as shown in the left most of Figure 2. Thus how to order and par-
tition the transactional dataset properly is one of the key issues of clustering
algorithm.

Bearing this intuition in mind, we give the definition of Coverage Density
(CD).

Definition 1. Coverage Density (CD) is the percentage of filled cells to the
whole rectangle area which is decided by the number of distinct items and
number of transactions in a cluster.

Given a cluster Ck, it is easy and straightforward to compute its coverage
density. Suppose the number of distinct items is Mk, the items set of Ck is
Ik = {Ik1, Ik2, . . . , IkMk

}, the number of transactions in the cluster is Nk, and
the sum occurrences of all items in cluster Ck is Sk, then the Coverage Density
of cluster Ck is

CD(Ck) =
Sk

Nk ×Mk

=

∑Mk
j=1 occur(Ikj)

Nk ×Mk

. (1)
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Since the coverage density reflects the compactness of a cluster intuitively, it is
used as an intra-cluster measure. Generally speaking, the larger the coverage
density is, the higher the intra-cluster similarity among the transactions within
a cluster.

2.4 Concept of Transactional-cluster-modes Dissimilarity

Besides the intra-cluster similarity measure, the inter-cluster dissimilarity is
also used to measure the quality of clustering results. In this paper, we propose
the concept of Transactional-cluster-modes Dissimilarity as the inter-cluster
dissimilarity measure in transactional data clustering. Transactional-cluster-
modes Dissimilarity is based on the concept of Coverage Density. Our experi-
ments show that the Transactional-cluster-modes Dissimilarity is an efficient
measure in doing hierachical clustering and finding the optimal candidate k
number of clusters. In the following, we define the concept of Transactional
Cluster Mode at first.

Definition 2. Transactional Cluster Mode is a subset of cluster items, where
the occurrence of each item in the cluster is above the user-specified proportion
of transactions. Given a transactional cluster Ck having Nk transactions and
Mk distinct items, suppose the user-specified minimum support is θ, then the
transactional cluster mode CMk of cluster Ck is CMk = {Ikj|occurr(Ikj) ≥
(Nk × θ), 1 ≤ j ≤ Mk}. The length of cluster mode CMk is |CMk|.

Definition 3. Transactional-cluster-modes Dissimilarity is the dissimilarity
between two transactional cluster modes. Given a pair of clusters Ci and Cj,
suppose the cluster-modes of two clusters are CMi and CMj respectively, then
the Transactional-cluster-modes Dissimilarity between the Ci and Cj is

dm(Ci, Cj) = 1− CD(CMi

⋃
CMj) (2)

Simplifying the above formula, we get dm(Ci, Cj) = 1 − |CMi|+|CMj |
2×|CMij | , where

|CMij| is the number of distinct items after merging two cluster modes and
thus |CMij| ≥ max{|CMi|, |CMj|}. Here, it is easy to conclude that dm(Ci, Cj)
is a real number between 0 and 1

2
. Not surprisingly, when two cluster modes

have the same set of items, that is CMi = CMj = CMij , dm(Ci, Cj) = 0.
When two complete different cluster modes having no overlapping between
the sets of items, that is CMij = CMi + CMj, merging them will result
in a maximum dissimilarity dm(Ci, Cj) = 1

2
. When two cluster modes with

overlapping between the sets of items, the dissimilarity will be a real number
between 0 and 1

2
and the concrete value is decided by the level of overlapping.

Three examples are given to illustrate the above situations in Figure 3, Figure
4 and Figure 5.
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The Transactional-cluster-modes Dissimilarity reflects the inter-cluster dissim-
ilarity intuitively, i.e., when the two clusters are similar in structure, merging
them will not bring large structural change into the partition, thus, the dis-
similarity between cluster modes will be small; when the two clusters are very
different, merging them will bring large structural change into the partition,
thus, the dissimilarity between clusters will be large. Therefore, we say the
above measure evaluates the structural difference between clusters and the
Transactional-cluster-modes Dissimilarity is an ideal inter-cluster dissimilar-
ity measure for transactional data.

3 Finding Significant Clustering Structure in Transactional Datasets

A lot of clustering algorithms have been developed for different application ar-
eas. These algorithms usually are designed under the assumption that datasets
have some clustering tendency. However, the clustering process is unsuper-
vised, without predefined classes or template examples. Consequently, the
clustering results of these clustering algorithms are greatly decided by the
features of datasets and the input parameter values [17].

The optimal clustering structure is the partition that best fits the inherent
structure of the dataset. Finding the optimal clustering structure is one of
the most important but difficult problem. First, the guidance for choosing the
appropriate input parameter values is often skipped by most clustering litera-
tures. Obviously, if the number of clusters is assigned to an improper value, it
is impossible for the clustering algorithms to get the optimal result. Second,
datasets may also have multiple optimal numbers of clusters, according to
different levels of clustering granularity, which may be preferred by different
application cases. It is also challenging to find all of them.

Before proceeding to our algorithm, we first define the concept of Optimal
Clustering Structure and Significant Clustering Structure.

Definition 4. An optimal clustering structure for K number of clusters is the
one that optimizes certain clustering criteria. A significant clustering struc-
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ture is the most important clustering structure among all optimal clustering
structures with different K.

One significant clustering structure corresponds to one optimal number of
clusters. Note that there might be multiple significant clustering structures
according to different levels of clustering granularity. It would be extremely
difficult to find all optimal clustering structures for different K in order to
determine the significant clustering structures, due to the NP-hard complexity
of the clustering problem. However, we are able to identify the best number
of clusters with approximation algorithms. In this section, we provide the
design details of the ACTD algorithm that is used to efficiently find best K
for transactional datasets.

3.1 ACTD: Agglomerative Clustering algorithm with Transactional-cluster-
modes Dissimilarity

Having Transactional-cluster-modes Dissimilarity as the measure of inter-cluster
dissimilarity, we develop an agglomerative clustering algorithm ACTD to do
transactional data clustering and find the significant clustering structures of
dataset. With the common agglomerative clustering process, we briefly de-
scribe the ACTD algorithm.

ACTD uses bottom-up process to do clustering. It begins with the scenario
where each transaction is a cluster. Then, an iterative process is followed: in
each step, the algorithm finds a pair of clusters Ci and Cj that are the most
similar, i.e., the dm(Ci, Cj) of Ci and Cj is the minimum value among all
dissimilarity values of possible pair of clusters. The algorithm merges the pair
clusters Ci and Cj and records the dm(Ci, Cj) as Merging Dissimilarity Index
(MDI) of current clustering structure. The iterative process is stopped until
there are just two clusters left. Finally the algorithm outputs all clustering
results and MDIs generated during the hierachical cluster merging process.

In order to efficiently implement the ACTD, we maintain three tables: clus-
ters summary table TS[ ] is used for recording the basic information of each
cluster of current clustering result. The basic information of cluster Ck include
the number of transactions TS[k].Nk, the sum occurrences of items TS[k].Sk,
the number of distinct items TS[k].Mk, and the occurrences of each item
TS[k].occur(Ikj). At the beginning, the size of summary table is the number
of transactions of the input dataset. In the iterative merging procedure, the
space used by the merged clusters is freed; The second table is pair-clusters
dissimilarity table Td[ ][ ], which is used for computing the modes dissimilarity
of each pair clusters of current clustering result. For example, Td[i][j] keeps
the value of dm(Ci, Cj). It is a symmetric table. The algorithm searches the
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Td[ ][ ], finds and merges the the pair clusters with minimum dissimilarity.
The third table is Merging Dissimilarity Indexes Table TMDI [ ], which keeps
track of the minimum transactional-cluster-modes dissimilarity of all merging
operations.

Algorithm 1 shows the sketch of the main procedure of ACTD. For the merging
pair clusters, the algorithm chooses one cluster with smaller cluster number
as the master cluster and the other as merged cluster. The merging opera-
tion need copy the merged cluster info into the master cluster and invalidate
the merged cluster. The detailed merging operation algorithm is described in
Algorithm 2. After each merging operation, there is an updating operation.
The updating operation mainly recalculates the pair-cluster modes dissimilar-
ity between newly formed cluster and the other valid clusters. Its algorithm
description is given in Algorithm 3.

Algorithm 1 ACTD.main()
Input: Transactional dataset D, Number of transactions N , Min-Support θ
Output: TMDI [] and all clustering results
Initialize TS [N ], Td[N ][N ],TMDI [N ];
clusterNo = N ;
while (clusterNo > 1) do

TMDI [clusterNo] = min { Td[i][j], i 6= j};
merging (i, j);//Algorithm 2
updating (i, j);//Algorithm 3
clusterNo−−;

end while
output TMDI [] and all clustering results;

Algorithm 2 ACTD.merging(i,j)

void merging (i, j)
{
TS [i].Ni+ = TS [j].Nj ;
TS [i].Si+ = TS [j].Sj ;
for (i = 0; i < TS [j].Mj ; i + +) do

if (TS [j].Iji not exist in TS [i].I) then
TS [i].Mi + +;
TS [i].occur(Iik) = TS [j].occur(Iji);

else
TS [i].occur(Iik)+ = TS [j].occur(Iji);

end if
end for
}

The cost of transactional-cluster-modes dissimilarity computing is O(M) if the
average length of transactional cluster mode is M . The most time-consuming
part of our algorithm is updating the Td[ ][ ], and the time complexity of
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Algorithm 3 ACTD.updating(i,j)

void updating (i, j)
{
free TS [j];
Invalidate Td[j].[∗];
for (each valid cluster u) do

Recalculating Td[i][u];
end for
}

this part is O(N2logN) in the worst case. So the overall time complexity is
O(MN2logN). Compared to the factor dm in the complexity of BKPlot al-
gorithm, O(dmN2logN), M is often hundreds times smaller. For a common
transactional dataset, dm will be around thousands to tens of thousands, while
the length of transaction clustering mode M is often around tens. Therefore,
the improvement in terms of time complexity is very significant. The space
complexity is around the same level of BKPlot algorithm. The clusters sum-
mary table TS[ ] needs O(MN) space, the Merging Dissimilarity Indexes Table
TMDI [ ] requires O(N) space, and pair-clusters dissimilarity table Td[ ][ ] costs
O(N2) space respectively.

3.2 Plotting Differential MDI Curve to Find Significant Clustering Structure

Traditionally, statistical validity indexes based on geometry and density dis-
tribution are applied in clustering numerical data [17]. A typical index curve
consists of the statistical index values for different K number of clusters. The
Ks at the peaks, valleys, or distinguished “knees” on the index curve, are re-
garded as the candidates of the optimal number of clusters. Are there such
index curves indicating the significant clustering structures for transactional
data as well?

We plot all the MDI values in Table TMDI , which is outputted by algorithm
ACTD and our results show the curves of MDI values are usually a decreasing
curve with some plateaus (Figure 7), i.e., some different Ks have same MDI
value. Intuitively, these plateaus indicate similar structural changes caused
by the consecutive merging operations. But from plateau to plateau, the MDI
values change greatly, which indicates more significant structural changes hap-
pening compared to the neighboring changes. A conceptual demonstration of
“agglomerative clustering procedure” in Figure 6 can help to understand the
reason of MDI curve shape.

In Figure 6, the first three merging operations are done on the very similar
clusters, so the MDI values are very small and roughly equal. Then there will
be a plateau in the MDI curve. But the fourth merging operation will change
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point of another plateau if another clustering structure exists. Here we would
like to give the definition of Differential MDI below.
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Definition 5. For any two neighboring clustering results Ck and Ck+1, the
differential MDI is DMDI(k) = MDI(k)−MDI(k − 1).

A small DMDI means the merging operations of two neighboring partition
schemes were merging similar clusters and didn’t change the structure dra-
matically. A big DMDI means the merging operation might cause the change
of the clustering structure. We plot these Differential MDI values and get
a Differential MDIs Curve. The critical points among the plateaus become
the peaks of Differential MDIs Curve as shown in Figure 8. So the Differen-
tial MDIs Curve is the index curve we are looking for to find the candidate
optimal number of clusters. Our experimental results in Section 4 will show
the feasibility of Differential MDIs Curve for finding significant structures of
transactional datasets.

A DMDI curve may have more than one peak as shown in Figure 8. Then which
peak indicates the right number of clusters? We think that the right number
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of clusters of a dataset is not unique especially when the clustering structure is
hierarchical. For example, the dataset shown in Figure 12 is a well-structured
two-layer dataset. The top layer has 5 clusters and four of which have two
overlapped sub-clusters. So both k=5 and k=9 are right number of clusters
of the dataset in different clustering granularity. In addition, some candidate
optimal cluster numbers indicated by some peaks may not consistent with the
predefined classes of datasets. We call these Ks as additional Ks. Although
these additional Ks are not consistent with the domain knowledge, they may
be the valuable Ks to be utilized to explore more hidden knowledge.

3.3 Assessing the Cluster Number of Large Transactional Datasets

For the problem of clustering large transactional datasets, we suggest using
SCALE-ACTD framework. Under the SCALE-ACTD framework, we do sam-
pling on original large datasets at first, then run ACTD on a group of sample
datasets to find the significant clustering structures.

Running ACTD on a group of sample datasets will bring one problem, that is,
are these DMDI curves of sample datasets identical with the DMDI curve for
the original dataset? Here, we would like to call the DMDI curves of sample
datasets as Sample DMDI curves and the DMDI curve of original large
dataset as Original DMDI curve. Usually, sample DMDI curves converge to
the original DMDI with the increase of sample size. Our experimental results
on sample datasets show that sample DMDI curves will deviate from the
original DMDI curve if the sample size is small. How many samples are needed
to guarantee the consistency between the clustering structure in the sample
dataset and that in the original dataset? Some literatures [15,6] gave rough
estimation, which related to the cluster density and the cluster distribution.

In practice, we will try as many sample points as possible that the assessment
algorithm can handle in amount of acceptable time. Note that it is always
beneficial to include large sample set, in order to minimize the potential errors
in assessment. Therefore, any improvement to the performance of assessment
algorithm, as the performance boosting of ACTD to ACE that is used in the
BKPlot method, will be preferred.

4 Experiments

We did experiments on both synthetic datasets and real datasets to test if: 1)
the SCALE-ACTD is faster than SCALE-ACE in clustering structure assess-
ment step if the dataset has a large number of items; 2) the DMDI method
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can identify all best Ks for experimental datasets; 3) the DMDI method
provides less noisy candidate cluster numbers than the BKPlot method on
well-structured datasets;4) the DMDI method is robust enough to handle the
datasets with noise transactions; 5) the clustering quality of our SCALE is bet-
ter than CLUTO (a document clustering software package) on dealing with
transactions.

Before we show our experimental results, we introduce the symbols used to
annotate the synthetic datasets first. The three primary symbols are the av-
erage transaction length T , the total number of items I and the number of
transactions D. For a dataset having T = 10, I = 1000 and 100K transac-
tions is denoted as T10I1000D100K. When we use the data generator in [2]
to generate synthetic transactional data, the average size of patterns is 4 and
the number of patterns is 2000 if there is no specific description.

4.1 Performance Evaluation

We did performance evaluation experiments to verify our analysis on time
complexity of two algorithms ACE and ACTD. First, we studied the two
performance critical factors for ACTD: the number of transactions N and the
average length of transactions T , which is highly correlated to the average
length of transactional mode M . Then we compared the performance of the
two algorithms on a set of datasets. The detail information of datasets are
given below:

TxI1000D1k series Data generator in [2] is used to generate synthetic trans-
actional datasets for studying the ACTD time-complexity factor M . Since the
purpose of our experiments is studying the relationship between the running
time and the average transaction length T , we generated seven datasets from
T5I1000D1K to T400I1000D1K by setting the average transaction length
from 5 to 400.

Retail A real large market basket dataset [7] contains 88162 transactions
and 16470 items, which is approximately 5 months receipts being collected.
The average number of distinct items purchased per receipt is 13 and most
customers buy between 7 and 11 items per shopping visit. Retail’s sample
datasets with different sizes were used to study the ACTD time-complexity
factor N and to compare the performance of two algorithms.

We ran both ACTD and ACE on TxI1000D1k series datasets, the running
time for different sizes are shown in Figure 9. The ACTD curve in Figure 9
shows that for small average transaction length T < 100, the running time of
ACTD is almost a constant, while for T > 100, the running time of ACTD
becomes linear to the average transaction length T . This shows that the aver-
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age length of transactional cluster mode can be quite stable even though the
transaction length varies in the range (0, 100]. Since the average transaction
length for most real transactional datasets is less than 100, the effect of aver-
age transaction length keeps constant on the time efficiency of ACTD. On the
other hand, although the running time of ACE is not sensitive to the factor of
average length of transaction, the ACE curve in Figure 9 shows that the total
time cost of ACE is almost 10 times higher than that of ACTD.

We sampled Retail with different sizes from 100 to 2000 and these sample
datasets were transformed into categorical datasets with 16470 dimensions
before running ACE. The time spent on these sample datasets are shown in
Figure 10. We can see that ACTD is much faster than ACE. The performance
test results confirm our analysis on the time complexity of ACE and ACTD:
the large number of dimensions d has great impact on running time of ACE
algorithm since all transactions have to be transformed to Boolean data, while
only the average transaction length has influence on ACTD algorithm. Since
the average transaction length is usually much smaller than the number of
total items in a real transactional dataset, ACTD is much faster than ACE
on dealing with a common transactional dataset.
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4.2 Quality Evaluation

Our experiments have used seven small datasets to evaluate the quality of the
DMDI method and the BKPlot method on transactional datasets. Two small
synthetic transactional datasets are constructed by ourselves: T50I1000D200
and T6I46D200, which have clearly verifiable clustering structure and manu-
ally predefined the class label of each transaction. In addition, we used five
real (non-transactional) datasets: Lenses and Soybean-small are from the UCI
machine learning repository 1 ; Tr41, Wap and LA1 are from the documents

1 http://www.ics.uci.edu/∼mlearn/MLRepository.html
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clustering datasets 2 .

The detail information of these seven datasets are given below.

T50I1000D200 is generated with one-layer clustering structure as shown in
Figure 11. T50I1000D200 has 200 transactions and each transaction has 50
items. It has 20 clusters in the same size, i.e., each cluster has 10 transactions
and transactions in the same cluster have completely same items.

T6I46D200 has two-layer clustering structure as shown in Figure 12. T6I46D200
has 200 transactions and the length of each transaction is 6. The total num-
ber of items is 46. The top layer has 5 clusters with 40 transactions in each
cluster, four of which have two overlapping sub-clusters of 20 transactions.
In both Figure 11 and Figure 12, the non-blank areas represent transactions
having these items.
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Lenses Lenses is a small categorical dataset for fitting contact lenses with 24
instances. Each instance has 4 attributes describing the eye condition of pa-
tients and a predefined class label. It has three types of class labels indicating
the type of lenses the patient should wear.

Soybean-small is a categorical dataset used to classify the soybean diseases.
The dataset has 47 records and each record has 35 attributes describing the
features of the plant. There are four predefined classes in the dataset.

Tr41 were derived from TREC-5, TREC-6, and TREC-7 collections 3 . It has
878 documents and 7454 terms. The predefined class number is 10.

Wap are from the WebACE project and contains 1560 documents. Each doc-
ument corresponds to a web paper listed in the subject hierarchy of Yahoo!.

2 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
3 http://trec.nist.gov
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The total number of terms is 8460 and the predefined class number is 20.

LA1 was obtained from the articles of the Los Angeles Times that was used in
TREC-5. It includes the documents from the entertainment, financial, foreign,
metro, national and sports, i.e., the predefined class number is 6. The number
of documents is 3204 and the total number of terms is 31472.

Before running ACTD algorithm, these two categorical datasets, i.e. Lenses
and Soybean-small are transformed to transaction datasets. The procedure
of transformation is: 1) assign an item number to each categorical attribute
value; 2) read the categorical dataset row by row and covert each attribute
value into its corresponding item number; 3) write back the transformed item
number into a new dataset file row by row. As a result, Lenses is transformed
into a transactional dataset with 9 items and Soybean-small becomes a 72
items transactional dataset.

Since the last three datasets originally are document datasets, whose term
frequency information is also included in the datasets. Before running the
ACTD, these three datasets are also transformed into transactional datasets
by removing the term frequency information.

Similarly, before running ACE algorithm, five transaction datasets, i.e., two
synthetic transaction datasets and three transformed documents datasets, are
transformed to Boolean dataset. Suppose there is N transactions and total |I|
items in a transactional dataset, the transformation procedure is: 1) construct
a N×|I| matrix; 2) the value of matrix element (i, j) is 1 if the ith transaction
has item j, otherwise the value of matrix element is 0. The row and column
numbers of these transformed boolean datasets are summarized in Table 1.

Table 1
Summary for five transformed boolean datasets

Datasets #class #row #column

T50I1000D200 {20} 200 1000

T6I46D200 {5, 9} 200 46

Tr41 {10} 878 7454

Wap {20} 1560 8460

LA1 {6} 3204 31472

Three measures are used to evaluate the quality of DMDI curves and BKPlot
curves. First, the predefined number of classes is used as the expected value for
evaluating the quality of two index curves on identifying clustering structures.
Second, two measures proposed in [?], i.e. Coverage Rate (CR) and False
Discovery Rate (FDR), are used to compare the quality of DMDI curves and
BKPlot curves. Below we give brief definitions of two measures.

Coverage Rate The Coverage Rate (CR) is the percentage of inherent sig-
nificant Ks indicated by detecting methods. There could be more than one
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significant clustering structures for a particular dataset. A robust detecting
method should always include all of the significant Ks.

False Discovery Rate The False Discovery Rate(FDR) is the percentage
of the noisy candidate Ks indicated by detecting methods. There could be
some Ks, which are actually not critical but suggested by detecting methods.
In order to efficiently find the most significant ones, we prefer a detecting
method to have less false candidate Ks as possible.

The results of two synthetic datasets and five real datasets are summarized in
Table 2. Table 2 shows: 1) both methods have 100% Coverage Rate on five ex-
perimental datasets; 2) the DMDI method identifies the significant clustering
structure of Lenses and LA1 successfully, while the BKPlot having 0% CR on
Lenses and LA1; 2) the DMDI method has lower False Discovery Rate than
the BKPlot method on most of experimental datasets .

Table 2
Summary for seven small datasets

Datasets #class Method Candidate ks CR FDR

T50I1000D200 {20} DMDI {20} 100% 0%

BKPlot {2,5,10,20} 100% 75%

T6I46D200 {5, 9} DMDI {5, 9} 100% 0%

BKPlot {3, 5, 9} 100% 33%

Lenses {3} DMDI {3, 6, 12} 100% 66%

BKPlot {2, 4, 8, 16} 0% 100%

Soybean-small {4} DMDI {2, 4, 7} 100% 66%

BKPlot {2, 4, 6} 100% 66%

Tr41 {10} DMDI {3, 5, 7, 10} 100% 75%

BKPlot {3, 6, 10} 100% 66%

Wap {20} DMDI {10, 15, 20} 100% 66%

BKPlot {2, 5, 7, 9, 11, 16, 18, 20} 100% 87.5%

LA1 {6} DMDI {2, 4, 6, 8} 100% 75%

BKPlot {2, 5, 9} 0% 100%

We ran ACTD on dataset T50I1000D200 at the support 0.8 and the DMDI
curve (Figure 13) clearly shows the candidate optimal number of T50I1000D200
is ’20’, which is same as the number of clustering structure we constructed.
After converting the T50I1000D200 into a 200 × 1000 Boolean table for the
ACE algorithm, we get the BKPlot result as shown in Figure 14. The BKPlot
result includes the predefined ’20’ but having three more candidate cluster
numbers than the result of DMDI curve. The DMDI curve (Figure 15) and
BKPlot index graph (Figure 16) of T6I46D200 also show that both methods
can identify the predefined number of clusters ’5’ and ’9’ . However, same as
the one layer dataset, the BKPlot method has one more candidate number
’3’. The results of synthetic data show that DMDI method is able to find all
significant number of clusters with less noises than the BKPlot method.
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Fig. 16. BKPlot of T6I46D200

We did experiments on five real datasets and plotted their DMDI and BKPlot
graphs respectively (Figure 17, 19, 18, 20, 21, 22, 23, 24, 25, 26). Again,
Figure 17 and Figure 18 show that the DMDI result on transactional lenses
is less noisy than the BKPlot’s. The DMDI result ({3,6,12}) not only in-
cludes the predefined number of classes ’3’ but also has less candidate cluster
numbers than that of BKPlot ({2, 4, 8, 16}). Figure 21 to Figure 26 show
that DMDI method can discover the predefined classes for all three document
datasets, while BKPlots fails to identify predefined class number of LA1. In
addition, DMDI reduces the candidate best Ks from 8 given by BKPlot to 3
for Wap. However, the two methods perform equally on the dataset soybean-
small(Figure 19 and Figure 20).

Here, the setting method of support values is discussed. The support value
of algorithm ACTD is a real number between 0 and 1, i.e. (0, 1]. It decides
the transactional cluster mode of each cluster during the whole agglomerative
merging procedure. Essentially, the transactional cluster mode is a set of fre-
quent items in a cluster and should best represent the feature of a cluster, thus
the clustering structure can be found in high probability. Through the above
experiments, we observe that the setting of support value is affected by the
type of datasets, i.e. dense or sparse datasets. For dense datasets, the cluster
modes obtained by the higher support value have less overlapping than the
cluster modes obtained by the lower support value, which is ideal for detecting
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clusters. While for sparse datasets, it is possible that the NULL cluster mode
is outputted at high support value. In such situation, the appropriate cluster
modes can be found at lower support value. So the support value 0.8 is ap-
propriate for most datasets in our experiments, while the last three document
datasets uses different support values according to their sparseness.
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Fig. 17. DMDI curve of lenses at Min–
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Fig. 18. BKPlot of lenses
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Fig. 20. BKPlot of soybean-small
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Fig. 24. BKPlot of Wap
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4.3 Quality Evaluation on Sample Datasets

We have shown that ACTD is much faster than ACE for BKPlot on trans-
actional datasets, which mean we can apply ACTD to a larger number of
samples with the same time budget. In this section, we want to investigate
if the sample size is fixed, what the quality difference is between these two
methods, in terms of the coverage and noise rate of identifying the significant
Ks. Similarly, Coverage Rate and False Discovery Rate are used to compare
the quality of sample DMDI curves and sample BKPlot curves.

Two synthetic transactional datasets, which are constructed by ourselves and
have predefined clustering structure, were used to test the capability of BKPlot
and DMDI methods on dealing with large transactional datasets with the
sampling method. The detail information of two synthetic datasets are given
below.

T50I1000D1000 is a 5 times duplication dataset of T50I1000D200. The clus-
tering structure of T50I1000D1000 is very clear and transactions within a clus-
ter have same items. The predefined cluster number of T50I1000D1000 is 20
and each cluster has 50 transactions.

T20I500D20K is generated by a modified version of data generator in [2].
The T20I500D20K has predefined 10 clusters, and the coherence of transac-
tions within a cluster is much looser than that of T50I1000D1000. The con-
struction method of T20I500D20K is: 1)the 10 clusters are generated one by
one and don’t have any item overlapping between any two clusters;2) the gen-
eration of each cluster has different initial random seed; 3)While each cluster
was generated, the following parameter values were set: average size of trans-
action = 20, number of items = 50, number of transactions =2000, average size
of patterns = 4, number of patterns = 2000, correlation between consecutive
patterns = 0.25.

Uniform sampling method was used to generate sample datasets from original
datasets. We use sample sizes {200, 400, 800} on the dataset T50I1000D1000
and sample sizes {800, 1000, 2000} on the dataset T20I500D20K to generate
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sample datasets. For each sample size, we generate 10 sample datasets. After
running ACE and ACTD on 10 sample datasets, we average the values gen-
erated from 10 sample datasets for the sample BKPlot graph and the sample
DMDI graph.

We summarize the results with two measures in Table 3. The Table 3 shows
that both methods have 100% Coverage Rate, that is, two methods can in-
dicate the inherent significant clustering structures correctly. However, the
DMDI method has much lower False Discovery Rate than the BKPlot method
on these sample datasets. Therefore, the DMDI method is same robust as the
BKPlot method but less noisy candidate Ks. Next, we present these sample
DMDI and BKPlot curves in detail.

Table 3
Summary of Sample DMDI and BKPlot Curves on two synthetic datasets

Datasets Method CR FDR

T50I1000D1000 Samples DMDI 100% 0%

BKPlot 100% 82%

T20I500D20K Samples DMDI 100% 25%

BKPlot 100% 70%

For the synthetic dataset T50I1000D1000, which has clear clustering structure,
the sample DMDI curves (Figure 27) merge very well and indicate the same
cluster numbers as the original DMDI curves. Figure 28 shows the sample
BKPlot curves have more or less deviations from original DMDI curves but
have consistent peaks at k = 20, which indicate the size of merged clusters
has influence on the peak values of BKPlot curves.
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Fig. 28. sample BKPlot curves of
T50I1000D1000

For the dataset T20I500D20K, the sample DMDI curves and sample BKPlot
curves are shown in Figure 29 and Figure 30. These two figures show that
both methods find the predefined cluster number 10 successfully and generate
some noisy candidate cluster numbers. But the sample DMDI curves produce
much less noisy candidate Ks than the sample BKPlot curves.

In addition to these sample DMDI and BKPlot curves, the average running
time on these sample datasets are also presented in Figure 31 and Figure 32.

22



-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

2 3 4 5 6 7 8 9 10 11

number of clusters

D
M
D
I
 
 
s

n=800

n=1000

n=2000

Fig. 29. Sample DMDI curves of
T20I500D20K at Min-support=0.8

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

2 3 4 5 6 7 8 9 10 11

number of clusters

d
e
l
t
a
2
I
 
 
s

n=800

n=1000

n=2000

Fig. 30. Sample BKPlot curves of
T20I500D20K

These time cost figures indicate that the ACTD algorithm is much faster than
the ACE algorithm again.
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4.4 Capability of Dealing with Noise Transactions

In this set of experiments we test if the DMDI method can still find the
clustering structures of datasets with noise transactions. The synthetic dataset
T20I500D20K is used as the initial transactional dataset and various sizes
of noise data are injected into the T20I500D20K uniformly to generate the
mixed datasets. The noise rates are set as 0.5%, 1%, 5% and 10% respectively
in our experiments. For the T20I500D20K, the sizes of noise transactions are
{100, 200, 1000, 2000} corresponding to the above noise rates.

The way of generating noise transactions is described here. We first generate
a noise dataset, then sample the noise dataset with various sizes to get noise
transactions. The noise dataset is generated using same data generator [2] of
T20I500D20K but different parameters. The detailed parameters are set as:
average size of transaction = 4, number of items = 500, number of transactions
=2000, average size of patterns = 4, number of patterns = 2000, correlation
between consecutive patterns = 0.25. This way of generating noise dataset
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makes the items of noise transactions overlapping with items of several clusters
of T20I500D20K.

The noise dataset is sampled with size={100, 200, 1000, 2000} and the noise
transactions are injected into the T20I500D20K uniformly to generate four
mixed datasets T20I500D20k-N100, T20I500D20k-N200, T20I500D20k-N1000
and T20I500D20k-N2000. Then the four mixed datasets were uniformly sam-
pled with size={800, 1000, 2000}. For each sample size, 10 sample datasets
were generated. The DMDI graphs of these sample datasets (Figure 33 to Fig-
ure 36) show that DMDI method still can identify predefined classes correctly.
We find the DMDI method is quite resilient to noise.
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4.5 Comparing DMDI with BIC

Among the classical clustering methods, the closest method to our proposed
method on transactional data or categorical data is multinomial mixture mod-
eling, the best K of which is often validated with the Bayesian Information
Criterion (BIC) method [10]. In this Section, we compare our DMDI method
with BIC to see if BIC curve can also effectively detect clustering structures
in transactional datasets. For this purpose, we transform the transactional
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data to Boolean data for multinomial mixture modeling. Below we give a brief
introduction of BIC method.

The BIC method is a kind of model selection method. If the appropriate
assumption is made about the prior distribution of the clusters, it can be
used to select the optimal number of clusters. The model fitting is optimized
by maximizing the likelihood of fitting the data to the mixture model. The
generic form of BIC is then based on the maximum likelihood and the number
of parameters used in estimation.

BIC = −2 · log likelihood + log(n) · ψ (3)

where n is the number of sample records, and ψ is the number of parameters
used in the modeling that include the number of clusters. Usually, the num-
ber of cluster corresponding to the minimum BIC is regarded as the optimal
number of cluster.

We use AutoClass 4 to get BIC values for each K clusters in experiments. In
AutoClass, ψ is specifically defined as d(d+1)+K, where d is the number of at-
tributes. On the BIC curve, the best K happens at the minimum BIC. We run
AutoClass on five small transactional datasets, i.e. T6I46D200, T50I1000D200,
lenses, soybean-small and tr41, and the single multinomial model, is used.
The BIC Curves (Figure 37 to Figure 41) show: 1)The BIC method suggests
K=4 for soybean-small, which is consistent with the predefined classes; 2)the
BIC method suggests K=9 for two-layer dataset T6I46D200, which is consis-
tent with the predefined classes. But it cannot find all the possible optimal
number of clusters for multi-layer clustering structure; 3)The BIC suggestions
for lenses, T50I1000D200 and tr41 are all not consistent with the predefined
classes. Although BIC method can select the right number of clusters uniquely,
it is not suitable for detecting multi-layer clustering structure. In addition, BIC
method is not efficient on most of the experimental transactional datasets.BIC on T50I1000D200
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Fig. 37. BIC suggests K = 7 for
T50I1000D200

BIC on T6I46D200
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Fig. 38. BIC suggests K = 9 for
T6I46D200

4 http://ti.arc.nasa.gov/ic/projects/bayes-group/autoclass/
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Fig. 39. BIC suggests K = 2 for lenses
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Fig. 41. BIC suggests K = 3 for tr41

4.6 Comparing SCALE with CLUTO

In our conference version of paper [?], we have compared our SCALE with
a transactional clustering algorithm, i.e. CLOPE [20]. The experiments show
the effectiveness of our SCALE. In this section, we compare our SCALE with
CLUTO 5 , a software package for clustering low and high dimensional docu-
ment datasets. Below, we give a brief introduction of CLUTO.

For CLUTO, each document d is considered to be a vector in the term-space
and the tf-idf term weighting model is used to generate document vector d,
i.e. d = (tf1log(n/df1), tf2log(n/df2), . . . , tfmlog(n/dfm)) , where tfi is the
frequency of the ith term in the document and dfi is the number of docu-
ments that contain the ith term. The similarity of two documents di and dj is
cos(di, dj). Based on the cosine similarity, CLUTO developed several cluster-
ing criterion functions. The default one is max

∑K
r=1

∑
di∈Sr cos(di, Cr), where

Cr is the center vector of cluster Sr, i.e. average vector of all document vector
of Sr. Since we are considering categorical data clustering, for fair compari-
son the frequency information is transformed to Boolean value before running
CLUTO. Let the transformed Boolean feature be xi. If tfi == 0 then xi = 0,
otherwise xi = 1.

CLUTO provides three different classes of clustering algorithms, which are
based on the partitional, agglomerative, and graph-partitioning paradigms.

5 http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download
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Concretely, six clustering methods are provided in CLUTO V2.1.1. Through
combining clustering methods and criterion functions, users can get various
clustering algorithms. In our experiments, we mainly compare our SCALE
with five CLUTO clustering methods, i.e., c-direct, c-rb, c-rbr, c-agglo and
c-bagglo, and the default clustering criterion is used.

The c-direct, c-rb and c-rbr use an approach inspired by the K-means algo-
rithm to optimize the clustering criterion functions. They have initial and
refinement phases. The initial phase has two ways to partition documents
roughly, i.e. the repeated cluster bisection approach (c-rb and c-rbr) and di-
rect K-way (c-direct) approach. For the bisection approach c-rb, a random
pair of documents is used as the seeds of two clusters, and all documents are
partitioned into two clusters. Then one of these clusters is selected and further
bisected until the desired k clusters are found. The c-rbr is similar to the c-rb
but at the end, the overall solution is globally optimized. For the direct K-way
approach, random k documents are selected as cluster seeds. The remaining
documents are assigned to the most similar seed. In the refinement phase,
there are a number of iterations. During each iteration, the documents are
visited in a random order and the document di is moved to the cluster that
leads to the highest improvement of criterion value. The refinement phase ends
if there is no document movement between clusters. To eliminate the sensi-
tivity to the seed selection, the overall process is repeated a number of times,
i.e. N different solutions, are computed. The default N is 10.

The c-agglo is the traditional agglomerative clustering algorithm. But the
c-bagglo combines partitional and agglomerative methods. It introduces in-
termediate clusters obtained by partitional clustering algorithms to constrain
the space over which agglomeration decisions are made.

Seven datasets are used in this group of tests, i.e. two synthetic datasets:
T50I1000D200 and T6I46D200, two categorical datasets: Lenses and Zoo,
three document datasets: Tr41, Wap and LA1. Zoo is from the UCI machine
learning repository. It contains 101 data records for animals. Each data record
has 18 attributes (animal name, 15 Boolean attributes, 1 numeric with set
of values [0, 2, 4, 5, 6, 8] and animal type values 1 to 7) to describe the
features of animals. The animal name and animal type values are ignored in
our transformed file, while the animal type serves as an indication of domain-
specific clustering structure. After transformed to transactional dataset, it has
36 items.

The Purity measure is used to evaluate the quality of clustering results in

this group of tests. The purity of a clustering result is P = 1
N

K∑
i=1

max(nj
i ),

where max(nj
i )is the maximum number of transactions from the same class j

in cluster i.
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The number of desired clusters should be input before running CLUTO. In
our experiments, the predefined class information is used as number of de-
sired clusters when running CLUTO. For the SCALE, the cluster seeds at
the predefined class number, which are generated by the clustering structure
assessment step, form the initial clusters of clustering step.

The experimental results on seven datasets (Table 4) show: 1) On two well-
structured synthetic transactional datasets, the clustering results of SCALE
have the same purity as those of four CLUTO methods, i.e. c-rb, c-rbr, c-
agglo and c-bagglo, and higher purity than that of c-direct method; 2) On
two typical categorical datasets Lenses and Zoo, the SCALE obtains better
clustering results than the five CLUTO methods; 3) On the three document
datasets, the SCALE has better clustering result than CLUTO on WAP, and
the purity of the SCALE on LA1 is higher than most of the CLUTO method
except the c-rb, while the clustering result of SCALE on Tr41 is only better
than that of the c-agglo. Overall, these results show that the transaction-
specific SCALE prevails over CLUTO on most of the experimental datasets.

Table 4
Purity Summary of SCALE approach and five CLUTO methods

Datasets #class SCALE c-direct c-rb c-rbr c-agglo c-bagglo

T50I1000D200 20 1.0 0.8 1.0 1.0 1.0 1.0

T6I46D200 9 1.0 0.9 1.0 1.0 1.0 1.0

Lenses 3 0.75 0.625 0.625 0.625 0.625 0.625

Zoo 7 0.93 0.842 0.89 0.86 0.83 0.73

Tr41 10 0.73 0.778 0.769 0.772 0.637 0.743

Wap 20 0.74 0.714 0.69 0.704 0.53 0.701

LA1 6 0.64 0.613 0.687 0.635 0.317 0.619

5 Conclusions

Although the problem of determining the optimal number of clusters is very
challenging, we have shown that a coverage density-based method is promising
for transactional datasets. This method is based on an intuitive transactional
inter-cluster dissimilarity measure, Transactional-cluster-modes dissimilarity.
Based on this measure, an agglomerative hierachical clustering algorithm is
developed and its output, i.e. Merging Dissimilarity Indexes, are utilized to
find the candidate number of clusters Ks. Our experimental results on both
synthetic and real data showed that the proposed method is effective and
highly efficient in finding the optimal number of clusters for transactional
datasets.
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