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Abstract. The problem of efficient and high-quality clustering of extreme scale
datasets with complex clustering structures continues to be one of the mabst ¢
lenging data analysis problems. An innovate use of data cloud would provid
unique opportunity to address this challenge. In this paper, we propo&adhd-
Vista framework to address (1) the problems caused by using samplitihg in
existing approaches and (2) the problems with the latency caused bysitteid
processing on interactive cluster visualization. The CloudVista franmewions

to explore the entire large data stored in the cloud with the help of the data struc-
turevisual frameand the previously developed VISTA visualization model. The
latency of processing large data is addressed bR#m&Geralgorithm that gen-
erates a series of related visual frames in the cloud without user’s emnitson,
and a hierarchical exploration model supported by cloud-side spbsegssing.
Experimental study shows this framework is effective and efficienvigually
exploring clustering structures for extreme scale datasets stored in thie clo

1 Introduction

With continued advances in communication network techgland sensing technol-
ogy, there is an astounding growth in the amount of data mediand made available
throughout cyberspace. Cloud computing, the notion ofaurtsng hardware and soft-
ware to Internet service providers through large-scalemg®and computing clusters,
is emerging as a dominating technology and an economicaltovaipst and analyze
massive data sets. Data clouds, consisting of hundredsasainds of cheap multi-core
PCs and disks, are available for rent at low cost (e.g., Am&©02 and S3 services).
Powered with distributed file systems, e.g., hadoop disteit file system [26], and
MapReduce programming model [7], clouds can provide edprivaor better perfor-
mance than traditional supercomputing environments fta llensive computing.
Meanwhile, with the growth of data volume, large dataseti#l often be gener-

ated, stored, and processed in the cloud. For instancebéaketores and processes
user activity logs in hadoop clusters [24]; Yahoo! used logpddusters to process web
documents and generate web graphs. To explore such largsetiatwe have to de-
velop novel techniques that utilize the cloud infrastruetand its parallel processing

! The concept of “large data” keeps evolving. with existing scales of datghly, we consider
< 10® records to be small,0®> — 10° to be medium10° — 10° to be large, and> 10° to be
extreme scale.



power. In this paper we investigate the problem of largéesdata clustering analysis
and visualization through innovative use of the cloud.

1.1 Challengeswith Clustering Extreme Scale Data

A clustering algorithm tries to partition the records int@gps with certain similarity
measure [15]. While a dataset can be large in terms of the nuafliémensions (di-
mensionality), the number of records, or both, a “large” vgeble data usually refer
to those having multi-millions, or even billions of recordr example, one-day web
search clickthrough log for a major commercial web seargjirenin US can have tens
of millions of records. Due to the large volume of data, t@bianalysis methods are
limited to simple statistics based on linear scans. When-lagél analysis methods
such as clustering are applied, the traditional approabhes to use data reduction
methods.

Problemswith Sampling.
The three-phase framework, sampling/summarizatiodata analysis on sample data
— postprocessing/validation is often applied to clustelinge data in the single work-
station environment (as shown in Figure 1).
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Fig. 1. Three phases for cluster analysis of large datasets

This framework can temporarily address some problems dauskarge datasets in
limited scale For instance, dealing with complex clustering structoéten the case
in many applications) may need clustering algorithms ofinear complexity or visual
cluster analysis, which cannot be applied to the entiresldegaset. With data reduction,
the most costly iterative analysis is on the reduced dataersécond phase, while we
assume the number of iteration involving the three phasesl.

Due to the sampling or summarization phase there is a misnbateveen the clus-
tering structure discovered on the sample dataset andrihiheentire dataset. To fully
preserve the clustering structure, the sampling rate has togher than certain lower
bound that is determined by the complexity of the clustestngcture and the size of the
dataset [11]. While the size of entire dataset keeps grovaplly, the amount of data
that the second phase can handle stays limited for a typimstation, which implies
a decreasing sample rate. The previous work in the thregepliaual cluster analysis
framework [4] has addressed several problems in extentimgltstering structure to
the entire dataset under low sample rate, such as missirbcnséers, abnormal visual
cluster patterns, cluster boundary extension, and unsézamdary clustering structure.
These problems become more severe with lower sample rate=fbine, new processing
strategies are needed to replace the three-phase framéweasitreme scale datasets.

Problemswith Visual Cluster Exploration.

Previous studies have shown that visual cluster explaratam provide unique advan-



tages over automated algorithms [3, 4]. It can help usedédbie best number of clus-
ters, identify some irregular clustering structures, mpooate domain knowledge into
clustering, and detect errors.

However, visual cluster exploration on the data in the clotidgs extra difficulties.
First, the visualization algorithm should be parallelizal€lassical visualization meth-
ods such as Principal Component Analysis and projectiosyiitl 3] involve complex
computation, not easy to scale to large data in the paraltalgssing environment.
Second, cloud processing is not optimized for low-latenmcessing [7], such as in-
teractive visualization. It would be inappropriate to r@sg to each user’s interactive
operation with a cloud-based processing procedure, bedhesuser cannot tolerate
long waiting time after each mouse click. New visualizatéod data exploration mod-
els should be developed to fit the cloud-based data progessin

1.2 Scopeand Contributions

We propose the cloud-based interactive cluster visuadizdtamework,CloudVista,
to address the aforementioned challenges for exploratisgter analysis in the cloud.
The CloudVista framework aims to eliminate the limitatiorbght by the sampling-
based approaches and reduce the impact of latency to thadtitty of visual cluster
exploration.

Our approach explores the entire large data in the cloud doead the problems
caused by sampling. CloudVista promotes a collaborataméwork between the data
cloud and the visualization workstation. The large dat&sstored, processed in the
cloud and reduced to a key structure “visual frame”, the eiz&hich is only subject
to the resolution of visualization and much smaller than @reene scale dataset. Vi-
sual frames are generated in batch in the cloud, which ateséme workstation. The
workstation renders visual frames locally and supporerattive visual exploration.

The choice of the visualization model is the key to the susadsthe proposed
framework. In the initial study, we choose our previouslyaleped VISTA visualiza-
tion model [3] for it has linear complexity and can be easiygllelized. The VISTA
model has shown effectiveness in validating clusteringcstires, incorporating domain
knowledge in previous studies [3] and handling moderataigd scale data with the
three-phase framework [4].

We address the latency problem with an automatic batch frgeneration algo-
rithm - the RandGen algorithm. The goal is to efficiently gawe a series of mean-
ingful visual frames without the user’s intervention. Witte initial parameter setting
determined by the user, the RandGen algorithm will autaraliyi generate the param-
eters for the subsequent visual frames, so that these frareedso continuously and
smoothly changed. We show that the statistical propertighi® algorithm can help
identify the clustering structure. In addition to this algom, we also support a hierar-
chical exploration model to further reduce the cost and éetbud-side processing.

We also implement a prototype system based on Hadoop/Majmedd6] and the
VISTA system [3]. Extensive experiments are conducted toysseveral aspects of
the framework, including the advantages of visualizingrertarge datasets, the per-
formance of the cloud-side operations, the cost distriloutietween the cloud and the
application server, and the impact of frame resolution tming time and visualiza-
tion quality. The preliminary study on the prototype hasvehdhat the CloudVista



framework works effectively in visualizing the clusterisgjuctures for extreme scale
datasets.

2 CloudVista: the Framework, Data Structure and Algorithms

CloudVista works differently from existing workstatioraded visualization. Workstation-
based visualization directly processes each record aiérethe visualization after the
visual parameters are set. In the CloudVista framework, le@rly divide the respon-
sibilities between the cloud, the application server, drddient (Figure 2). The data
and compute intensive tasks on large datasets are now fihisiiee cloud, which will
generate the intermediate visual representations - thevfsames (or user selected
subsets). The application server manages the visual fsalmeét information, issues
cloud processing commands, gets the results from the cbmmdpresses data for trans-
mission, and delivers data to the client. The client willdenthe frames, take care
of user interaction, and, if the selected subsets are smaitk on these small subsets
directly with the local visualization system.
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Fig. 2. The CloudVista framework

We describe the framework in three components: the VISTMalization model,
the key data structure “visual frame”, and the major datzgssing and visualization
algorithms. We will also include a cost analysis on cloutksiperations at the end of
this section.

2.1 TheVISTA Visualization M odel

The CloudVista framework uses our previously developedT¥l8isualization model
[3] for it has linear complexity and can be easily paralletizTo make the paper self-
contained, we describe the definition of this model and itperties for cluster visual-
ization.

VISTA visualization model is used to map fadimensional point to a two di-
mensional point on the display. Let € R?,7 = 1,...,k be unit vectors arranged
in a “star shape” around the origin on the display.can be represented as =
(cos(8;),sin(6;)), 0; € [0, 27], i.e., uniquely defined bg;,. Let ak-dimensional normal-
ized data poink = (x1,...2;,..., %), ; € [—1,1] inthe 2D space and = (u1, u2)
be x's image on the two dimensional display based on the VISTA pimapfunction.



a = (ag,...,ar),q; € [—1,1] are dimensional weights ande R (i.e., positive
real) is a scaling factor. Formula 1 defines the VISTA model:

k
fx,a,0,c¢) = CZ 04 T;Sq. Q)

i=1

«;, 0;, andc provide the adjustable parameters for this mapping. Foplgiity,
we leaved; to be fixed that equally partitions the circle, i.¢. = 2iw/k. Experimental
results showed that adjustingn [—1, 1], combined with the scaling factoiis effective
enough for finding satisfactory visualization [3, 4].
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Fig. 3. Use a Gaussian mixture to describe the
clusters in the dataset.

This model is essentially a simple linear model with dimenai adjustable param-
etersw;. The rationale behind the model is

Proposition 1 If Euclidean distance is used as the similarity measure, fineamap-
ping does not break clusters but may cause cluster ovemgppi

Proof. Let's model arbitrary shaped clusters with a Gaussian mexiig]. Let x be the
density center, andl’ be the covariance matrix of the Gaussian cluster. A clustean
be represented with

Ni £ = Gserarmrrs espl == )/ 57 e = )2}

Geometrically,. describes the position of the cluster aidlescribes the spread of the
dense area. After an affine transformation, &dy) = Ax+ b, the center of the cluster
is moved toAu; + b and the covariance matrix (corresponding to the shape afeden
area) is changed td X; A”. And the dense area is modeled WNf\( Ay; +b, AX; AT).
Therefore, affine mapping does not break the dense aredheeluster. However, due
to the changed shapes of the clustets;; A”, some clusters may overlap each other.
As the VISTA model is an affine model, this proposition als@l&gs to the VISTA
model™

Since there is no “broken cluster” in the visualization, argual gap between the
point clouds reflects the real density gaps between theeckigt the original high-
dimensional space. The only challenge is to distinguishdiséance distortion and
cluster overlapping introduced by the mapping. UniqueRedént from other mod-
els, by tuninge; values, we can scrutinize the multidimensional datasetalis from



different perspectives, which gives dynamic visual clumsdistinguishing the visual
overlapping.

In addition, since this model is a record-based mappingtiongit is naturally
parallel and can be implemented with the popular paralletgssing models such
as MapReduce [7] for large scale cloud-based data procesEierefore, we use the
VISTA model in our framework. Note that our framework does exclude using any
other visualization model if it can efficiently implemenetfunctionalities.

2.2 TheVisual Frame Structure

A key structure in CloudVista is thésual framestructure. It encodes the visualization
and allows the visualization to be generated in parallehandloud side. It is also a
space-efficient data structure for passing the visuatindtiom the cloud to the client
workstation.

Since the visual representation is limited by display s&@most independent of
the size of the original dataset, visualizing data is ndifueadata reduction process.
A rectangle display area for a normal PC display contains edfixumber of pixels,
about one thousand by one thousand pieBeveral megabytes will be sufficient to
represent the pixel matrix. In contrast, it is normal thedrgé scale dataset may easily
reach terabytes. When we transform the large dataset to al veyuresentation, a data
reduction process happens, where the cloud computatioelired., MapReduce, can
nicely fitin.

We design the visual representation based on the pixelmatre visual data reduc-
tion process in our framework is implemented as an agggatiocess. Concretely,
we use a two dimensional histogram to represent the pixeixnatch cell is an aggre-
gation bucket representing the corresponding pixel or ab@urof neighboring pixels
(which is defined by th&esolutiol. All points are mapped to the cells and then ag-
gregated. We name such a 2-D bucket structure as “visualefrafnframe can be
described as a list of tuplés,, us, d), where(uy, us) is the coordinate of the cell and
d > 0 records the number of points mapped to the cell. The bucketsften filled
sparsely, which makes the actual size of a frame structisméaler than megabytes.
Low resolution frame uses one bucket representing a nunfbeeighboring pixels,
which also reduces the size of frame.

Such a visual frame structure is appropriate for densigebaluster visualization,
e.g., those based on the VISTA model. The following MapRedtmde snippet de-
scribes the use of the visual frame based on the VISTA model.

The VISTA visualization model maps the dense areas in thggnaii space to sep-
arated or overlapped dense areas on the display. With satalets, clusters are visu-
alized as dense point clouds, where point-based visualizét sufficient for users to
discern clustering structures. With large datasets, @litp@re crowded together on the
display. As a result, point-based visualization does natkwd/e can use the widely

2 A well-known problem is that the VISTA model cannot visually separateesmanifold struc-
tures such nested spherical surfaces, which can be addresssithdpppectral clustering [19]
as the preprocessing step.

% Note that special displays, such as NASA's hyperwall-2, needs $geuidware, which are
not available for common users, thus do not fit our research scope.



. map(z, x)

. i: record id,x: k-d record.
D(u1,u2) + f(x,a,0,¢);

. Emitintermediate((u1, uz), 1)

> reduce((u1, uz2), v)
(w1, uz): coordinatey: list of counts.
d + 0;
. for eachw; in v do
d <+ d+ v;;
end for
L Emit((ui, uz, d));

adopted heatmap method to visualize the density informatibe cells with high den-
sity are visualized with warmer colors. With the heatmaphodt we can still easily
identify clusters from the visualization. We will see sonigualization results based on
this design in Section 3.

2.3 AlgorithmsImproving I nteractivity

In this section, we describe two major algorithms addressie latency caused by
cloud-side data processing. The first algorithm, RandGeromly generates a batch
of related frames based on the first frame. The user can tigoresxthe batch of frames

locally with the workstation. To further reduce the effe€tlatency and the need of
cloud-side operations, we also develop the algorithms atipg the hierarchical ex-

ploration model.

RandGen: Generating Related Frames in Batch Visualization and dimension re-
duction techniques inevitably bring distance distortionl @ause overlapped clusters
in lower dimensional space. While it is possible to use atbors to generate a set of
“best” candidate visualization results as projection pit§] does, it is often too costly
for large data. Another approach is to allow the user to theevtsual parameters and
observe the data in different perspectives to find the plesgisual overlapping, which
was employed by the VISTA system [3].

In the single workstation mode for medium-size data, thekstation can quickly
respond to user’s interactive operation and re-generatesalization by applying the
VISTA model to the entire dataset or sample data. Howevés,itlberactive model is
not realistic if the data processing part is in the cloud.hiis section, we develop the
RandGen algorithm that can automatically generate a bdtcalated frames in the
cloud based on the parameter setting for the first frame. ©Hection of frames are
passed to the client and the user can spend most time to tanathem locally in the
workstation. We also prove that the batch of frames gengnaitth RandGen can help
users identify the clustering structure.

The RandGen algorithm is a random perturbation procesg#megrates a collection
of related frames. Starting from the initialvalues that are given by the user, RandGen
applies the following small stochastic updates to all digiemal weights simultane-
ously, which are still limited to the range -1 to +1. la%df represent the: parameter for



dimensioni in frame¢, the new parameter” " is defined randomly as follows.

0; =t X B,
1 ifoz?+5i>1
a?t = {af 46 ifal+ el-1,1 @
-1 if a‘f—i—éi < -1,

wheret is a predefined step length, often set to small, .61 ~ 0.05, andB is a
coin-tossing random variable - with probability 0.5 it nets 1 or -1.9; is generated
independently at random for each dimensi@f’ﬁrl is also bounded by the range [-1,1]
to minimize the out-of-bound points (those mapped out ofdisplay). This process
repeats until thex parameters for a desired number of frames are generateaz: Bia
adjustment at each step is small, the change between thiebogigg frames is small
and smooth. As a result, sequentially visualized thesedsawill create continuously
changing visualization. The following analysis shows whg RandGen algorithm can
help identify visual cluster overlapping.

Identifying Clustering Patterns with RandGafle formally analyze why this ran-
dom perturbation process can help us identify the clugjestructure. The change of
visualization by adjusting: values can be described by the random movement of each
visualized point. Let; andv, be the images of the original data recerdor the two
neighboring frames, respectively. Then, the point movdrisarepresented as

k
Au =cC E 5Z‘IiS7;.
i=1

By definition of B, we haveE[s;] = 0. Sinced; are independent of each other, we
derive the expectation afd;

E[556J] = E[(SZ]E[(SJ] = O, fOT ) 7é j

Thus, it follows the expectation of point movement is zet@A,,] = 0. That means the
point will randomly move around the initial position. Legtkoordinate; be(s;1, s;2).
We can derive the variance of the movemen{¥gy) =

k 2.2 k 2
c2t2var(B)< Dim1 TISH i1 T 311&2) 3

k k 2 9
Zz‘:1xzszlsz2 Z =1 L5552

There are a number of observations based on the varianceh€élarger the step length
t, the more actively the point moves; (2) As the valygsands;, are shared by all
points, the points with larger vector Iengjljfz1 z? tends to move more actively.

Since we want to identify cluster overlapping by observiognpmovements, it is
more interesting to see how the relative positions changdifferent points. Letw,
and w, be the images of another original data recgréor the neighboring frames,
respectively. With the previous definition &f the visual squared distance between the
pair of points in the initial frame would be

AL, = |lwy — vi]? —chaz zi —yi)sil>. (4)



Then, the change of the squared distance between the twis [®in
Awy =1/(AQ, — AD) )

Z(S T; — y7 87,1 Z(S yz 572
+ 2 25 y; 321 Zaz Ti —Yi 511)
Zé —yi)si2)( ZO" T = Yi)Si2)-

With the independence betweénandd; for i # j, E(5;) = 0, s} + s = 1, and
E?[5;] = t?van(B) = 0.25¢2, it follows the expectation of the distance change is

k k
v} = ZE2[(51]($1 - yi)Q = O.25t2 Z(l‘ -

where , i.e., the average change of distance is proportidhet@riginal distance be-
tween the two points. That means, if points are distant inottginal space, we will

have higher probability to see them distant in the visuahfs; if the points are close in
the original space, we will more likely observe them movestbgr in the visual frames.
This dynamics of random point movement helps us identifsitds cluster overlapping
in a series of continuously changing visual frames genénattth the RandGen method.

Bootstrapping RandGen and Setting the Number of Fran@se may ask how
to determine the initial set af parameters for RandGen. We propose a bootstrapping
method based on sampling. In the bootstrapping stage, thel ¢¢ asked to draw a
number of samples uniformly at random ecords, defined by the the user according
to the client side’s visual computing capacity). The usentlocally explores the small
subset to determine an interesting visualizationptiparameters of which are sent back
for RandGen. Note that this step is used to explore the skéttie clustering structure.
Therefore, the problems with sampling we mentioned in bhtiction are not important.

Another question is how many frames are appropriate in ehlfatcthe RandGen
algorithm. The goal is to have sufficient number of framesad dne batch is sufficient
for finding the important cluster visualization for a set@tsubset (see the next sec-
tion for the extended exploration model), but we also do nahtto waste computing
resources to compute excessive frames. In the initial stueljound this problem is so-
phisticated because it may involve the proper setting o$tép lengtht, the complexity
of the clustering structure, and the selection of the ihiteame. In experiments, we will
simply use 100 frames per batch. Thorough understandirtgptoblem would be an
important task for our future work.

Supporting Hierarchical Exploration A hierarchical exploration model allows the
user to interactively explore the detail of any part of théadat based on the current
visual frame. Such an exploration model can also exporlbnteduce the data to be
processed and the number of operations to be performed gidbd side.

We develop algorithms to support such an exploration mdeglre 4 shows the
flowchart how the client interacts with the cloud side in taigploration model. De-
pending on the size of the selected subset of data¢ords), the cloud side may have



different processing strategies. If the selected data &lsnough to fit in the client’s
visualization capacity, i.ey records, the cloud will return the subset directly (Case 1).
If the ratep/v > &, where¢ is an acceptable sampling rate set by the user, e.g., 5%,
a uniform sampling is performed on the selected subareaicltud to geju sample
records (Case 2). In Case 1 and 2, the subsequent operatidins subset will be han-
dled locally at the client side. Otherwise, if the ratév < ¢ that sampling is not an
appropriate option, the cloud side will start the RandGegorthm (Case 3). We will
formally analyze the cloud-related cost based on this eaptan model in Section 2.4.
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The key operation, subset selection and sampling, showdfygorted in the cloud.
The definition of the selected subset is derived based ongteselected subarea on
the current visual frame, and then passed to the cloud tegefith other visualization
parameters. We design a MapReduce algorithm to filter ouselexted records based
on the area definition. The sampling step can also be apptefyrintegrated into this
step. The details of the algorithms are skipped due to theedpaitation.

2.4 A Cost Model for CloudVista

In cloud computing, an important problem is resource piownisg [1]. To understand
the interactivity of the system, it is also important to emtte how frequently an ex-
ploration will be interrupted for getting results from thiewd. In this section, we will
model the exploration process with a Markov chain and dexivestimate to the num-
ber of cloud-side operations. The average cost of each tiperaill be studied in
experiments.

The cloud-client interaction can be roughly represented a/Markov chain. Figure
5 shows two sample states of the chain; other states areadiymnihodeled. The user’s
interactive exploration can be described as a number dfdinitns on the interested
visual areas. Thus, the length of the chain is correlateddingber of cloud operations.
If the user starts with the staie she/he may require a RandGen (RG) operation for
which the size of data keeps unchanged - let's denaté.itOr, she/he can perform a
subset selection (SS) to drill down, which moves to the stateand the size of dataset
is changed taV;, correspondingly. This chain extends until the subset @afully
handled locally.

We estimate the length of the chain as follows. Assume a Nestgn coversn
cells, i.e., the aggregation buckets, on the display areaverage, and thus the average



density of the cells igV; /n for statei. We also assume the area the user may select for
subsect exploration is abodpercentage of the cells. So the size of data at state 1

is N; 41 ~ AN;. Itfollows N; 1 = A1 Ny. We have defined the client’s visualization
capacity,, and the acceptable sampling rdteFor N, ; records to be handled fully
locally by the client, the boundary condition will b¥; > p/¢ and N,y < p/€.
PluggingNV; .1 = AT Ny into the inequalities, we get

I

log. H_
8 ENo

1< o

1 <1 <logy Ny’
i.e.,i = [logy g ]. Let the critical value be = i + 1. Assume only one RandGen
with sufficient number of frames is needed for each stateeeSime number of interest-
ing subareas for each level are quite limited, denoted,the total number of cloud
operations i90(kp).A concrete example may help us better understand the number
p. Assume the client’s visualization capacity is 50,000 rdspthere are 500 million
records in the entire dataset, the acceptable samplingsragé, and each time we se-
lect about20% visual area, i.e.A = 0.2, to drill down. We getp = 4. Therefore, the
number of interrupts caused by cloud operations can be go@eptable for an extreme
scale dataset.

3 Experiments

The CloudVista framework addresses the sampling probleimtive method of explor-

ing whole dataset, and the latency problem caused by clotedptacessing with the
RandGen algorithm and the hierarchical exploration modi.conduct a number of
experiments to study the unique features of the framewarkt,ve show the advan-
tages of visualizing the entire large data, compared to igualization of sample data.
Second, we investigate how the resolution of the visual &amay affect the quality of
visualization, and whether the RandGen can generate Usafués. Third, we present
the performance study on the cloud operations. The cligietagsual exploration sys-
tem (the VISTA system) has been extensively studied in cewvipus work [3, 4]. Thus,

we skip the discussion on the effectiveness of VISTA clustgloration, although the
frame-based exploration will be slightly different.

3.1 Setup

The prototype system is setup in the in-house hadoop cldstirhadoop cluster has 16
nodes: 15 worker nodes and 1 master node. The master nodsealss as the applica-
tion server. Each node has two quad-core AMD CPUs, 16 GB mgrand two 500GB
hard drives. These nodes are connected with a gigabit ethewitch. Each worker
node is configured with eight map slots and six reduce slgigraximately one map
slot and one reduce slot per core as recommended in thduiterd he client desktop
computer can comfortably handle about 50 thousands reedgtts 100 dimensions
as we have shown [4].

To evaluate the ability of processing large datasets, weneixtwo existing large
scale datasets to larger scale for experiments. The failpwata extension method is
used to preserve the clustering structure for any extersimn First, we replace the



categorical attributes (for KDD Cup data) with a sequencéntggers (starting from
0), and then normalize each dimengioRor a randomly selected record from the nor-
malized dataset, we add a random noise (e.g., with normeitdison N (0, 0.01)) to
each dimensional value to generate a new record and thisggoepeats for sufficient
times to get the desired number of records. In this way thi lehisstering structure is
preserved in the extended datasets. The two original datase(1)Census 1990 data
with 68 attributes and (R)DD Cup 1999 data with 41 attributes. The KDD Cup data
also includes an additional label attribute indicatingadtass of each record. We denote
the extended datasets with Censusnd KDD.,; respectively.

3.2 Visualizing the Whole Data

In this experiment, we perform a comparative study: anatythe visualization results
generated with the original VISTA system and the CloudVistanework, on sam-
ple datasets and on the entire dataset, respectively. Tperiment uses two Census
datasets: a sample set of 20,000 records for the VISTA syatehan extended dataset
of 25 million records (5.3 GB in total) for the CloudVista.

Figure 6 shows the clustering structure with the VISTA systeThere are three
major clusters - the dense areas in the visualization. Bsislt has been validated with
the BestK plot method [4]. Since the Census dataset has lisenetized, i.e., all con-
tinuous domains are partitioned and discretized, categociustering analysis is also
applicable. We apply the categorical cluster validatiorthod: BestK plot method to
find the best clustering structure [4], which confirms thailtegsualized in Figure 6.
The BestK plot on 1,000 samples shows that the optimal aingtstructure has three
clusters and a secondary structure has two (these twohgsstructures is a part of the
hierarchical clustering structure, i.e., two of the threesters are more similar (closer)
to each other than to the third cluster).

Correspondingly, the visualization result in Figure 6 alkows a hierarchical struc-
ture based on density: there are three clusters C1, C2. 1212 while C2.1 and C2.2
are close to each other to form the secondary clusteringtatel Except for these major
clustering structures, on Figure 6 we have questions alibat structural features: (1)
Can we confirm that C1 consists of many small clusters? (2)thege possibly small
clusters or outliers between C1 and C2.2? (3) How closel\C&& and C2.2 related?
These questions are unclear under the visualization ofdimpke data.

To compare the results, we use the same set parameters as the starting point
and generate a series of frames with small step length (0®1)e 25 million records
with the CloudVista framework. Figure 7 shows one of thesafes. We can answer
the above question more confidently with the entire datd$pC1 indeed consists of
many small clusters. To further understand the relatignsetween them, we may need
to drill down C1. (2) Small clusters are clearly observedissin C1 and C2.2. (3) C2.1
and C2.2 are closed related, but they are still well separdtés also confirmed that
the margin between C1 and C2.x is much larger and clearettiaabetween C2.1 and
C2.2, which is consistent with the secondary structuretitied by BKPIot. In addition,

4 The commonly used methods include max-min normalization or transfgriistandard nor-
mal distribution.

5 The dark circles, lines, and annotations are not a part of the visualiZétiohoth Figure 6
and 7). They are manually added to highlight the major observations.
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Fig. 6. Visualization and Analysis of Census

data with the VISTA system. Fig. 7. Visualization and Analysis of 25 Mil-

lion Census records (in 1000x1000 resolu-
tion).

we also find some small sub-clusters inside C2.2, which dammobserved in Figure
6.

We summarize some of the advantages of visualizing entige ldata. First, it can
be used to identify the small clusters that are often undtdée with sample dataset;
Second, it helps identifying delicate secondary strustuhat are unclear in sample
data. Sample data has its use in determining the major diugtgtructure.

3.3 Usefulness of Frames Generated by RandGen

We have shown the statistical properties of the RandGenmitlign In a sufficient num-

ber of randomly generated frames by RandGen, the user wdltfia clustering pattern
in the animation created by playing the frames and distsigpbtential visual cluster
overlaps. We conduct experiments on both the Cepsasd KDD.,.; datasets with the
batch size set to 100 frames. Both the random initial frantetha bootstrapping ini-
tial frame are used in the experiments. We found in five rurexperiments, with this
number of frames, we could always find satisfactory visadilin showing the most
detailed clustering structure. The video at http://tinfféd4g shows how the visual-
ization of Census,; (with 25 millions of records) changes by playing the 100 fesm
continuously.

3.4 Cost Evaluation on Cloud-Side Data Processing

In this set of experiments, we study the cost of the two maljoud operations: the
RandGen algorithm and subset processing. We also analgzeost distribution be-
tween the cloud and the app server.

Lower resolution can significantly reduce the size of thengalata, but it may miss
some details. Thus, it represents a potential tradeoff d&etveystem performance and
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visual quality. Figure 7 in previous discussion is geneatatéh 1000x1000 resolution,
i.e., 1 aggregation cell for 1 pixel. Comparing with the fesd 250x250 resolution,
we find the visual quality is slightly reduced, but the majlustering features are well
preserved for the Censys data. Reducing resolution could be an acceptable method

to achieve better system performance. We will also studyntipact of resolution to the
performance.

RandGen: Figure 8 demonstrates the running time of MapReduce Rand{gen
rithm with different settings of map slots for the extendetsus data. We control the
number of map slots with Hadoop’s fair scheduler. We set #@0ces corresponding to
100 frames in a batch for all the testing c&sé¢ote that each number in the figures is
the average of 5 test runs. The variance is small compardubtavierage cost and thus
ignored in the figures. The running time shows that the MapiRedkandGen algorithm
is about linearly scalable in term of data size. With inciegeumber of map slots, the

5 We realized this is not an optimal setting, as only 90 reduce slots availablespgtem, which
means 100 reduce processes heed to be scheduled in two roundseidube phase.



cost also decreases proportionally. Figure 9 shows theatsistncreases about linearly
within the range of 100 frames.

We then study the cost distribution at the server side (cloagbplication server).
The total cost is split into three parts: cloud processiradferring data to app server
from the cloud, and compressing. The following settingsweed in this experiment.
For RandGen of 100 frames, we compare two extended dat@&etsillion records
of Census (Censug) data and 40 million records of KDD Cup (KQE) data on 15
worker nodes. The results are generated in two resolutitd®0x1000 (aggregation
bucket is 1x1 pixel) and 250x250 (aggregation bucket is 4xdlg), respectively. Since
the cloud processing cost dominates the total cost, we ptrése costs in two figures.
Figure 10 shows the cost of cloud processing. KdDiakes more time since its data
size is much larger. Also, lower resolution saves a signifiemount of time. Figure 11
shows the cost breakdown at the app server, where the suffides x-axis names: “-L”
and “-H” mean low and high resolutions, respectively. lagingly, although KDD,,
data takes more time in cloud processing, it actually restlgnas data in frames, which
implies a smaller number of cells are covered by the mappadgpdy checking the
high-resolution frames, we found there are about 320 thuissaf covered cells per
frame for census data, while only 143 thousands for KDD cug,dehich results in the
cost difference in app server processing.

Table 1 summarizes the statistics for different resol&tid¥e use the amount of data
generated by the cloud to represent the communication ebselen the cloud and the
client (the “compressed data” in Table 1). “Frame size” espnts the average number
of covered aggregation buckets in each frame; “total tirmehé sum of times for cloud
processing, transferring from the cloud to the app sermefcampressing data. It shows
low resolution will have significant cost saving. Low redada visualization will be
very appropriate for exploring higher level clusteringusture, where details are less
important.

resolutiorjframe sizecompressed framé®tal time(sec
Census,.; High 320K 100MB 247
v Low 25K 9.7MB 141
KDD High 143K 45MB 265
ext Low 12K 4.6MB 188

Table 1. Summary of the RandGen experiment.

Subset Processing: Subset exploration results in three possible operatiansset
RandGen, subset fetching and subset sampling. We havezaddlye number of cloud
operations based on the hierarchical exploration modeihi;mexperiment, we let a
trained user interactively select interested high-dgrsiots in the frames generated
with RandGen and then evaluate how many each of the threatapes may be trig-
gered. In each round, 100 frames are generated in each balchSworker nodes on
5.3GB Census,; data or 13.5GB KDD,; data in high resolution. The user browses the
frames and randomly selects the high-density subarealtadwn. Totally, 60 drill-
down operations are recorded for each dataset.

We summarize the result in Table 2. “Size of Selected Arepfagents the average
size of the selected area with representing the standard deviation. “Direct” means
the number of subsets that will be fully fetched. “Samplingdans the number of sub-



sets that can be sampled. “SS-RG” means the number of subisetsizes of which
are too large to be sampled - the system will perform a subaati®en to preserve
the structure. “D&S Time” is the average running time (setjrfor each “Direct” or
“Sampling” operation in the cloud side processing, exalgdhe cost of SS-RG, since
we have evaluated the cost of RandGen in Table 1.

# of Cloud Operations )
Birect SamplingSS-RG D&S Time(sec
Census,;| 13896+ 17282 4 34 22 36

KDD ¢yt 637519646 9 33 18 43

Table 2. Summary of the subsect selection experiment.

Size of Selected Ar

Interestingly, the selected areas are normally small: @rame about 4% of the
entire covered area for both datasets. Most selectionsifigpdly, 63% for Census.;
and 70% for KDQ,; data, can be handled by “Direct” and “Sampling” and theirtsos
are much less than RandGen.

4 Related Work

Most existing cluster visualization methods cannot scplolarge datasets due to their
visual design. Parallel Coordinates [14] uses lines toasgmt multidimensional points.
With large data, the lines are stacked together, cluttettiegvisual space. Its visual
design also does not allow a large number of dimensions tadoahzed. Scatter plot
matrix and HD-Eye [12] are based on density-plots of paievdsnensions, which are
not convenient for finding the global clustering structumd are not scale to the number
of dimensions. Star Coordinates [16] and VISTA [3] models point-based models
and have potential to be extended to handle really largesetesta the work described
in the paper is based on the VISTA visualization model. IHD][and Hierarchical
Clustering Explorer [23] are used to visualize the clusigi$tructures discovered by
clustering algorithms, which are different from our purpad using the visualization
system to discover clusters.

Cluster visualization is also a dimensionality reductiookpem in the sense that it
maps the original data space to the two dimensional visuadesprhe popularly used
dimensionality reduction algorithms such as Principal @onent Analysis and Mul-
tidimensional Scaling [6] have been applied in visualmatiThese methods, together
with many dimensionality reduction algorithms [21, 22]e aften costly - nonlinear
to the number of records and thus they are not appropriaterfge datasets. FastMap
[9] addresses the cost problem for large datasets, but thieechf pivot points in the
mapping may affect the quality of the result. Random pragecf25] only preserves
pairwise distances approximately on average and the predgssubject to the number
of projected dimensions - the lower projected dimensiomswvtbrse precision. Most
importantly, all of these dimensionality reduction metialh not address the common
problems - how to detect and understand distance distoatiohcluster overlapping.
The projection-based methods such as Grand Tour and Roojétirsuit [5] allow the
user to interactively explore multiple visualizations teabver possible distance distor-
tion and cluster overlapping, but they are too costly to edusr large datasets. The



family of star coordinates systems [16, 3] address the Vidistortion problem with a
more efficient way, which is also the basis of our approacte. Jdvantage of stochas-
tic animation in finding patterns, as we do with RandGen, $® @xplored in graph
visualization [2]

The three-phase framework “sampling or summarization steting/cluster analy-
sis — disk labeling” is often used to incorporate the aldonis of high time complexity
in exploring large datasets. As the size of data grows to keege, the rate between the
size of the sampled or summarized dataset to the originalb@zomes very small, af-
fecting the fidelity of the preserved clustering struct@eme clustering features such
as small clusters and the connection between closely dethlisters are not easy to be
discovered with the sample set [4]. Therefore, there is d teeexplore the entire large
dataset.

Recently, several data mining algorithms have been degdlapthe cloud, show-
ing that the hadoop/MapReduce [7] infrastructure is capédleliably and efficiently
handle large-scale data intensive problems. These irestanclude PLANET [20] for
tree ensemble learning, PEGASUS [17] for mining peta-sgedphs, and text mining
with MapReduce [18]. There is also an effort on visualiziegestific data (typically,
low dimensional) with the support of the cloud [10]. Howevawne has been reported
on visualizing multidimensional extreme scale datasetsercloud.

5 Conclusion

The existing three-phase framework for cluster analysikaye scale data has reached
its limits for extreme scale datasets. The cloud infrastmgcprovides a unique oppor-
tunity to address the problem of scalable data analysiabyes or even petabytes of
data can be comfortably processed in the cloud. In this paygepropose the Cloud-
Vista framework to utilize the ability of scalable paralgbcessing power of the cloud,
and address the special requirement of low-latency for-csetered visual analysis.
We have implemented the prototype system based on the VI&tfaNzation model
and Hadoop/MapReduce. In experiments, we carefully etalie uniqgue advantages
of the framework for analyzing the entire large dataset &edperformance of cloud-
side algorithms. The initial results and the prototypeeayshave shown this framework
works effectively for exploring large datasets in the clofid a part of the future work,
we will continue to study the setting of the batch size for &aan and experiment with
larger hadoop cluster.
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