
Trada: Tree Based Ranking Function Adaptation

Keke Chen Rongqing Lu CK Wong Gordon Sun Larry Heck Belle Tseng
Yahoo! Labs

2821 Mission College Boulevard
Santa Clara, CA 95054, USA

{kchen, rlu, ckwong, gzsun, larryh, belle}@yahoo-inc.com

ABSTRACT
Machine Learned Ranking approaches have shown successes
in web search engines. With the increasing demands on de-
veloping effective ranking functions for different search do-
mains, we have seen a big bottleneck, i.e., the problem of
insufficient training data, which has significantly limited the
fast development and deployment of machine learned rank-
ing functions for different web search domains. In this paper,
we propose a new approach called tree based ranking func-
tion adaptation (“tree adaptation”) to address this problem.
Tree adaptation assumes that ranking functions are trained
with regression-tree based modeling methods, such as Gra-
dient Boosting Trees. It takes such a ranking function from
one domain and tunes its tree-based structure with a small
amount of training data from the target domain. The unique
features include (1) it can automatically identify the part of
model that needs adjustment for the new domain, (2) it can
appropriately weight training examples considering both lo-
cal and global distributions. Experiments are performed to
show that tree adaptation can provide better-quality rank-
ing functions for a new domain, compared to other modeling
methods.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval
Models; I.2.6 [Learning]: Concept Learning

General Terms
Algorithms

Keywords
Web Search Ranking, Learning to Rank, Model Adaptation,
Regression Tree

1. INTRODUCTION
Learning to rank has been a promising method for contin-

uously and efficiently improving relevance for web search. It

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’08, October 26–30, 2008, Napa Valley, California, USA.
Copyright 2008 ACM 978-1-59593-991-3/08/10 ...$5.00.

applies novel machine learning algorithms [23, 7, 9, 21, 22,
16, 5] to a set of labeled relevance examples to learn a rank-
ing function. Compared to the traditional ranking functions
[2] developed in the information retrieval community, learn-
ing to rank has several unique benefits: (1) it is convenient to
incorporate new features to the ranking function without the
need of manually tuning the function, which mainly relies on
experts’ experience and heuristics; (2) although depending
on the specific learning algorithms, with sufficient training
data it can usually give better performance over manually
tuned functions. Currently, machine learned ranking func-
tions have been successfully applied to several major search
engines.

Learning to rank requires sufficient amount of good-quality
labeled training data. To obtain good-quality training data,
we usually need trained editors (relevance experts) to judge
the relevance of sampled web search results, i.e., (query, doc-
ument) pairs, and cross-verify the judgments. Since this pro-
cess has to be done manually, it is highly time-consuming
and expensive. Although there are convenient methods to
extract relevance judgments from implicit user feedbacks [16,
17], the expert-labeled data are still regarded as a more
reliable source for training high-quality ranking functions.
Due to the increasing demands from different web search
domains, e.g., different regions or countries or topics, it
has been urgent to develop effective domain-specific ranking
functions and continuously improve them. However, when
applying learning to rank to a new domain, we usually do
not have sufficient amount of labeled training data.

One approach to addressing this problem is to utilize the
training data from one major web search domain to help
train a function for a new search domain. Apparently, the
training data from one existing domain cannot be easily ap-
plied to another domain, due to different joint feature −
relevance distributions. Specifically, for the web search rank-
ing problem, there are usually tens or hundreds of features
designed for learning a ranking function. Even small distri-
bution difference in each feature will aggregate to significant
difference in the multidimensional feature space.

Although each search domain has its own characteristics,
we observe that many of them share certain level of com-
monality. In particular, we have seen that a ranking func-
tion developed in one domain, though not the best function
for another domain, works reasonably well crossing different
domains. We name the domain having sufficient training
data as the source domain, and that we do not have or have
only small amount of training data as the target domain.
How to adapt a good ranking function from the source do-

main to a target domain and get a better ranking function,
is the major problem we are going to tackle.

In this paper, we propose a tree-based ranking function
adaptation approach (Trada) to address the problem of in-
sufficient training data for target search domains. Although
it can be applied to any regression-tree based ranking mod-
els, we will use ranking functions trained with the gradient
boosting trees (GBT) method [10] in this paper. Tree-based
models have some known advantages over other kinds of
models, such as the model interpretability. In our approach,
we will also explore the structural benefit of regression tree
over other models, since the tree structure is highly tun-
able. Based on the characteristics of regression tree and the
mechanism of training a regression tree, we design a few al-
gorithms to tune the base-model trees with the small target
training dataset. The tree-based adaptation algorithm has
a couple of unique features: (1) it can automatically iden-
tify the part of model that needs to adjust for the new do-
main, (2) it can appropriately weigh training examples con-
sidering both local and global distributions. By doing tree-
adaptation, we can effectively tune a base model towards the
domain-specific distributions indicated by the small dataset,
thus incorporate the knowledge learned by the base model
into the target domain. Experiments have shown that this
approach is more effective than other methods.

In Section 2, we will briefly review the related work, mainly,
the representative learning to rank algorithms and the model
adaptation work done in other areas. In Section 3, we de-
scribe some basic concepts and notations that will be used
in tree adaptation. We will also analyze how a regression
tree is generated, which helps understand the basic idea of
tree adaptation. In Section 4, we first give intuitions how
tree adaptation works and then present a few tree adapta-
tion algorithms. Experimental results will be reported in
Section 5 to validate the proposed algorithms and evaluate
different algorithmic settings.

2. RELATED WORK
In recent years, several novel learning algorithms have

been developed for the ranking problem. They can be roughly
grouped into three categories. The first category works on
training data labeled with absolute grades, typically two-
level grades as“relevant”and“irrelevant”, or multilevel grades.
Correspondingly, the learning problem is formalized as a
classification problem [20] or ordinal regression problem [12,
6, 10, 23]. This category has known weaknesses since rank-
ing cares about only the relative ordering between any pair
of documents regarding to a specific query, rather than ac-
curate prediction of categories. Therefore, the second cate-
gory of algorithms proposes to take pairwise data as training
data and develops pairwise ranking function. The represen-
tatively algorithms includes Ranking SVM[16], RankNet[5],
RankBoost[9], and GBRank[23], etc. The third category is
the listwise approach, which tackles the ranking problem di-
rectly by adopting listwise loss functions, or directly optimiz-
ing information retrieval evaluation measures. The typical
algorithms are LamdaRank[4], ListNet[7], and AdaRank[22].

Recently, model adaptation has been of great interest in
other areas, in particular, natural language processing and
speech recognition, for the similar training data problems
we have encountered in learning to rank. The standard ap-
proach is to treat the source domain data as “prior knowl-
edge” and then to estimate maximum a posterior (MAP)

values for the model parameters under this prior distribu-
tion for the target domain. This approach has been applied
successfully to language modeling [1], parsing [13] and tag-
ging [3]. In speech recognition, the maximum likelihood lin-
ear regression (MLLR) approach is also proposed for speaker
adaptation [18]. The problem of distributional difference be-
tween the source domain and the target domain is formally
addressed by the paper [8], which is further decomposed as
1) the difference between the prior distribution of feature
vectors and 2) the difference between the label distributions
[15]. The paper [15] also used a simple data combination
technique by appropriately overweighting the target domain
data in training. As we will show, overweighting the en-
tire target-domain data may not give satisfactory results for
ranking adaptation. The challenge is to appropriately assign
different weights to different examples in terms of the dis-
tributional difference and importance. In contrast, our tree
adaptation technique can automatically adapt to the fine-
grained distribution difference between the source domain
and the target domain.

3. PRELIMINARY
Tree adaptation follows the general GBT training frame-

work, while the major algorithms are more related to the
mechanism of generating regression tree. In order to design
effective adaptation algorithms on trees, we need to under-
stand the structure of a regression tree and how the boosted
trees are generated. In this section, we will first give the def-
inition of training data for the ranking problem, and then
briefly describe how a regression tree is generated, which is
the main component of GBT. This section will also setup
the notations used later in this paper.

3.1 Training Data for Learning to Rank
In learning to rank approaches, the expert judged results

(query, document, grade) are transformed to training ex-
amples {(xi, yi)}. Here, xi represents a feature vector de-
scribing the features associated with the (query, document)
pair. yi is the target value from a set of grades, e.g., a five-
grade scheme, which represents different levels of relevance
between the query and the document. The grade is deter-
mined by the relevance expert for each (query, docuemnt)
pair. The task of learning to rank is thus transformed to
learning a function from the training examples {(xi, yi)},
so that the learned function can predict the target value
for any (query, document) pair if its feature vector is pro-
vided. Since such a ranking function outputs a score for
each (query, document) pair, we can simply sort the scores
for a set of (query, document) pairs and display the sorted
list of documents for the given query.

We briefly describe some of the typical features available
for ranking. For each query-document pair, there are three
categories of features:

• Features modeling the user query, q. They do not
change over different documents in the document set
D. This type of features may include, the number of
terms in the query, the frequency of a term in the cor-
pus, and query classification, e.g., name query, adult
query, or navigational query. Totally over ten query
features are used in training.

• Features modeling the web document, d. They are con-
stant crossing all the queries q in the query set Q. This

type of features may include, the number of inbound
links to the document, the number of distinct anchor-
texts for the document, the language/region identity of
the document, and the classification of the document,
etc. About tens of such features are used in training.

• Features modeling the query-document relationship.
They describe the matching between the query q and
the document d. Such features may include, the fre-
quency of each query term in the title of the document
d, and the frequency of each term in the anchor-texts
of the document d, etc. Since the matching can hap-
pen in different sections of a document, hundreds of
such features can be defined and used in training.

3.2 Learning a Regression Tree
With multi-grade labeled training examples, one straight-

forward learning method is ordinal regression. Many algo-
rithms can do this purpose and we will use gradient boosting
trees in this paper for its superb modeling quality and flex-
ible structure. The basic component of GBT is regression
tree [11]. For better understanding of the tree adaptation
algorithms, we will give sufficient details of learning a regres-
sion tree in this section. Figure 1 shows a sample regression
tree, which is a binary tree with one predicate at each inter-
nal node. The predicate consists of a variable (feature) and
a splitting value, typically in form of F < τ?. In such a tree,
an internal tree node partitions the training data that reach
the node into two parts, with the corresponding predicate
defined in the node. The tree is grown with a top-down man-
ner, i.e., starting from the root and terminating with certain
satisfied condition, e.g., the fixed number of leaf nodes. In
the following, we describe how the training algorithm de-
cides which feature and splitting value are used for growing
child nodes.

F1<v1?

Fi : feature i
vi : some value for Fi

Ri : response value for terminal node i F2<v2? R4

F3<v3?

R1
R2

yes no

R3

Binary decision tree

Figure 1: A sample regression tree

First, splitting a leaf node to grow a tree should give some
kind of “gain”, namely, optimizing the goal of regression,
i.e., minimizing the square error between the predicted value
and the target value. We assume that there are ni training
records reaching the node i, each of which, xj , has a target
value rij to fit at the node i. rij = yj if the current node is
the root, otherwise, rij is the residual by fitting the parent
node. It represents how well this example is fit so far from
the existing part of tree. As we have known, the best-effort
predictor for all records falling onto the current node is the
mean of all rij , i.e., r̂i = 1

ni

∑ni
j=1 rij [11]. With r̂i, the

square error E for the current node is

E =

ni∑
j=1

(rij − r̂i)
2

Finding the Best Split for a Node. Let Fp denote
the feature and vp,q is a feasible value for Fp. (Fp, vp,q)
partitions the data into two parts: those records with Fp <
vp,q go to the left subtree and the rest records go to the
right subtree. After performing this partition, similarly, we
can get the square error EL for the left subtree, and ER for
the right subtree. We define the gain by splitting this node
as gain = E − EL − ER. By scanning through all possible
features and feasible splitting values for each feature, we can
find the best splitting condition, which satisfies

argmin(Fp,vp,q){EL + ER}, for all possible p, q.

Finding the Best Node for Splitting With the above
criterion, a greedy search procedure can be applied to deter-
mine the leaf node that will bring the highest gain among
all existing leaf nodes for splitting.

node i for splitting = argmaxi{gaini}, for all leaf nodes.

This is a hill-climbing procedure, which does not guaran-
tee to get a globally optimal tree. Certainly, there are other
strategies, but this one is very efficient especially when we
have many features in the dataset, as the cost is linear to the
number of features. In the sequel, we will use this tree grow-
ing strategy by default. Figure 2 shows a perfectly fitted
tree to the underlying target value distribution. To extend
it to general multidimensional cases, we can understand that
each node represents a “multidimensional bounding box”de-
fined by the disjointed partitioning conditions along the path
from the root to that node. For example, the leaf node la-
beled with R2 in Figure 2 is defined by the bounding box
F1 < a ∧ F2 < b0.

F1

F2

a

c0

b0

F1<a?

F2<b0? F2<c0?

yes no

R1 R2 R3 R4

Mean of the target
values of the points

in the area

* Colors represent different target values

Figure 2: A perfectly fitted tree

Calculating Leaf Node Response. In the above al-
gorithm, during the growing phase, the predicted value r̂i

for the node i is recorded, and the residuals rij − r̂i are

used as the new target values for its child nodes. Let {r̂(ω)
i ,

node i in the path from the root to any node ω} denote the
predicted values along the path from the root to the leaf

node t. Since each r̂
(ω)
i fits the residual from its parent, the

predicted response Rω for the node ω should be defined as

Rω =
∑

i

r
(ω)
i (1)

Note that an equivalent way to computing the response is
to simply find the mean of the target values for all points
falling onto the leaf node. However, these two will result in
quite different adaptation strategies, which will be discussed
in “response value adaptation”.

3.3 Learning Gradient Boosting Trees
Gradient boosting trees can be used to model both clas-

sification and regression problems. The boosted trees are a
series of regression trees, denoted by hi(x). The final func-
tion is based on these regression trees.

H(x) =

k∑
i=1

γihi(x)

where γi is the learning rate, which is often small, e.g., 0.05.
A formal description of the training algorithm can be found
in the literature [10]. The GBT learning method trains the
k-th tree, based on the previous trees hj , 1 ≤ j < k, with a
set of random samples from the training dataset (Stochastic
Gradient Boosting). The steps can be briefly described as
follows.

1. randomly sample the training data to get a subset of
training examples Sk;

2. set the target ri of the example in Sk to the original
target yi for k=1, or to the residual of the previous
trees hj , for k > 1, 1 ≤ j < k, ri = yi−

∑k−1
j=1 γjhj(xi).

3. train the regression tree hk with the examples {(xi, ri)},
xi ∈ Sk.

4. RANKING FUNCTION ADAPTATION
BASED ON GBT

In this section, we first describe the basic challenge that
the tree adaptation approach will address and also justify
why this approach will work. Then, we will present several
tree adaptation algorithms in details.

4.1 Problem of Domain Adaptation
In what scenarios will domain adaptation work? To an-

swer this question, we need to formally analyze the learning
problem. Given a set of training examples, {xi, yi}, the
goal of training an effective model is to find a function ap-
proximating the joint distribution p(x, y). p(x, y) can be
decomposed into two parts, as p(x, y) = p(y|x)p(x). p(x)
is the underlying unlabeled data distribution and p(y|x) is
the label distribution. Let (s) denote the source domain
and (t) the target domain. In general, the source and target
domains differ in both p(y|x) and p(x). Model adaptation
works in the following scenarios.

• Apparently, when p(s)(x) and p(t)(x) are orthogonally
distributed, the source domain data will not help in
training the target domain function. p(s)(x) and p(t)(x)
have to be significantly correlated to some extent so
that domain adaptation is possible. In the ranking
problem, the relevant training examples are far less
than the irrelevant examples in the overall true dis-
tribution p(x). Therefore, in constructing the train-
ing data, some biases have already existed in collect-
ing sufficient amount of relevant examples. When the
size of target data is small, the sample distribution
p̃(t)(x) may significantly deviate from the real distri-

bution p(t)(x). In this case, we hope that the source
domain data can patch the missing part of distribution
(Figure 3).

p(t)(x,y)

p(t)(x,y)p(s)(x,y)

Source domain target domain

~ ~

Figure 3: Source domain data may be able to
patch the missing part of target domain.

• At the local areas that have similar sample distribu-
tion, i.e., p̃(s)(x) ≈ p̃(t)(x), the label distribution may
still be different (Figure 4). This is especially true
when there are significant amount of noisy labels in
the target domain. In this case, the source domain
data may help to correct the bias from the noisy la-
bels.

Source domain target domain

Figure 4: In overlapped part of distribution,
the label distribution may still differ between
the source and the target.

Figure 3 and 4 illustrate the above scenarios. The small
blocks in the figures represent the local areas in the high-
dimensional space (“the high-dimensional bounding boxes”)
that are covered by the training data. Different colors repre-
sent different target values for the blocks. In regression tree
modeling, each leaf node tries to approximately model one
of these blocks, and each internal node groups a few nearby
blocks with close target values.

The above illustration also shows that training with only
the small amount of target training data may cause serious
overfitting. A feasible solution could be combining the two
sets of data or even two models. However, simply combin-
ing the datasets may not work well. The major difficulty
is to appropriately weight the samples from the target do-
main: without sufficient understanding of the source data
and the target domain, often, we can only roughly handle
the weighting scheme. When inappropriately overweighting
the small data from the target domain, we will get unsatis-
factory models.

Tree adaptation provides us a convenient way to locate the
part of the model that needs tuning, and to automatically
weight different part of target data according to both source

and target data distributions. As a result, tree adaptation
models tend to be more robust and less possible to overfit
the small data.

4.2 Tree Adaptation Algorithms
The basic idea of tree adaptation includes 1) using the

base model to partition the new dataset, i.e., approximating
p̃(t)(x) with p̃(s)(x); 2) properly weighting the samples based
on locality; 3) and finely tuning the partition based on both
source and target data distributions.

The tree adaptation algorithms are closely related to the
mechanism of regression tree modeling that we have dis-
cussed. We can understand tree adaptation from the per-
spective of multidimensional partitioning of the sample space
p̃(x). In a regression tree, each path from root to any node
represents a multidimensional bounding box, which is a sub-
space of p̃(x). In particular, it is worth noting that from top
down the parent bounding box also encloses the children
bounding boxes, and the records falling to the same box will
get the same predicted value (and response). By inherit-
ing the tree structure from the base model, we try to tune
the target data distribution p̃(t)(x) based on the source data

distribution p̃(s)(x).
In tree adaptation, we will slightly tune the response (and

also the boundary of the bounding box) based on the local
distributions of the source and target data. This process will
be done node by node, from the root to leaves. By doing so,
we not only incorporate the distribution learned by the base
model to the new model, but also take into consideration the
subtle distributional differences represented by the target
domain. Due to the complexity of the tree structure, there
are probably numerous strategies for tuning the base model.
According to the intensity level of changing the base model,
we choose to present a few representative algorithms.

Algorithm 1. Tuning Responses Only
The first strategy is fixing the bounding boxes and tuning
responses only. This strategy and some of the later ones em-
ploy the similar local-distribution-based tuning algorithm.
Namely, we assume there are certain number of records, n0,
from the source domain D0, i.e., the training data for the
base model, and n1 from D1, the small training data for the
target domain, falling onto the same bounding box, respec-
tively. We allow the two populations to vote for the the final
decision about the response. By appropriately aligning up
the size difference between the two sets of data, we gener-
ate the weight for each vote and then calculate the tuned
response.

Concretely, we calculate the weights as follows. First, let
a leaf node at the base model be associated with response
R0, and there are n0 records from the source training data
falling onto this node. Next, we apply the target domain
data to the tree, by fixing the splitting condition, to get the
response value R1. Similarly, we know n1 target domain
records falling onto that node. We assume the distribution
that the two sets of points fall on this node follow a binomial
distribution, and the corresponding probabilities are p0 and
(1 − p0) for the source and target data, respectively. A
balanced estimate of the combined value is calculated by

f(R0, R1, p0) = p0 ×R0 + (1− p0)×R1 (2)

f(R0, R1, p0) is used as the tuned response value for this leaf
node. Now, we should estimate p0 based on the two local

sample populations on this node. Since these two original
datasets have unequal size, we may need to scale up the small
data with an appropriate factor β. Based on the sample
populations and β, we estimate p0 with

p̂0 =
n0

n0 + β × n1
(3)

The appropriate β can be determined through cross-validation.
This distribution-based estimation will also applied to bound-
ary tuning later. Plugging 3 into Formula 2, we expand
the parameters to f(R0, R1, n0, n1, β). Formula 3 says that,
when n1 ¿ n0, the original response is almost used as the
response in the new model.

As we have mentioned, each node has a predicted value
trying to fit the residual from its parent and Formula 1 cal-
culates the leaf node response based on the series of residual
prediction {r̂i} on the path from root to the node. Alter-
natively, we can adapt r̂i on each node to get r̂′i. Let r0,i

and r1,i be the predicted values at the node i by applying
the source data and the target data, respectively. Also, let
n0,i, n1,i be the number of source records and target records
falling onto the node i, respectively. A layer-by-layer tuning
strategy can be represented by Eq. 4, where the function f
is the expanded form of Formula 2.

Rt =
∑

iin the path

f(r0,i, r1,i, n0,i, n1,i, β) (4)

This layer-by-layer tuning strategy considers more global
distribution of the two datasets, while the leaf-only tuning
strategy (Formula 2) focuses more on the local distribution.
It actually smoothes out the tuning process, making the
change over nearby boxes less dramatic. In practice, we
have observed that the layer-by-layer strategy indeed gives
better results.

Algorithm 2. Tuning Both Bounding Boxes and Re-
sponses
This algorithm more aggressively tunes the base tree model.
As we have described, each internal node in the path from
the root to the leaf node is associated with a predicate, in
form of feature F < τ , which makes one of the dimensions of
the bounding box represented by the path. In this algorithm,
we still keep the the feature F unchanged, while tuning both
the threshold τ and the corresponding node response.

Assume that the current node has a split with feature F ,
F < v0.

1. calculate the weight p̂0 with Eq. 3;

2. partition the new data with the specific feature F and
find the best split point v1;

3. adjust the split by

vcomb = p̂0 × v0 + (1− p̂0)× v1

4. re-partition the new data with the condition F < vcomb;

5. adjust the response for the current node with Eq. 2

6. move to the child nodes and repeat the above steps.

Figure 5 illustrates the basic steps in the Adaptation Al-
gorithm 2 for one node adaptation. In the figure, the top left
tree is the base model and the right process has the major
split adaptation steps. There are two threads going on: one

is generating and updating the tree for the new data on the
right side, where the new data is the part of data that goes
through the ancestor nodes. The other on the left is updat-
ing the base tree, while still preserving the information of
source data distribution. We will use the output of the left
side as the final adapted tree. This process is repeated for
any nodes in the subtrees and applied to all trees in the base
model.

F2<b1?

Base tree

F1<a?

F2<b0? F2<c1?

yes no

R1 R2 R3 R4

New data

1. Generate new split b1

2. Synthesize new/old splits
b’ = f(b0,b1)F2<b’?

3. Redistribute data

F2<b’?

R1,1 R2,1
6. Repeat above steps
for children nodes

F2<b’?

R1’ R2’

4. Change split

5. synthesize
responses

current
node F1<a’?

Figure 5: A sample algorithm for tree adaptation

Note that in both Algorithm 1 and 2, some branches of the
base model may not be reached by the target domain exam-
ples. It would be difficult to assert whether trimming such
branches will result in better model or not. Instead, we will
evaluate both trimming and non-trimming in experiments.

Algorithm 3: Additional Trees to Incorporate New Fea-
tures
Since the base model is trained for the source domain, which
may not contain the features that are specific to the target
domain. Tuning the base model with Algorithm 1&2 can-
not address this problem. Fortunately, the GBT training
method can be used to uniquely address this problem − we
can expend the adapted model by appending certain num-
ber of additional trees. These additional trees are trained
on the residuals from the adapted base model. This method
is easy to implement and less likely overfitting the target
domain data as it follows the general boosting framework.

One may raise a question: why not solely append trees
without applying Algorithm 1 or 2 on the existing trees
(as known as additive modeling), to achieve the adaptation
goal? Additive modeling is not sufficient because the work-
ing mechanism of GBT limits the effect of the appended
trees. The earlier trees dominate the predicted value, while
the appended trees only finely tune the result. For signif-
icantly different distributions, it is ineffective to catch up
the difference with appended trees. We will show that ad-
ditive modeling has limited advantage if not combined with
Algorithm 1 or 2.

5. EXPERIMENTS
There are several goals in this experimental evaluation.

First, we want to see how the setting of β can affect the
quality of adaptation with varying size of the small training
data from the target domain; Second, we want to compare
the effectiveness of different adaptation algorithms we have
presented; Third, additional trees (the additive method) can

further benefit adaptation and we study how much addi-
tional gain we can get; Finally, the adaptation approach is
compared to other existing methods, including 1) the base
model only; 2) models that are trained only with the small
data from the target domain; and 3) data combination mod-
els that combine the two sets of data for training.

5.1 Datasets
The data used for training the base model from the source

domain D0 is large, including around 150,000 (query, web
document, grade) examples for about 6,000 sample web queries.
The base model uses 200 ∼ 300 features scattered in the
three categories we have described in Section 3.

The target domain D1 has about 38,000 examples from
around 1,300 queries. This is not a typical small dataset.
We will use samples from the target domain to simulate the
scenario that we have only very small training data. These
training examples are labeled by relevance experts and can
be divided into 5 batches according to the time the labeling
was done. A five-fold cross validation will use this natural
split.

There are a few more datasets that come from the target
domains D2 - D5, respectively. We will focus on D1 for
detailed study on the properties of tree adaptation, while
using other domain data for comparing different modeling
methods. Table 1 summarizes the size of the datasets.

query document
D0 6012 146307
D1 1282 37952
D2 823 12092
D3 804 34276
D4 540 16950
D5 1258 29165

Table 1: Size of domain training data.

5.2 Evaluation Metrics
Discounted Cumulative Gain (DCG) [14] is a metric de-

signed for evaluating the quality of ranked list if the grades
for items in the list are known. In our case, DCG is defined
as follows. We use a five-grade labeling scheme for editorial
judgment, which are mapped to integers {‘10’, ‘7’, ‘3’, ‘1’,
‘0’}, corresponding to the most relevant to the most irrel-
evant. Suppose there are k documents used for testing the
query q and each query-document pair (q, di) in the test set
is labeled with a grade li. The test result will give a list of
the k documents that is sorted by the scores given by the
ranking function H to each pair (q, di). Let i = 1, . . . , k be
the order of the sorted documents. DCGk score is computed
for the sorted list as follows.

DCGk =

k∑
i=1

li
log(i + 1)

By definition, when reverse orderings happen at earlier
positions (i is small), they will be punished more than those
happening later. By doing so, we prefer that high quality
results show up at the top of the ranked list.

Each model test will generate a list of DCGs correspond-
ing to the list of testing queries. To compare the statistical
significance between two results, we perform t-test [19] on

the two DCG lists. If p-value < 0.05, the results are signifi-
cantly different. t-test is only performed on the comparison
between different models. For parameter tuning of the same
model, we will show only the average DCG of the multi-
fold cross validation. Note that the relevance differences be-
tween high-quality commercial web search engines are often
less than 5%. Therefore, the small statistically significant
improvements will have practical impact.

5.3 Modeling Methods for Comparison
We are going to compare four types of modeling methods

to the proposed adaptation approach. They are 1) the base
model only, 2) the small-data model, 3) the additive model,
and 4) the data combination model. We briefly describe how
they are generated as follows.

The base model is trained with a large training dataset
from the source domain. In experiments, we train a GBT
model on the D0 data with parameters: 300 trees, 12 leaf
nodes, and 0.05 shrinkage rate. Testing results show this
model works reasonably well for all target domains. We will
use the ranking quality of this model on the target domain
as the base line for comparison.

A small-data model is trained only with the small amount
of training data from the target domain with the GBT method.
Since the training data is small, it is highly possible that the
model will be overfitting to the training data, which means
it may not work well for new examples from the target do-
main in the future although it works well in cross-validation
on the existing data.

An additive model does not change the base model but
appends a few new trees to the base model, which are trained
on the residuals of the new data on the base model. The
training method is the default GBT method.

A data combination model [15] uses the combination of
two sets of training data: one from the source domain (in
the above specific case, the 150K query-document-grade ex-
amples) and the other from the target domain, with possi-
bly overweighting the target domain data. The same GBT
training method is applied to the combined data to generate
the final model.

There are also a few settings for performing adaptation
as we have described. For clear presentation, we setup the
notations for these settings (Table 2).

notation description
R tuning responses layer by layer
RA tuning aggregated responses at leaves
S tuning splitting values
T trimming branches that no new example reaches.

Table 2: Notations for adaptation settings.

5.4 Experiment Setup
The target training dataset consists of batches of data,

which was judged by experts during different periods. The
cross validation is done based on the batches, i.e., we directly
map the batches to the folds in cross validation. Depending
on the number of batches, different domains (D1 -D5) may
have different number of folds. In each fold of cross vali-
dation, one batch is used for testing and the rest are used
for training. Meanwhile, when we test the effect of training
data size to the performance of adaptation with D1, we also

sample specific amount of queries from the training folds in
each round. When training adaptation models, the target
domains use the same base model that is trained on domain
D0 (300 trees and 12 leaf nodes).

5.5 Experimental Results

5.5.1 Training data size, β setting, and model per-
formance

The size of target training data is an important factor
in ranking function adaptation. We anticipate that we will
not need adaptation when the size of target training data
increases to certain amount. In the first set of experiments,
we use Adaptation Algorithm 2, i.e., tuning both responses
and splitting values to investigate the effect of training data
size and β setting on adaptation.

When performing adaptation, we do not change the struc-
ture of the base model trees, i.e., the number of trees and
the number of leaf nodes per tree are not change. Figure 6
shows the result for different settings on Algorithm 2. With
the increase of training data size, the overall performance
increases as we expected. With larger β the performance
tends to better as well. However, increasing β from 10 to 20
will not change the performance much. In fact, large β may
be subject to over-tuning the local distributions, and thus
overfitting the small data. In practice, we will use a smaller
β setting if the two settings give similar performance, to
reduce the chance of overfitting.

6.9

7

7.1

7.2

7.3

200 400 600 800 1000

of Sample Queries

D
C

G
5

B=1

B=10

B=20

BASE

Figure 6: β setting, training data size and
model SR performance

5.5.2 Comparing Adaptation Algorithms
First, we want to compare the two response tuning algo-

rithms: tuning the layer-by-layer residual-fitting values or
tuning the final leaf response. Figure 7 shows that layer-by-
layer tuning is much better than aggregated-response tun-
ing. This matches our expectation that it is good to consider
more global distribution.

However, we have not found that trimming branches will
significantly affect the performance. Trimming branches as-
sumes that the finer partition developed on the base model
will not fit the new data − a more generalized model (with
less deep branches) will work better. Non-trimming trusts
the structure learned from the source domain more and as-
sumes the branches will eventually work for future data in
the target domain. As the small sample set is not so repre-

sentative, we expect that non-trimming will work better for
future data, assuming the similarity between the source and
target domains is high. Without sufficient data, trimming
or not can only be determined by certain prior beliefs or
heuristics, which will be a part of extended study.

In addition, the algorithm 2, tuning both splitting values
and responses, actually reduces the performance slightly for
D1 data. However, this is not sure for all cases as we will
show later.

6.8

6.9

7

7.1

7.2

7.3

7.4

200 400 600 800 1000

of Sample Queries

D
C

G
5

BASE (300 Trees)

RA

R

Figure 7: Two response adaptation algo-
rithms

7

7.1

7.2

7.3

7.4

200 400 600 800 1000

of Sample Queries

D
C

G
5

TSR SR TR R

Figure 8: Effect of trimming branches
and tuning both splitting values and re-
sponses.

5.5.3 Adaptation with Additional Trees
When testing the effect of additional trees, we first fix the

number of additional trees (30 trees) to see the relationship
between the size of training data and the performance of
different models. Adapted models are compared to “addi-
tive models” that append trees to the base model without
changing the base model trees. Figure 9 shows the com-
parison. Additional trees improve the quality of the base
model to certain extent. Adaptation plus additional trees
give more gains and the resultant models are much better
than the simple additive models. t-test shows that the per-
formance difference between the additive models and the
adapted models is statistically significant (p-value< 0.05)

Next, let’s keep appending more trees with fixed train-
ing data size. Figure 10 shows that with the same training
data size (600 queries), appending more trees will slightly

increase the performance for both adapted models and ad-
ditive models. However, the performance differences keep
almost constant and they are also statistically significant.

6.8

6.9

7

7.1

7.2

7.3

7.4

200 400 600 800 1000

of Sample Queries

D
C

G
5

BASE (300 Trees)

ADDITIVE (330 Trees)

ADAPTATION +ADDITIVE (330 Trees)

ADAPTATION (300 Trees)

Figure 9: Effect of additional trees with
increasing training data.

6.9

7

7.1

7.2

7.3

30 60 90 120 150

of additional trees

D
C

G
5

TSR, B=1 TSR, B=10

TSR, B=20 ADDITIVE

Figure 10: Effect of increasing number of
additional trees with fixed size of training
data.

5.5.4 Comparing with other methods
Finally, we compare the adaptation approach to other

methods: 1) small-data modeling; 2) data combination mod-
eling; 3) the base model. For fair comparison, except the
base model, all models have the same size: 330 trees and 12
leaf nodes per tree. The performance of adapted model is
the best among all algorithms and settings. In particular, we
indeed observed that when the training data is very small,
e.g., ≤ 600 queries, adaptation models clearly show advan-
tages. We find that with the increase of training data, the
performance of small-data model increases quickly and pars
with the adapted models around the size of 1000 queries, in
Figure 11. However, for training a good ranking function,
1000 queries are often insufficient. It is highly possible that
the small-data model with 1000 queries is still overfitting the
incompletely distributed training data, as we illustrated in
Figure 3. Further testing with future data will show the bias.
Since adapted models consider both the training data for the
base model and those from the new domain, in general, we
consider they should have more generalization power than
the small-data models.

200 400 600 800 1k
ADP vs. BASE x x x x
ADP vs. SMALL x x
ADP vs. COMB

Table 3: significant test: adaptation vs. other meth-
ods with varying training data size. ‘x’ means sta-
tistically significant in t-test.

In data combination modeling, we try two settings: sim-
ply pooling the two sets of data with equal weight and over-
weighting the small data. Note that overweighting the small
data too much may result in a model very similar to a small-
data model. As Figure 12 shows, by weighting 20 times
(W=20), the curve of combination model is actually very
close to that of small-data model, with some exception at
extremely small data (200 queries). With simple pooling
(W=1), the combination models perform worse than the
adaptation models. As we have analyzed, appropriately
weighting individual samples according to the local distri-
bution is a challenging topic in data combination, which,
however, is naturally addressed by the tree adaptation algo-
rithms.

6.8

6.9

7

7.1

7.2

7.3

7.4

200 400 600 800 1000

of Sample Queries

D
C

G
5

BASE
SMALL DATA
ADAPTATION
COMB (W=1)
COMB(W=20)

Figure 11: Comparing tree adaptation to
other methods

6

6.5

7

7.5

8

D1 D2 D3 D4 D5

D
C

G
5

BASE
COMB

TSR
SR
TR

R

Figure 12: Comparing tree adaptation to
other methods

Finally, we summarize the settings of adaption algorithm
and compare them to data combination models for a few
more target domains (Figure 12). All models expect the
base model have 330 trees and 12 leaf nodes. However, the

training data may vary according to different domains 1.
The combination models are selected among the different
weight settings W = 1, 10, 20. Among the five domains, we
find that adaptation is better than data combination for D1,
D4, and D5, while data combination is slightly better for the
other two domains.

6. CONCLUSION
Training with insufficient data has been a major challenge

for developing effective ranking functions crossing domains.
Based on the observation that domains must share some
similarity, we propose the tree adaptation approach, which
is based on Gradient Boosting Trees. The tree structure of
the base model from the source domain provides sufficient
local and global information that enables tree adaptation to
conveniently incorporate the small training data from the
new domain. We present a few tree adaptation algorithms
and perform extensive experimental study to show the char-
acteristics of these algorithms. The result shows that the
tree adaptation approach is robust and usually better than
other methods.

7. REFERENCES
[1] Bacchiani, M., and Roark, B. Unsupervised

language model adaptation. In Proceedings of the
International Conference on Acoustics, Speech and
Signal Processing (ICASSP) (2003).

[2] Baeza-Yates, R., and Ribeiro-Neto, B. Modern
Information Retrieval. Addison Wesley, New York
City, NY, 1999.

[3] Blitzer, J., McDonald, R., and Pereira, F.
Domain adaptation with structural correspondence
learning. In Conference on Empirical Methods in
Natural Language Processing (Sydney, Australia,
2006).

[4] Burges, C., Le, Q., and Ragno, R. Learning to
rank with nonsmooth cost functions. In Proceedings Of
Neural Information Processing Systems (NIPS)
(2006).

[5] Burges, C., Shaked, T., Renshaw, E., Lazier, A.,
Deeds, M., Hamilton, N., and Hullender, G.
Learning to rank using gradient descent. In
Proceedings of International Conference on Machine
Learning (ICML) (2005).

[6] Cao, Y., Xu, J., Liu, T.-Y., Huang, Y., and Hon,
H.-W. Adapting ranking svm to document retrieval.
In Proceedings of ACM SIGKDD Conference (2006).

[7] Cao, Z., Qin, T., Liu, T.-Y., Tsai, M.-F., and Li,
H. Learning to rank: from pairwise approach to
listwise approach. In ICML ’07: Proceedings of the
24th international conference on Machine learning
(New York, NY, USA, 2007), ACM, pp. 129–136.

[8] Daumé III, H., and Marcu, D. Domain adaptation
for statistical classifiers. Journal of Machine Learning
Research (2006).

[9] Freund, Y., Iyer, R., Schapire, R. E., and
Singer, Y. An efficient boosting algorithm for
combining preferences. Journal of Machine Learning
Research 4 (2003), 933–969.

1The numbers for D1 are from previous 600-query results

[10] Friedman, J. H. Greedy function approximation: A
gradient boosting machine. Annals of Statistics 29, 5
(2001), 1189–1232.

[11] Hastie, T., Tibshirani, R., and Friedmann, J.
The Elements of Statistical Learning. Springer-Verlag,
2001.

[12] Herbrich, R., Graepel, T., and Obermayer, K.
Large margin rank boundaries for ordinal regression.
Advances in Large Margin Classifiers (2000), 115–132.

[13] Hwa, R. Supervised grammar induction using
training data with limited constituent information. In
Proceedings of the Conference of the Association for
Computational Linguistics (ACL) (1999).

[14] Jarvelin, K., and Kekalainen, J. IR evaluation
methods for retrieving highly relevant documents. In
Proceedings of ACM SIGIR Conference (2000).

[15] Jiang, J., and Zhai, C. Instance weighting for
domain adaptation in NLP. In Conference of the
Association for Computational Linguistics (ACL)
(2007).

[16] Joachims, T. Optimizing search engines using
clickthrough data. In Proceedings of ACM SIGKDD
Conference (2002).

[17] Joachims, T., Granka, L., Pan, B., and Gay, G.
Accurately interpreting clickthough data as implicit
feedback. In Proceedings of ACM SIGIR Conference
(2005).

[18] Leggetter, C., and Woodland, P. Flexible
speaker adaptation using maximum likelihood linear
regression. In Proceedings of Eurospeech (1995).

[19] Lehmann, E. L., and Casella, G. Theory of Point
Estimation. Springer-Verlag, 1998.

[20] Nallapati, R. Discriminative models for information
retrieval. In Proceedings of ACM SIGIR Conference
(2004), pp. 64–71.

[21] Tsai, M.-F., Liu, T.-Y., Qin, T., Chen, H.-H., and
Ma, W.-Y. Frank: a ranking method with fidelity
loss. In Proceedings of ACM SIGIR Conference (New
York, NY, USA, 2007), ACM, pp. 383–390.

[22] Xu, J., and Li, H. AdaRank: a boosting algorithm
for information retrieval. In Proceedings of ACM
SIGIR Conference (2007).

[23] Zheng, Z., Chen, K., Sun, G., and Zha, H. A
regression framework for learning ranking functions
using relative relevance judgments. In SIGIR (2007),
pp. 287–294.

