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ABSTRACT
Adapting to rank address the the problem of insufficient domain-
specific labeled training data in learning to rank. However, the
initial study shows that adaptation is not always effective. In this
paper, we investigate the relationship between the domain similar-
ity and the effectiveness of domain adaptation with the help of two
domain similarity measure: relevance correlation and sample dis-
tribution correlation.

Categories and Subject Descriptors
H.3.3 [Information Search and Retrieval]: Retrieval Models

General Terms
Algorithms
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1. INTRODUCTION
Learning to rank has been a promising method for continuously

and efficiently improving the quality of relevance for information
retrieval systems [6]. However, learning to rank usually requires
sufficient amount of labeled training data of good quality, which
is highly expensive. Search in multiple domains and continuously
maintaining multi-domain ranking functions make this problem ur-
gent to handle. Domain adaptation, or adapting to learn, has been
known to be one of the effective methods to address the emerging
multi-domain learning-to-rank problem. The basic idea is to share
the data or functions between different domains, and thus for those
domains that have little data we can still obtain good-quality rank-
ing functions.

Although domain adaptation has been studied recently in other
areas like speech recognition and language modeling, their prob-
lem setting and modeling methods have been very different from
learning to rank in search. Especially, many questions for domain
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adaptation were not addressed and satisfactorily answered. 1) It
has been observed that if the overall performance downgrade is
small, it is often appealing to apply one unified ranking function
to a set of domains. However, for what kind of domains can we
apply this one-function approach? 2) The simple weighted data
combination approach, i.e., combining the appropriately weighted
training datasets from different domains to train a function for the
target domain, has been shown effective in some areas [4], while
not always effective in learning to rank [1]. It is thus important to
understand when and why adaptation works.

In this paper, we propose to analyze the domain similarity to
understand the effectiveness of the domain adaptation methods.
Two novel methods - relevance correlation analysis and sample
distribution similarity analysis, are developed to analyze the do-
main similarity. We first look at the domain similarity from the
marco-level, i.e., similar domains should have highly correlated
relevance performance on a set of relevance measures. Then, we
study the sample-level similarity by developing a method based on
regression-tree modeling [2] to visually analyze the similarity of
sample distributions. Experiments are performed to study the rela-
tionship between domain similarity and the effectiveness of model
adaptation with two popular adapting-to-rank methods: data com-
bination and Trada tree adaptation [1]. The results show that if
the domain similarity is very high or very low, the two adaptation
methods do not bring additional benefits, and adaptation methods
works well when the domain similarity is medium.

2. DOMAIN SIMILARITY ANALYSIS FOR
RANKING ADAPTATION

We argue that domain similarity is an important factor that af-
fects the result of domain adaptation. This can be formally derived
from the Bayesian analysis of the multi-domain training. Let a la-
beled training example be {(xi, yi)}, where xi is the feature vector
derived from the match of the i-th (query, document) pair, and yi is
the target value judged by the relevance expert. Let s and t denote
the source and target domains, respectively. We ignore the process
of getting the following result

p(yt|xt,xs, ys) =
p(xt|xs, yt)p(yt|ys)

p(xt|xs)
(1)

Therefore, the key is to understand the similarity (or the depen-
dency, if the data from both domains are not normalized) between
the domains. To conveniently understand this similarity we design
two methods: relevance correlation and multidimensional sample
similarity analysis.

2.1 Relevance Correlation
The goal of similarity analysis is to find those domains that have



high correlation in terms of relevance so that we can share training
resources between similar domains in adaptation. Ideally, if we im-
prove the relevance of one domain in a group of similar domains,
other domains can benefit from this improvement as well. There-
fore, a natural way to define the domain similarity is to use rele-
vance correlation as the similarity measure. We propose to use the
following “landmark” based relevance correlation analysis. (1) We
first train a set of ranking functions based respectively on the data
from a set of domains (Mj , j = 1, . . . , k) as the “relevance land-
marks”. (2) For each domain Di, i = 1, . . . , l, under investigation
we use the available domain-specific data to test the landmark rank-
ing functions with some relevance measure. With the relevance test
results, we obtain a “relevance vector” of k elements for each Di,
Ri = {ri1, ri2, . . . , rik}. (3) By evaluating the correlation (i.e.,
Pearson correlation) between any pair of relevance vectors, we ob-
tain a similarity matrix.

There are two important factors in calculating relevance corre-
lation: the relevance measure and the selection of relevance land-
marks. We consider a few relevance metrics that have been pop-
ularly used in literature [3, 5], including Normalized Discounted
Cumulative Gain (NDCG) (or the non-normalized version: DCG)
and Mean Average Precision (MAP). NDCG is a metric designed
for evaluating the quality of ranked list if the grades for items in
the list are known. Suppose there are k documents used for testing
the query q. Each query-document pair (q, di) in the test set is la-
beled with a grade li. A particular ranking will sort the list of the k
documents in certain order. Let i = 1, . . . , k be this order.

NDCGk = Zk

k∑
i=1

2li − 1

log(i + 1)

where Zk is normalization factor so that the perfect ranking will
give NDCGk = 1. We often use the average NDCG of the
queries in the test set as the final quality measure. Note that differ-
ent queries in the test set might have different normalization factor
Zk, depending on the grade distribution for the particular query.
Therefore, DCG that removes Zk normalization from NDCG has a
different distribution from NDCG.

MAP is defined on the precision at position k, Pk, often used for
the two-level grading scheme {irrelevant, relevant}. Let rel(i) be
a boolean function indicate whether the document i is relevant or
not. Pk is defined by Pk =

∑k
i=1 rel(i)

k
, and average precision at

position k is defined by

APk =

∑k
i=1 Pi · rel(i)∑k

i=1 rel(i)

MAP is the average AP over all queries in the test set. We found
that NDCG has very strong correlation with MAP (> 0.9) in exper-
iments. Therefore, we can either use NDCG or MAP in relevance
correlation analysis.

2.2 Similarity Analysis on Sample Distributions
Relevance correlation checks the similarity at the macro-level,

which gives a rough idea on how the domains are related. To further
understand the difference between any pair of domains, we need to
analyze the samples. In this section, we propose a pairwise domain
similarity analysis method based on regression tree (and gradient
boosting trees (GBT)) and sample datasets.

Analyzing multidimensional distribution, particularly high di-
mensional data, is well known as a difficult problem. However,
datasets for the learning problem has the additional information:
the labels. We use the labels to guide the joint feature-label dis-
tribution analysis in the proposed method. To start with, we will
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Figure 1: Left: a perfectly fitted tree. Right: the sample space
partitioned by a regression tree.

briefly introduce the regression tree and GBT modeling method
[2]. In Figure 1, we use small blocks to illustrate the local areas
in the high-dimensional space. Different colors represent different
target values for the blocks. A regression tree model tries to model
the blocks with multi-dimensional bounding boxes defined by the
tree and the approximate predicted value for the blocks. In regres-
sion tree, each leaf node tries to approximately model one of these
blocks, and each internal node groups a few nearby blocks with
close target values. GBT modeling refines the approximation by
multiple boosting trees [2].

The basic idea of regression-tree based sample distribution anal-
ysis is described as follows. Suppose we have two domains: the
source domain with large training data (as the reference domain),
and the target domain with small training data. We train a single re-
gression tree with a number of leaf nodes, say p = 100 (this num-
ber depends on the level of granularity we desire) with the source
domain data. Each leaf node is defined by a set of disjoint condi-
tions, e.g., “F1 < v11 and F2 < v21 and F1 >= v12”. We use
this tree as the reference model, and map the data from the target
domain onto the subspaces formed by the leaf nodes. This map-
ping is easily done by passing each feature vector of target domain
through the tree. Suppose there are ni records falling onto the leaf
node i. Let ti,j be the grade for the j-th record and Ri be the re-
sponse value of the node. After all records are mapped, the mean
square error of prediction for the node i for the target domain can
be calculated: 1/ni

∑ni
j=1(ti,j − Ri)

2. We use a couple of statis-
tics to describe the samples from one particular domain in each leaf
node.

(1) The normalized number of samples falling onto each node,
ni, i = 1 . . . p. Since the total number of samples may not be
the same for a pair of domains, we need to normalize this number.
Assume the sample is uniformly drawn from the domain, i.e., with
the increase of total population, the samples in each subspace will
be increased proportionally. Let the rate r between two sample
sets be r = N1/N2, where N1 and N2 are the total number of
samples in the domain 1 and 2, respectively. The number of domain
2 samples at a node n2i is normalized to r × n2i.

(2) The mean square error (MSE) on each node, ei, i = 1 . . . p.
Since the goal of this similarity analysis is to find whether two
datasets are consistent in terms of regression modeling, and a leaf
node models a part of the regression function, it is very meaningful
to compare the leaf-level modeling error for both the source and
target domains.

Based on the above definitions, we analyze several typical pat-
terns in the sample comparison and MSE comparison graphs. First,
the left subfigure in Figure 2 illustrates a well matched sample dis-
tributions. Whereas the right subfigure shows another situation, in
which some nodes do not have samples from the target domain,
which shows the significantly different parts between the two do-
mains. The pattern at the right subfigure implies a good opportunity



that domain adaptation can succeed − the missing part can be pos-
sibly patched by the source domain data.
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Figure 2: Comparing sample distribution patterns.

If the sample distributions are very similar except for some miss-
ing parts, we can turn to check the MSE distribution. Often, we see
the situation illustrated by the left subfigure in Figure 3, where the
MSEs of the target domain seem much higher than the average level
of the reference model. There are two possibilities: either the target
domain data have lots of noisy labels or its label distribution is very
different from that of the source domain. The average MSE on the
model trained on the small target domain data (the right subfigure)
can help us understand which of the two causes is more likely. If
the average MSEs are very close, it is more likely the target labels
are noisy. In this case, a large dataset from the source domain may
help reduce the effect of noise data.
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Figure 3: Comparing MSE distribution patterns.

3. EXPERIMENTS
Datasets. We will use the publicly available LETOR datasets [5]
for experiments. LETOR datasets include the 2003/2004 TREC
web track data.There are three search tasks in TREC Web track:
topic distillation (TD), homepage finding (HP) and named page
finding (NP). TREC evaluators provide two-grade judgments for
these tasks, i.e., {relevant, irrelevant}. The recent LETOR datasets
(version 3.0) include six TREC web track datasets, i.e., 2003/2004
TD/HP/NP data. Note that the same type of datasets may have dif-
ferent distributions from year to year due to the evolution of the
Web. Because they share the same set of features, we are able to
use them to simulate six different domains.
Domain Similarity Analysis Since no other public domain data
is available as relevance landmarks, we use these six domains as
“mutual landamrks” − when we analyze two domains, the remain-
ing four domains serve as the relevance landmarks. Although the
number of landmarks is small, we can still find some interesting
information. For each landmark domain, we train a GBT-based
ranking model with approximately optimal parameter setting in
(100, 150) trees, (8,10) terminal nodes per tree, 0.05 shrinkage rate,
and (0.4,0.5) sampling rate - The numbers in () are the possible
choices. Then, these four models are used to test the two target
domain datasets, which results in two 4-element relevance vectors.
We use NDCG5 to generate the relevance vectors: three domains
HP04, NP04 and TD04 are highly correlated to each other to form
a group (Figure 4), while the remaining domains have low corre-
lation with other domains. We also compare the three evaluation

metrics: NDCG, DCG, and MAP, on all testing results. Figure 5
shows that NDCG and MAP are highly correlated (ρ = 0.9878),
while DCG seems less correlated with NDCG and MAP.
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Figure 6: HP04 data distribution is well matched with TD04
data distribution (left). The MSE of HP04 data is generally
smaller than TD04’s (right).
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Figure 7: TD03 data distribution is very different from TD04
data distribution, and no sample at some nodes (left). TD03
data generate large MSEs in many nodes (right).

Next, we use tree-based sample distribution analysis to validate
the relevance correlation result, focusing on the typical pairs of do-
mains. We use TD04 data to train a reference model with GBT
method (10 trees and each tree has 10 leaf nodes). Then, we map
both TD04 and HP04 data to the TD04 model and see the difference
between the statistics. The two domains have similar sizes of data,
∼75,000 examples. The numbers in the figures are transformed
with log function to make the presentation clearer. The left subfig-
ure in Figure 6 shows that the sample distributions are very close for
most nodes. The right subfigure shows that HP04 has even lower
MSE on most nodes than TD04 data, which means HP04’s data
distribution has lower complexity than TD04’s. We also look at
TD03 and TD04, which have a low relevance correlation. Figure 7
shows that the two sets of data have very different sample distribu-
tions, and the label difference between the overlapped distribution
can be large (right subgraph). Therefore, the result of sample-level
analysis is consistent with relevance correlation analysis.



Effectiveness of Adaptation In this set of experiments, we will
see how domain similarity is related to the effectiveness of adapta-
tion. Three training algorithms are compared: 1) directly applying
the function learned in the source domain to the target domain; 2)
combining data by appropriately weighting the target domain data;
3) adapting the source domain function to the target domain with
the Trada tree adaptation algorithm [1] that adjusts the gradient
boosting tree structure with the target domain data. The reported
numbers are based on the average of the five-fold testing results.
The preliminary parameter probing experiments are performed to
determine the acceptable range of parameter settings, and the val-
idation sets are used to finally determine the best set of parameter.
We also perform significance test (t− test) on some comparisons (
p−value < 0.05 means statistically significant). With each corre-
lation level, we also investigate the effect of the target training data
size to the result. We vary the size of the target domain training
data (5, 10, 20, 30, 40 queries, respectively) to study the effect of
the size of target domain data.
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Figure 8: For TD04 and HP04, using either one of the datasets
can generate reasonably good models for the other domain,
while data combination is slightly better.
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Figure 9: For NP04 and HP04, with the increase of data size,
data combination becomes worse than Trada.

TD04 and HP04 are the high-correlation example. Figure 8 shows
the result on two cases: TD04 as the target domain (left) and HP04
as the target domain (right). In the left subfigure, “HP04 func-
tion” means the function trained with only the HP04 data. “Trada
on HP04” means using the HP04 function as the base model to
perform Trada adaptation. “TD04+HP04 Data” means data com-
bination method. Similar annotations are applied to other figures
later. We find that simply applying the function learned in one
domain to another will give sufficiently good performance if the
domains have a high similarity. All small improvement brought by
adaptation methods are not statistically significant. Data combina-
tion with target domain overweighting is slightly better than Trada.
Figure 9 shows that both data combination and Trada adaptation
help for less strongly correlated domains: NP04 and HP04. With
extremely small data, data combination works better, while Trada

outperforms with more data. We also look at two low-correlated
domains, TD03 and TD04 (Figure 10). Both Trada and data com-
bination improve the relevance compared to the function from the
source domain. However, they do not outperform functions trained
with sufficient highly correlated domain data (the function ‘HP04’
on the left subfig).
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Figure 10: TD03 and TD04 are with low correlation. Domain
adaptation helps in this case, while not better than than a func-
tion from a highly correlated domain.

4. CONCLUSION
With the increasing requirements from different domains, do-

main adaptation has become an important method to address the
problem of insufficient training data. In this paper, we study the
similarity between search domains and its relationship with the ef-
fectiveness of different adaptation algorithms. Two similarity mea-
sures: relevance correlation and sample similarity are developed to
study the domains similarity. Experimental results show that adap-
tation algorithms help more on medium domain similarity while it
is less helpful on extremely high or low domain similarity.
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