
1

Ranking Function Adaptation with Boosting Trees

KEKE CHEN, Wright State University
JING BAI, Microsoft
Zhaohui Zheng, Yahoo! Labs

Machine learned ranking functions have shown successes in web search engines. With the increasing de-
mands on developing effective ranking functions for different search domains, we have seen a big bottleneck,
i.e., the problem of insufficient labeled training data, which has significantly slowed the development and
deployment of machine learned ranking functions for different domains. There are two possible approaches
to address this problem: (1) combining labeled training data from similar domains with the small target-
domain labeled data for training or (2) using pairwise preference data extracted from user clickthrough
log for the target domain for training. In this paper, we propose a new approach called tree based rank-
ing function adaptation (“Trada”) to effectively utilize these data sources for training cross-domain ranking
functions. Tree adaptation assumes that ranking functions are trained with the Stochastic Gradient Boost-
ing Trees method − a gradient boosting method on regression trees. It takes such a ranking function from
one domain and tunes its tree based structure with a small amount of training data from the target domain.
The unique features include (1) it can automatically identify the part of model that needs adjustment for the
new domain, (2) it can appropriately weigh training examples considering both local and global distributions.
Based on a novel pairwise loss function that we developed for pairwise learning, the basic tree adaptation
algorithm is also extended (“Pairwise Trada”) to utilize the pairwise preference data from the target domain
to further improve the effectiveness of adaptation. Experiments are performed on real datasets to show that
tree adaptation can provide better-quality ranking functions for a new domain than other methods.

Categories and Subject Descriptors: H.3.3 [Information Search and Retrieval]: Retrieval Models

General Terms: Design, Algorithms, Performance

Additional Key Words and Phrases: web search ranking, boosting regression trees, domain adaptation,
learning to rank, user feedback

ACM Reference Format:
Chen, K., Bai, J., and Zheng, Z. 2011. Ranking Function Adaptation with Boosting Trees. ACM Trans. Inf.
Syst. 10, 1, Article 1 (October 2011), 30 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
Learning to rank has been a promising method for continuously and efficiently improv-
ing relevance for web search. It applies novel machine learning algorithms [Zheng
et al. 2007; Cao et al. 2007; Freund et al. 2003; Tsai et al. 2007; Xu and Li 2007;
Joachims 2002; Burges et al. 2005] to a set of labeled relevance examples to learn
a ranking function. Compared to the traditional ranking functions [Baeza-Yates and
Ribeiro-Neto 1999] developed in the information retrieval community, learning to rank
has several unique benefits: (1) it is convenient to incorporate new features to the rank-

Author’s addresses: K. Chen, Department of Computer Science and Engineering, Wright State Univer-
sity, keke.chen@wright.edu; J. Bai, Microsoft, jbai@microsoft.com; Z. Zheng, Yahoo! Labs, zhaohui@yahoo-
inc.com.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 2011 ACM 1046-8188/2011/10-ART1 $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:2 K. Chen et al.

ing function without the need of manually tuning the function, which mainly relies
on experts’ experience and heuristics; (2) although depending on the specific learning
algorithms, with sufficient training data it can usually give better performance over
manually tuned functions. Currently, machine learned ranking functions have been
successfully applied to several major search engines.

Learning to rank requires a sufficient amount of good-quality labeled training data.
To obtain good-quality training data, we usually need trained editors (relevance ex-
perts) to judge the relevance of sampled web search results, i.e., (query, document)
pairs, and cross-verify the judgments. Since this process has to be done manually, it
is highly time-consuming and expensive. Although there are convenient methods to
extract relevance judgments from implicit user feedbacks [Joachims 2002; Joachims
et al. 2005], the quality is difficult to guarantee. Therefore, the expert-labeled data are
still regarded as a more reliable source for training high-quality ranking functions1.
Due to the increasing demands from different web search domains, e.g., different re-
gions or countries or topics, it has been necessary to develop effective domain-specific
ranking functions and continuously improve them. However, when applying learning
to rank to a new domain, we usually do not have a sufficient amount of labeled training
data.

One approach to addressing this problem is utilizing the training data from one
major web search domain to help train a function for a new search domain. Apparently,
the training data from one existing domain cannot be easily applied to another domain,
due to different joint feature−relevance distributions. Specifically, for the web search
ranking problem, there are usually tens or hundreds of features designed for learning
a ranking function. Even small distribution differences in each feature will aggregate
to significant differences in the multidimensional feature space. Although each search
domain has its own characteristics, we observe that many of them share a certain
level of commonality. In particular, we have seen that a ranking function developed in
one domain, though not the best function for another domain, works reasonably well
across different domains. We name the domain with sufficient training data as the
source domain, and the domain with only a small amount of training data as the target
domain. How to adapt a good ranking function from the source domain to a target
domain and get a better ranking function is the major problem we are going to tackle.

Another approach is utilizing the pairwise preference data mined from the user
clickthrough log [Joachims 2002; Joachims et al. 2005; Agichtein et al. 2006; Chapelle
and Zhang 2009; Ji et al. 2009] for the target domain. Assume we temporarily apply an
acceptable ranking function that was developed for another domain to the target do-
main to collect pairwise preference data. An acceptable ranking function here means
the top results, e.g., top 10, for most queries contain the most relevant results but
the ranking quality is not ideal. The user clickthrough data are collected based on
this initial ranking function. As recent research shows, pairwise preference data from
clickthrough log might have a strong bias so that using them to train ranking functions
might not be sufficient. Adaptation can utilize the benefit of the pairwise data while
overcoming the bias brought by them. However, due to the different form of data, how
to incorporate this pairwise dataset to the function adaptation process is the second
challenging problem.

In this paper, we propose a tree-based ranking function adaptation approach (Trada)
to address the problem of insufficient training data for target search domains. Al-
though it can be applied to any regression-tree based ranking model, we will use rank-

1The data for modeling Yahoo! web search ranking functions: http://learningtorankchallenge.yahoo.com/;
The data for modeling Microsoft Bing ranking functions: http://research.microsoft.com/en-us/projects/mslr/;
and the LETOR data: http://research.microsoft.com/en-us/um/beijing/projects/letor/

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:3

ing functions trained with the gradient boosting trees (GBT) method [Friedman 2001]
in this paper. Tree-based models have some known advantages over other kinds of
models, such as the model interpretability. In our approach, we will utilize the unique
structural benefit of regression tree. Based on the characteristics of regression tree
and the mechanism of training a regression tree, we design a few algorithms to tune
the base-model trees with the small target training dataset. The tree-based adaptation
algorithm has a couple of unique features: (1) it can automatically identify the part of
model that needs to adjust for the new domain, (2) it can appropriately weigh training
examples considering both local and global distributions. By doing tree-adaptation, we
can effectively tune a base model towards the domain-specific distributions indicated
by the small dataset, and thus incorporate the knowledge learned by the base model
into the target domain. Experiments have shown that this approach is more effective
than other methods.

The basic tree adaptation approach is also extended to utilize pairwise training data
- the “Pairwise Trada” algorithm. It is based on the idea of another our contribution,
the GBRank method for handling pairwise data based on the regression framework
[Zheng et al. 2007; Zheng et al. 2007]. Since the pairwise data might be biased due
to the extraction methods, by combining the merits of GBRank and Trada, Pairwise
Trada avoids the dataset bias and takes advantages of both sets of datasets. Experi-
mental study shows that both Trada and Pairwise Trada can result in better models
than other methods.

In Section 2, we will briefly review the related work, mainly, the representative
learning to rank algorithms and the model adaptation work done in other areas. In
Section 3, we describe some basic concepts and notations that will be used in tree
adaptation. We will also analyze how a regression tree is generated, which helps un-
derstand the basic idea of tree adaptation. In Section 4, we first give intuitions on how
tree adaptation works and then present a few tree adaptation algorithms. In Section 5,
we present the Pairwise Trada algorithm based on the basic Trada algorithm and the
GBRank loss function. Experimental results will be reported in Section 6 to validate
the effectiveness of the proposed algorithms with different algorithmic settings and
several real datasets from a major web search engine.

2. RELATED WORK
In recent years, several novel learning algorithms have been developed for the rank-
ing problem. They can be roughly grouped into three categories. The first category
works on training data labeled with absolute grades, typically two-level grades as “rel-
evant” and “irrelevant”, or multilevel grades. Correspondingly, the learning problem is
formalized as a classification problem [Nallapati 2004] or ordinal regression problem
[Herbrich et al. 2000; Cao et al. 2006; Friedman 2001]. Among this type of approaches,
regression tree based approaches [Li et al. 2007; Cossock and Zhang 2006; Zheng et al.
2007; Wu et al. 2010; Burges 2010], especially, those based on gradient boosting trees
[Friedman 2001], have shown benefits in selecting useful features from many features
and generating high quality ranking functions. McRank [Li et al. 2007] also proposes
a method for converting multi-class classification result to ranking result based on the
boosting tree method. Recent developments in Yahoo! Learning to Rank Challenge also
show that tree-based boosting and bagging are among the most effective approaches
[Burges 2010; Pavlov and Brunk 2010; Mohan et al. 2010; Sorokina 2010; Gulin and
Kuralenok 2010; Geurts 2010]. That means our tree adaptation approach can be di-
rectly applied to many of these effective tree-based methods for domain adaptation.

Since ranking cares only about the relative ordering between any pair of docu-
ments regarding to a specific query, rather than accurate prediction of grades, some
algorithms try to model this ordering relationship. The second category of algorithms

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:4 K. Chen et al.

proposes to take pairwise data as training data and develops pairwise ranking func-
tions. The representative algorithms include Ranking SVM [Joachims 2002], RankNet
[Burges et al. 2005], RankBoost [Freund et al. 2003], and GBRank [Zheng et al. 2007],
etc. The third category is the listwise approach, which tackles the ranking problem di-
rectly by adopting listwise loss functions, or directly optimizing information retrieval
evaluation measures such as DCG, NDCG or MAP [Jarvelin and Kekalainen 2000].
The typical algorithms are LambdaRank[Burges et al. 2006], ListNet[Cao et al. 2007],
and AdaRank[Xu and Li 2007].

Model adaptation has been of great interest in several areas, in particular, natu-
ral language processing, speech recognition and recently information retrieval, for ad-
dressing the problem of insufficient labeled training data. The classical approach is
to treat the source domain data as “prior knowledge” and then to estimate maximum
a posterior (MAP) values for the model parameters under this prior distribution for
the target domain. This approach has been applied successfully to language model-
ing [Bacchiani and Roark 2003], parsing [Hwa 1999] and tagging [Blitzer et al. 2006].
In speech recognition, the maximum likelihood linear regression (MLLR) approach is
also proposed for speaker adaptation [Leggetter and Woodland 1995]. The problem of
distributional difference between the source domain and the target domain is formally
addressed by the paper [Daumé III and Marcu 2006], which is further decomposed
as 1) the difference between the prior distributions of feature vectors and 2) the differ-
ence between the label distributions [Jiang and Zhai 2007]. Jiang et al. [Jiang and Zhai
2007] also used a simple data combination technique by appropriately overweighting
the target domain data in training. As we will show in this paper, overweighting the
entire target-domain data may not give satisfactory results for ranking adaptation.
The challenge is to appropriately assign different weights to different examples in
terms of the distributional difference and sample importance. In contrast, our tree
adaptation technique can automatically adapt to the fine-grained distribution differ-
ence between the source domain and the target domain [Chen et al. 2008]. There have
been theoretical studies on the bounds of adaptation performance in terms of the dis-
tributional difference between the domains [Ben-david et al. 2007; Blitzer et al. 2008;
Mansour et al. 2009]. Long et al. [Long et al. 2009] propose a general risk minimization
framework to iteratively tune the individual sample weights for training data from the
source domain. We will compare our approach to this risk minimization based weight
tuning approach.

In addition to our work, there are some recent developments for adaptation in in-
formation retrieval. Gao and Wu et al. [Wu et al. 2008; Gao et al. 2009] comparatively
studied the model interpolation method, i.e., linear combination of the source domain
model and the target domain model, and a gradient boosting method similar to our ad-
ditive model, i.e., appending trees to the source domain model to minimize the target
domain prediction error only. Geng et al. [Geng et al. 2009] formulate the adaptation
problem in web search under the framework of quadratic programming and thus a
method is similar to SVM can be applied. Since the recent developments on learning
to rank have shown that tree-based boosting and bagging are among the most popular
and effective approaches [Burges 2010; Pavlov and Brunk 2010; Mohan et al. 2010;
Sorokina 2010; Gulin and Kuralenok 2010; Geurts 2010], we believe it should be in
high priority to develop adaptation methods for tree-based ranking functions.

Transfer learning [Pan and Yang 2010] considers a category of learning problems
that involve two or more different but correlated tasks or domains in terms of data
distribution, which certainly includes the domain adaptation problem. According to the
type of data available for training and the learning methodology, transfer learning can
be categorized into several categories: both source and target domains having labeled
data (i.e., the same setting we used in this paper) [Dai et al. 2007; Long et al. 2009],

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:5

only the source domain having labeled data [Liao et al. 2005; Wu and Dietterich 2004;
Blitzer et al. 2006], both domains having unlabeled data only (self-taught learning)
[Raina et al. 2007; Dai et al. 2008; Wang et al. 2008]. Transfer learning algorithms are
also developed to find good feature representations to minimize domain divergence and
model error [Argyriou et al. 2007; Ando and Zhang 2005], and to transfer knowledge
of model parameters [Evgeniou and Pontil 2004]. In experiments, we will compare
our algorithm to a transfer regression algorithm [Long et al. 2009] and a SVM based
transfer learning algorithm [Geng et al. 2009] on the ranking problem.

3. PRELIMINARY
Tree adaptation follows the general GBT training framework, while the major algo-
rithms are more related to the mechanism of generating regression trees. In order to
design effective adaptation algorithms on trees, we need to understand the structure
of a regression tree and how the boosted trees are generated. In this section, we will
first give the definition of training data for the ranking problem, and then briefly de-
scribe how a regression tree is generated, which is the main component of GBT. This
section will also setup the notations used later in this paper.

3.1. Training Data for Learning to Rank
Multi-grade Labeled Data: In learning to rank approaches, the expert judged results
(query, document, grade) are transformed to training examples {(xi, yi)}. Here, xi rep-
resents a feature vector describing the features associated with the (query, document)
pair. yi is the target value from a set of grades, e.g., a five-grade scheme, which repre-
sents different levels of relevance between the query and the document. The grade is
determined by the relevance expert for each (query, docuemnt) pair. The task of learn-
ing to rank is thus transformed to learning a function from the training examples {(xi,
yi)}, so that the learned function can predict the target value for any (query, document)
pair if its feature vector is provided. Since such a ranking function outputs a score for
each (query, document) pair, we can simply sort the scores for a set of (query, document)
pairs and display the sorted list of documents for the given query.

Pairwise Data: A pairwise training example is defined as (query, document1, doc-
ument2). Let’s use (qi, d

1
i , d

2
i) to represent it and also define the preference relationship

as (qi, d
1
i) ≻ (qi, d

2
i), i.e., for query qi, d1i is more relevant than than d2i . Although we can

use pairwise data for training, it is inappropriate to generate pairwise ranking results.
Since it would need to make O(n2) prediction for n documents and then sort the O(n2)
pairwise results, the cost would be much higher than the score-based sorting. There-
fore, normally we still prefer to use the pairwise data to train a scoring based ranking
function.

Feature Extraction: We briefly describe some of the typical features available for
ranking. For each query-document pair, there are three categories of features:

— Features modeling the user query, q. They do not change over different documents
in the document set D. This type of features may include the number of terms in
the query, the frequency of a term in the corpus, and query classification, e.g., name
query, adult query, or navigational query. In total, over ten query features are used
in training.

— Features modeling the web document, d. They are constant crossing all the queries
q in the query set Q. This type of features may include, the number of inbound
links to the document, the number of distinct anchor-texts for the document, the
language/region identity of the document, and the classification of the document, etc.
About tens of such features are used in training.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:6 K. Chen et al.

— Features modeling the query-document relationship. They describe the matching be-
tween the query q and the document d. Such features may include, the frequency of
each query term in the title of the document d, the frequency of each term in the
anchor-texts of the document d, etc. Since the matching can happen in different sec-
tions of a document, hundreds of such features can be defined and used in training.

3.2. Learning a Regression Tree
With multi-grade labeled training examples, one straightforward learning method is
order regression, which can be learned with many algorithms. We will use gradient
boosting trees in this paper for its superb modeling quality and flexible structure. The
basic component of GBT is regression tree [Hastie et al. 2001]. For better understand-
ing of the tree adaptation algorithms, we will give sufficient details of learning a re-
gression tree in this section. Figure 1 shows a sample regression tree, which is a binary
tree with one predicate at each internal node. The predicate consists of a variable (fea-
ture) and a splitting value, typically in form of F < τ?. In such a tree, an internal tree
node partitions the training data that reach the node into two parts, with the corre-
sponding predicate defined in the node. The tree is grown with a top-down manner, i.e.,
starting from the root and terminating with certain satisfied condition, e.g., the fixed
number of leaf nodes. In the following, we describe how the training algorithm decides
which feature and splitting value are used for growing child nodes.

F1<v1?

Fi : feature i
vi : some value for Fi

Ri : response value for terminal node i F2<v2? R4

F3<v3?

R1
R2

yes no

R3

Binary decision tree

Fig. 1. A sample regression tree

First, splitting a leaf node to grow a tree should give some kind of “gain”, namely,
optimizing the goal of regression, i.e., minimizing the square error between the pre-
dicted value and the target value. We assume that there are ni training records reach-
ing the node i, each of which, xj , has a target value rij to fit at node i. rij = yj if the
current node is the root, otherwise, rij is the residual by fitting the parent node. It
represents how well this example is fit so far from the existing part of tree. The best-
effort predictor for all records falling onto the current node is the mean of all rij , i.e.,
r̂i =

1
ni

∑ni

j=1 rij [Hastie et al. 2001]. With r̂i, the square error E for the current node is

E =

ni∑
j=1

(rij − r̂i)
2

Finding the Best Split for a Node. Let Fp denote the feature and vp,q is a feasible
value for Fp. (Fp, vp,q) partitions the data into two parts: those records with Fp < vp,q
go to the left subtree and the rest records go to the right subtree. After performing this
partition, similarly, we can get the square error EL for the left subtree, and ER for the

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:7

right subtree. We define the gain by splitting this node as gain = E − EL − ER. By
scanning through all possible features and feasible splitting values for each feature,
we can find the best splitting condition, which satisfies

argmin(Fp,vp,q){EL + ER}, for all possible p, q.

Finding the Best Node for Splitting. With the above criterion, a greedy search
procedure can be applied to determine the leaf node that will bring the highest gain
among all existing leaf nodes for splitting.

node i for splitting = argmaxi{gaini}, for all leaf nodes.

This is a hill-climbing procedure, which does not guarantee to get a globally optimal
tree. Certainly, there are other strategies, but this one is very efficient especially when
we have many features in the dataset, as the cost is linear in the number of features.
We will use this tree growing strategy by default. Figure 2 shows a perfectly fitted tree
to the underlying target value distribution. To extend it to general multidimensional
cases, we can understand that each node represents a “multidimensional bounding
box” defined by the disjointed partitioning conditions along the path from the root to
that node. For example, the leaf node labeled with R2 in Figure 2 is defined by the
bounding box F1 < a ∧ F2 < b0.

F1

F2

a

c0

b0

F1<a?

F2<b0? F2<c0?

yes no

R1 R2 R3 R4

Mean of the target
values of the points

in the area

* Colors represent different target values

Fig. 2. A perfectly fitted tree

Calculating Leaf Node Response. In the above algorithm, during the growing
phase, the predicted value r̂i for the node i is recorded, and the residuals rij − r̂i are
used as the new target values for its child nodes. Let {r̂(ω)

i , node i in the path from the
root to any node ω} denote the predicted values along the path from the root to the leaf
node t. Since each r̂

(ω)
i fits the residual from its parent, the predicted response Rω for

the node ω should be defined as

Rω =
∑
i

r
(ω)
i (1)

An equivalent way to computing the response is to simply find the mean of the target
values for all points falling onto the leaf node. However, these two methods will result
in quite different adaptation strategies, which will be discussed in “response value
adaptation”.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:8 K. Chen et al.

3.3. Learning Gradient Boosting Trees
Gradient boosting trees can be used to model both classification and regression prob-
lems. The boosted trees are a series of regression trees, denoted by hi(x). The final
function is based on these regression trees.

H(x) =
k∑

i=1

γihi(x)

where γi is the learning rate, which is often small, e.g., 0.05. A formal description of the
training algorithm can be found in the literature [Friedman 2001]. The GBT learning
method trains the k-th tree, based on the previous trees hj , 1 ≤ j < k, with a set of
random samples from the training dataset (Stochastic Gradient Boosting). The steps
can be briefly described as follows.

(1) randomly sample the training data to get a subset of training examples Sk;
(2) set the target ri of the example in Sk to the original target yi for k=1, or to the

residual of the previous trees hj , for k > 1, 1 ≤ j < k, ri = yi −
∑k−1

j=1 γjhj(xi).
(3) train the regression tree hk with the examples {(xi, ri)}, xi ∈ Sk.

4. RANKING FUNCTION ADAPTATION BASED ON GRADIENT BOOSTING TREES
In this section, we first describe the basic challenge that the tree adaptation approach
will address and justify why this approach will work. Then, we will present several
tree adaptation algorithms in details.

4.1. Domain Adaptation for Tree-based Models
In this section, we describe the rationale behind the tree model adaptation and the
special challenges for domain adaptation on the ranking problem. The idea of tree-
based adaptation is a mix of discriminative and generative modeling.

Given a set of training examples, {xi, yi}, the goal of training an effective model
is to find a function approximating the conditional label distribution p(y|x). p(y|x)
can be directly learned (discriminative modeling) or learned based on the Bayes rule
p(y|x) = p(x, y)/p(x) (generative modeling), where p(x) is the underlying feature vec-
tor distribution and p(x, y) is the joint distribution of labels and feature vectors. Let s
denote the source domain and t the target domain. The similarity between the source
feature vector distribution ps(x) and the target distribution pt(x) is an important intu-
ition behind the tree-based adaptation. In the following, we use feature vector distribu-
tions, sampling bias, and noisy labels to explain the situations that domain adaptation
may work for the ranking problem.

— In the ranking problem, a set of common features are defined for different domains.
Normally, the relevant training examples are far less than the irrelevant examples
in the distribution p(x). Therefore, in constructing the training data, some biases
have already existed in collecting a sufficient amount of relevant examples. When
the size of target data is small, the sample distribution p̃t(x) may significantly de-
viate from the real distribution pt(x). In this case, we hope that the source domain
data can patch the missing part of the distribution, and thus adaptation may work.
(Figure 3 illustrates this situation - the specific description on the illustration comes
later).

— At the local areas that have similar sample distribution, i.e., p̃s(x) ≈ p̃t(x), the label
distribution may still be different (Figure 4). This is especially true when there are a
significant amount of noisy labels in the target domain. In this situation, the source
domain data may help correct the bias from the noisy labels.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:9

p(t)(x,y)

p(t)(x,y)p(s)(x,y)

Source domain target domain

~ ~

Fig. 3. Source domain data may be able to patch the missing
part of target domain.

Source domain target domain

Fig. 4. In overlapped part of distribution, the label distribution
may still differ between the source and the target.

— In addition to the intersecting part of distribution, an effective adaptation model
also has to incorporate the target domain’s unique part of the distribution (Figure
6).

Next, we explain how tree models fit in these three situations. A tree model (for both
regression and classification) partitions the sample feature space and can be used to
roughly describe p̃(x), the accuracy of which depends on the sampling method and the
amount of samples. Figure 3 and 4 can be used to illustrate how a multi-grade training
data space is partitioned by a regression tree. The small blocks in the figures repre-
sent the local areas in the multidimensional space (“the multidimensional bounding
boxes”) that are covered by the training data. Different colors represent different aver-
age response values for the blocks. In regression tree modeling, each leaf node tries to
approximately model one of these blocks, and each internal node groups several nearby
blocks to minimize the prediction error.

In the following, we define the concept of distribution intersection to describe the
domains’s relationship in terms of p̃(x), which is a necessary condition for effective
tree-based adaptation.

Definition 4.1. Let xs and xt be sample data from the source domain and target
domain, respectively. ps(x) and pt(x) are not intersecting, if ps(xt) = 0 and pt(xs) = 0
for all xs and xt; Otherwise, ps(x) and pt(x) are intersecting.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:10 K. Chen et al.

Figure 5 shows an example of distributions having no intersection in the one dimension
situation.

x

P
d

f(
x) ps(x)

pt(x)

Fig. 5. Distributions are not intersecting.

x

P
d

f(
x) ps(x)

pt(x)

Fig. 6. Distributions are intersecting. The
shaded part is unique to the target domain.

An effective tree adaptation algorithm depends on the following assumptions: (1)
ps(x) and pt(x) are intersecting; (2) the source data can be helpful in terms of patching
the target distribution and demoting the noise labels.

The basic challenge to adaptation is to appropriately combine the two sets of data or
two models. A simple global weighting scheme (i.e., overweighting one set of data over
another set with only one global weight) may not work well for the following reason: it
ignores the detailed differences between the sample distribution p̃t(x) and p̃s(x), which
results in either overfitting or over-demoting the domain-specific part of the model. A
feasible solution should be able to (1) locate the distributional differences, and (2) ap-
propriately weight and combine two sets of data or models. Tree adaptation provides a
convenient way to locate the part of the model that needs tuning, and to automatically
weight different part of target data according to both source and target data distribu-
tions. As a result, tree adaptation models are more robust and less possible to overfit
the small data from the target domain.

4.2. Trada Tree Adaptation Algorithms
The basic components of tree adaptation include 1) using the base model to partition
the new dataset, i.e., approximating p̃t(x) with p̃s(x); 2) properly weighting the sam-
ples based on locality; 3) and finely tuning the partition based on both source and
target data distributions.

The tree adaptation algorithms are closely related to the mechanism of regression
tree modeling that we have discussed. We can understand tree adaptation from the
perspective of multidimensional partitioning of the sample space p̃(x). In a regression
tree, each path from root to any node represents a multidimensional bounding box,
which is a subspace of p̃(x). In particular, it is worth noting that from top down the
parent bounding box also encloses the children bounding boxes, and the records falling
to the same box will get the same predicted value (and response). By inheriting the
tree structure from the base model, we try to tune the target data distribution p̃t(x)
based on the source data distribution p̃s(x).

In tree adaptation, we will slightly tune the response (and also the boundary of
the bounding box) based on the local distributions of the source and target data. This
process will be done node by node, from the root to leaves. By doing so, we not only
incorporate the distribution learned by the base model to the new model, but also
take into consideration the subtle distributional differences represented by the target
domain. Due to the complexity of the tree structure, there are probably numerous
strategies for tuning the base model. According to the intensity level of changing the
base model, we choose to present a few representative algorithms.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:11

Algorithm 1. Tuning Responses Only. The first strategy is fixing the bounding boxes and
tuning responses only. This strategy and some of the later ones employ the simi-
lar local-distribution-based tuning algorithm. Namely, we assume there are a certain
number of records, n0, from the source domain D0, i.e., the training data for the base
model, and n1 from D1, the small training data for the target domain, falling onto the
same bounding box, respectively. We allow the two populations to vote for the the final
decision about the response. By appropriately aligning up the size difference between
the two sets of data, we generate the weight for each vote and then calculate the tuned
response.

Concretely, we calculate the weights as follows. First, let a leaf node at the base
model be associated with response R0, and there are n0 records from the source train-
ing data falling onto this node. Next, we apply the target domain data to the tree, by
fixing the splitting condition, to get the response value R1. Similarly, we know n1 target
domain records falling onto that node. We assume the corresponding probabilities of a
record belonging to the source and target domains, are are p0 and (1−p0), respectively.
A balanced estimate of the combined value is calculated by

f(R0, R1, p0) = p0 ×R0 + (1− p0)×R1 (2)

f(R0, R1, p0) is used as the tuned response value for this leaf node. Now, we should
estimate p0 based on the two local sample populations on this node. Since these two
original datasets have unequal size, we may need to scale up the small data with an
appropriate factor β. Based on the sample populations and β, we estimate p0 with

p̂0 =
n0

n0 + β × n1
(3)

The appropriate β can be determined through cross-validation. This distribution-based
estimation will also applied to boundary tuning later. Plugging 3 into Formula 2, we
expand the parameters to f(R0, R1, n0, n1, β). Formula 3 says that, when n1 ≪ n0, the
original response is almost used as the response in the new model.

As we have mentioned, each node has a predicted value trying to fit the residual
from its parent and Formula 1 calculates the leaf node response based on the series
of residual prediction {r̂i} on the path from root to the node. Alternatively, we can
adapt r̂i on each node to get r̂′i. Let r0,i and r1,i be the predicted values at the node
i by applying the source data and the target data, respectively. Also, let n0,i, n1,i be
the number of source records and target records falling onto the node i, respectively. A
layer-by-layer tuning strategy can be represented by Eq. 4, where the function f is the
expanded form of Formula 2.

Rt =
∑

i in the path

f(r0,i, r1,i, n0,i, n1,i, β) (4)

This layer-by-layer tuning strategy considers more global distribution of the two
datasets, while the leaf-only tuning strategy (Formula 2) focuses more on the local dis-
tribution. The layer-by-layer strategy actually smoothes out the tuning process, mak-
ing the change over nearby boxes less dramatic. In practice, we have observed that the
layer-by-layer strategy indeed gives better results.

Algorithm 2. Tuning Both Bounding Boxes and Responses. This algorithm more aggressively
tunes the base tree model. As we have described, each internal node in the path from
the root to the leaf node is associated with a predicate, in form of feature F < τ , which
makes one of the dimensions of the bounding box represented by the path. In this
algorithm, we still keep the the feature F unchanged, while tuning both the threshold
τ and the corresponding node response.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:12 K. Chen et al.

Assume that the current node has a split with feature F , F < v0.

(1) calculate the weight p̂0 with Eq. 3;
(2) partition the new data with the specific feature F and find the best split point v1;
(3) adjust the split by

vcomb = p̂0 × v0 + (1− p̂0)× v1

(4) re-partition the new data with the condition F < vcomb;
(5) adjust the response for the current node with Eq. 2
(6) move to the child nodes and repeat the above steps.

Figure 7 illustrates the basic steps in the Adaptation Algorithm 2 for one node adap-
tation. In the figure, the top left tree is the base model and the right process has the
major split adaptation steps. There are two threads going on: one is generating and
updating the tree for the new data on the right side, where the new data is the part of
data that goes through the ancestor nodes. The other on the left is updating the base
tree, while still preserving the information of source data distribution. We will use the
output of the left side as the final adapted tree. This process is repeated for any nodes
in the subtrees and applied to all trees in the base model.

F2<b1?

Base tree

F1<a?

F2<b0? F2<c1?

yes no

R1 R2 R3 R4

New data

1. Generate new split b1

2. Synthesize new/old splits
b’ = f(b0,b1)F2<b’?

3. Redistribute data

F2<b’?

R1,1 R2,1
6. Repeat above steps
for children nodes

F2<b’?

R1’ R2’

4. Change split

5. synthesize
responses

current
node

F1<a’?

Fig. 7. A sample algorithm for tree adaptation

Note that in both Algorithm 1 and 2, some branches of the base model may not
be reached by the target domain examples. It would be difficult to assert whether
trimming such branches will result in better model or not. Instead, we will evaluate
both trimming and non-trimming in experiments.

Algorithm 3: Appending Trees to Incorporate New Features. Since the base model is trained
for the source domain, it may not contain the features and the part of feature distri-
bution (Figure 6) that are specific to the target domain. Tuning the base model with
Algorithm 1&2 cannot address this problem. Fortunately, the GBT training method
can be used to uniquely address this problem − we can expend the adapted model by
appending a certain number of additional trees. These additional trees are trained on
the residuals from the adapted base model. This method is easy to implement and less
likely to overfit the target domain data as it follows the general boosting framework.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:13

One may raise a question: why not solely append trees without applying Algorithm
1 or 2 on the existing trees (as known as additive modeling), to achieve the adaptation
goal? Additive modeling may not be sufficient because the working mechanism of GBT
limits the effect of the appended trees. The earlier trees dominate the predicted value,
while the appended trees only finely tune the result. We will show that Trada algo-
rithms with appended trees have better performance than additive modeling (Figure
10).

Other Algorithms. We have only presented a subset of possible directions for adapting
GBTs. There are more tuning algorithms such as the following ones.

— Trimming Branches: When we repartition the new data with the adjusted split
value, it is possible that some branches will have little (or even no) new data falling
onto. There are options for trimming or not trimming such branches. Both have
equal possibility to benefit or to harm the result. 1) Without trimming, we expect
the branch learned from the source data is still useful even though there is no ex-
ample from the new domain. 2) Since there is no example for tuning the branch, new
examples from the target domain may be processed wrongly. However, since one of
the purposes of adaptation is to remedy the problems caused by missing training
examples, we conjecture that case one may have better chances. We depend on ex-
periments to validate it.

— Growing Branches: We can also further partition a leaf node where the new data
have a proportionlly much higher population than the old data. This may give po-
tential benefits: we can not only incorporate new features but also refine the par-
tition. The risk is that growing the leaf with only the small data may overfit the
target domain. It is also difficult to determine whether we should grow a leaf at a
certain condition. We experimented in a conservative way: when the number of new
examples, n1 at the node satisfies the condition η ·n1 > n0, we grow the leaf. n0 is the
number of examples from the source domain at this node and η ≥ 1 is some value
scaling up n1. The appropriate η can be determined by cross-validation. However,
we consider this option might be inferior to appending more trees to the end of the
base tree model, as appending trees are less likely to overfit the data as previous
experiments on boosting trees have shown [Friedman 2001; Schapire 2003].

— Feeding Back Split Adjustment to the Source Domain: More aggressively, we can
also feedback the adjusted split value to the source domain, repartitioning the old
data with the new split value to reversely propagate the change. However, the con-
cern is that this dramatic model change is triggered by a small number of examples
in the new domain, which may overfit the new domain.

Our assumption is that the base model should have captured most common distribu-
tions shared by different domains. Therefore, we conjecture that dramatic structural
changes triggered by the small target domain data may result in unsatisfactory mod-
els. That is the reason we separate the discussion on these additional options from the
three basic algorithms. We will conduct experiments to study whether these algorith-
mic options have advantages.

4.3. Trada Algorithm with Stochastic Gradient Boosting Trees
Previous sections have described the basic ideas used in the tree adaptation algorithm
for a single regression tree. Below we give a complete description on the tree adapta-
tion algorithm in the framework of gradient boosting trees. We use {vj} to represent
a set of objects indexed by j. For example, {hj} represents a set of boosting regres-
sion trees and {tj} represents a set of new target values for the feature vectors {xj},
respectively.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:14 K. Chen et al.

ALGORITHM 1: Trada-Boosting-Trees({hi}, Ds, Dt, l, γ, s, b, mode)
input : hi, i = 1 . . . p, are trees from the source domain,

Ds: source training data {(xs
i , y

s
i)}, Dt: target training data {(xt

i, y
t
i)}

q: the number of output trees; γ: learning rate; s: sampling rate for GBT; b: the number
of leaf nodes; mode: adaptation algorithm
output: h′

i, i = 1 . . . q, q ≥ p, adapted trees
for each (xt

i, y
t
i) do

ti ← yi;
end
for i = 1 to p do

h′
i = Trada(hi, Ds, Dt, {tj}, mode);

for each (xt
j , y

t
j) do

tj ← yt
j −

∑i
k=1 γh

′
k(xj);

end
end
for i = p+ 1 to q do

// apply normal gradient boosting tree algorithms to append trees;
h′
i = StochasticRegressionTree(Dt, {tj}, s, b);

for each (xt
j , y

t
j) do

tj ← yt
j −

∑i
k=1 γh

′
k(xj);

end
end

In Algorithm 1, the previously presented Trada algorithms are represented as the
Trada() function in this framework (different algorithms are distinguished by the
“mode” parameter). If the number of output trees is larger than the original trees,
we will use the normal GBT algorithm to train the additional trees and append them
to the final model. The StochasticRegressionTree() function randomly samples a num-
ber of data records and builds a regression tree on the sample set. The sampling step
was shown to improve the overall performance [Friedman and Popescu 2003]. We ig-
nored other parameters in training regression trees such as the sampling rate and the
number of terminal nodes.

5. PAIRWISE TRADA: UTILIZING THE PAIRWISE PREFERENCE DATA
In this section, we first present our previously developed GBRank framework for train-
ing ranking functions with pairwise preference data, and then describe how to combine
the Trada algorithm and the GBRank framework to incorporate pairwise data in adap-
tation.

5.1. Training Models with Pairwise Preference Data
The unique advantage of pairwise preference data is that they can be automatically
extracted from user clickthrough log without paying the time and financial cost as
normally we do to get multi-grade labeled data. However, there are two challenges in
using pairwise preference data for training. First, the clickthrough log contains very
noisy clicks that it is challenging to extract high-quality preference data from the log.
There have been heuristics for extracting relevance pairs [Joachims 2002; Joachims
et al. 2005] such as “skip-above” and “skip-next” pairs, and recently there are studies
on which types of pairs are most useful in learning a ranking algorithm [Ji et al. 2009;
Dong et al. 2009]. The second challenge is to design algorithms that can utilize pair-
wise data for training. This problem can be addressed by finding an appropriate loss
function for minimizing the pairwise ranking errors. There have been algorithms such

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:15

as Ranking SVM [Joachims 2002], RankNet [Burges et al. 2005], RankBoost [Freund
et al. 2003], and GBRank [Zheng et al. 2007]. As extracting pairwise data is not the
focus of this paper, we will simply use the same method used for extracting pairwise
data in papers [Ji et al. 2009; Dong et al. 2009] and interested readers should refer
to the related literatures. This section focuses on the basic idea of using the pairwise
data in the regression framework, which will be extended for adaptation. Below we
will give the basic idea of the GBRank algorithm.

ALGORITHM 2: Trada-Pairwise({hi}, Ds
p, Dt

p, l, γ, τ , s,b, mode)
input : hi, i = 1 . . . p, are trees from the source domain trained with GBRank,

Ds
p: pairwise source training data {(xs

i,1,x
s
i,2,x

s
i,1 ≻ xs

i,2)},
Dt

p: pairwise target training data {(xt
i,1,x

t
i,2,x

t
i,1 ≻ xt

i,2)},
q: the number of output trees; γ: learning rate; τ : the margin; s: sampling rate for GBT;

b: the number of leaf nodes; mode: adaptation algorithm
output: h′

i, i = 1 . . . q, q ≥ p, adapted trees
for each (xt

i,1,x
t
i,2,x

t
i,1 ≻ xt

i,2) do
ti,1 ← τ for xt

i,1;
ti,2 ← 0 for xt

i,2;
end
for i = 1 to p do

h′
i = Trada(hi, Ds

p, Dt
p, {tj}, mode);

for each (xt
j,1,x

t
j,2,x

t
i,1 ≻ xt

i,2) do
v1 =

∑i
k=1 γh

′
k(x

t
j,1) ;

v2 =
∑i

k=1 γh
′
k(x

t
j,1) ;

if v1 < v2 then
tj,1 ← v1 + τ ;
tj,2 ← v2 − τ ;

end
end

end
for i = p+ 1 to q do

// apply GBRank to append trees;
h′
i = StochasticRegressionTree(Dt

p, {tj}, s, b);
for each (xt

j,1,x
t
j,2,x

t
i,1 ≻ xt

i,2) do
v1 =

∑i
k=1 γh

′
k(x

t
j,1) ;

v2 =
∑i

k=1 γh
′
k(x

t
j,1) ;

if v1 < v2 then
tj,1 ← v1 + τ ;
tj,2 ← v2 − τ ;

end
end

end

The GBRank algorithm is a variant of Gradient Boosting Trees algorithm. It uses
the same regression tree training algorithm for training each tree, while it changes the
gradient boosting algorithm, i.e., the way changing the target values for training the
next tree. In the original GBT algorithm, since the purpose is to minimize the square
loss between the predicted value r̂i and the target value ri, the target value for the
next tree is set to ri − r̂i. For pairwise data, the purpose is to reduce the number of
contradictory pairs, i.e., the predicted pairwise relationship d1i ≺ d2i that contradicts
the expected relationship d1i ≻ d2i . The next tree should try to reduce such prediction

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:16 K. Chen et al.

errors. Let h(q, d) represent the predicted score for query q and document d with the
currently trained j GBT trees, i.e., h(q, d) =

∑j
k=1 hk(xd) and xd is the feature vector

for the query/document tuple (q, d). If (qi, d1i) ≻ (qi, d
2
i) we define h(qi, d

1
i) > h(qi, d

2
i).

Let τ be a positive constant and N be the number of instances. The contradictory pair
loss function is defined as

L(h) =
N∑
i=1

(max{0, h(qi, d2i)− h(qi, d
1
i) + τ})2 (5)

To minimize this loss function, h(qi, d1i) has to be larger than h(qi, d
2
i) with a margin τ .

As this loss function is only determined by the values of h(qi, d1i) and h(qi, d
2
i), we use

an approximate algorithm and the gradient boosting framework to minimize this loss.
Namely, at the beginning of the algorithm, for each pair (qi, d

1
i , d

2
i) we assign a score τ

to the document/query tuple (qi, d
1
i) and 0 to (qi, d

2
i). At the end of each round, when

we detect a pair having a contradictory relationship we revise the target value tq,d for
each document/query tuple in the pair,

tqi,d1
i
= h(qi, d

1
i) + τ, tqi,d2

i
= h(qi, d

2
i)− τ.

By doing so, the next round of regression tree training will try to correct the predic-
tion so that the pairwise relationship will be met. Note that this algorithm is simple to
implement. The only difference from the basic GBT is the target value setting at the
end of each round. In practice, we have shown that this algorithm is very effective in
both minimizing pairwise contradiction rate and improving ranking quality, with the
pairwise data converted directly from the multi-grade labeled training data [Zheng
et al. 2007].

5.2. Adapting Models with Pairwise Preference Data
In addition to a small amount of multi-grade labeled training data, now we also have
pairwise training data extracted from the user clickthrough log that is based on users’
reactions to an experimental ranking function (e.g., one reasonably good ranking func-
tion from another domain). Recent study shows that using only the pairwise data for
training will not be sufficient for getting a good ranking function [Dong et al. 2009].
We believe a better way is to adapt the base function to the pairwise data and thus
take advantage of both sets of data. In this section, we describe the “Pairwise Trada”
algorithm for this purpose.

In Pairwise Trada, we assume the base function is trained with the GBRank algo-
rithm and pairwise data (which could be converted from multigrade labeled data) from
the source domain. The basic idea is to use the same Trada algorithm for adapting each
individual regression tree while changing the process of setting the target values {tj}
for training the next tree as GBRank does. The intuition is the same as the Trada
algorithm. Only those local areas in the distribution space that have been overlapped
with the new pairwise examples are fine adjusted to reduce the contradictory pairs in
the new domain.

Algorithm 2 in Appendix gives the detail of this algorithm. An additional advantage
of this algorithm is that we can utilize both sets of data in the target domain: the
multi-grade labeled data and the pairwise preference data from the clickthrough logs
to build a model. What we need to do is to simply convert the multi-grade labeled data
into pairwise data so that Pairwise Trada can use both sets of data.

6. EXPERIMENTS
The experiments are organized in two groups. The first group is dedicated to the ba-
sic Trada algorithm and the second to the Pairwise Trada algorithm. For the first

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:17

Table I. Public Yahoo! Learning to Rank Datasets

total number of queries total number of documents
S0 19,944 473,134
S1 1,266 34,815

S0 and S1 are public datasets from the Yahoo! learning to rank
challenge. They are used to study parameter tuning and per-
form detailed comparison.

Table II. Real Datasets

total number of queries total number of documents
D0 6,012 146,307
D1 1,282 37,952
D2 823 12,092
D3 804 34,276
D4 540 16,950
D5 1,258 29,165

Real datasets from a major search engine, collected in 2008.

group of experiments, we set several goals in the experimental evaluation as follows.
First, we want to see how the settings (the base model, the β parameter, the number
of additive trees) can affect the quality of adaptation with varying size of the small
training data from the target domain; Second, we want to compare the effectiveness of
different adaptation algorithms we have presented; Finally, the adaptation approach
is compared to other methods, including (1) the base model only; (2) models that are
trained only with the small data from the target domain; and (3) data combination
models that combine the two sets of data for training.

The second group of experiments is dedicated to Pairwise Trada. We will investigate
two problems: (1) whether Pairwise Trada can utilize the click data to improve the
base model and (2) whether the combination of click data and the small amount of
multi-grade labeled data can help further improve the model.

6.1. Datasets
We used three groups of data in experiments. The first group of data is the public yahoo
learning to rank data 2 (Table I). It consists of two labeled sets. The set one (S0) has
19,944 queries and 473,134 documents. The set two (S1) has 1,266 queries and 34,815
documents. We use these two datasets (S0 for the source domain and S1 for the target
domain) to study the parameter settings and the algorithms for the Trada approach.

The second group of data is from a major web search engine. The domain D0 serves
as the source domain and other domains are the target domains. The models used
200 ∼ 300 features scattered in the three categories we have described in Section 3.
All training examples are labeled by relevance experts and have been divided into five
batches according to the time the data were labeled. A five-fold cross validation will use
this natural split to take the time factor into consideration. Table II summarizes the
size of the datasets. These datasets are used to compare the performance of different
adaptation methods.

The third group of datasets is used to study Pairwise Trada (Table III). It includes
five more datasets from other five domains E1 to E5, respectively, which have both
small labeled target domain data and pairwise preference data extracted from the
clickthrough log. We use the heuristic rules which is introduced by the paper [Dong
et al. 2009] to extract pairwise preference data from the clickthrough log. This ap-

2http://learningtorankchallenge.yahoo.com/

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:18 K. Chen et al.

Table III. Real Datasets with User Preference

multi-grade labeled examples preference pairs from clicks
E1 91,638 73,977
E2 75,989 108,350
E3 243,790 194,114
E4 174,435 166,396
E5 101,076 94,875

Size of multi-grade labeled training data and preference pairs in the
target domains, collected in 2009.

proach yields both “skip-next” and “skip-above” pairs [Joachims et al. 2005]. We de-
scribe the method for extracting pairs as follows.

Namely, for the same query, we only look at the user clicks on the top ten results.
For a tuple (q, url1, url2, pos1, pos2) where q is the query, url1 and url2 are urls rep-
resenting two documents in the query result, pos1 and pos2 are ranking positions for
the two documents with pos1 < pos2, i.e., url1 has higher rank than url2. Let imp be
the impression of the query result, i.e., the total number of user sessions submitted
the same query. Let cc be the number of sessions that both url1 and url2 are clicked,
ncc be the number that url1 is not clicked but url2 clicked, cnc be the number that url1
is clicked but url2 not clicked, and ncnc be the number that both are not clicked. The
“skip-above” pairs are extracted with the following rule: if ncc is much larger than cnc,
and cc

imp and ncnc
imp are very small (< a threshold), then we say url1 is skipped above

url2. Skip-above suggests strong preference on url2 than url1. Similar definition can
be defined for “skip-next” [Joachims et al. 2005; Dong et al. 2009]. Table III includes
both the number of labeled examples and the preference pairs extracted from the click-
through log. Each of these datasets is split into three parts: 3/5 queries for training,
1/5 for validation and 1/5 for testing.

6.2. Evaluation Metrics
Discounted Cumulative Gain (DCG) [Jarvelin and Kekalainen 2000] is a metric de-
signed for evaluating the quality of ranked list if the grades for items in the list are
known. In our case, DCG is defined as follows. We use a five-grade labeling scheme
for editorial judgment {‘4’, ‘3’, ‘2’, ‘1’, ‘0’}, corresponding to the most relevant to the
most irrelevant. Suppose there are k documents used for testing the query q and each
query-document pair (q, di) in the test set is labeled with a grade li. The test result will
give a list of the k documents that is sorted by the scores given by the ranking function
H to each pair (q, di). Let i = 1, . . . , k be the order of the sorted documents. DCGk score
is computed for the sorted list as follows.

DCGk =

k∑
i=1

2li − 1

log(i+ 1)

By definition, when reverse orderings happen at earlier positions (i is small), they
will be punished more than those happening later. By doing so, we prefer that high
quality results show up at the top of the ranked list. The normalized DCG (NDCG) is
defined as

NDCGk = DCGk/Ideal DCGk,

where Ideal DCGk is the DCG for the ideal ranking result.
Each model test will generate a list of NDCGs corresponding to the list of testing

queries. To compare the statistical significance between two results, we perform t-test
[Lehmann and Casella 1998] on the two NDCG lists. If p-value < 0.05, the results
are significantly different. t-test is only performed on the comparison for some exper-

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:19

iments. For parameter tuning of the same model, we will show only average NDCG
of the multi-fold cross validation. Note that the relevance differences between high-
quality commercial web search engines are often less than 5%. Therefore, any small
statistically significant improvements will have practical impact.

6.3. Algorithms for Comparison
Two sets of algorithms are compared to the proposed adaptation approach: the simple
algorithms and the recently developed new algorithms.

Simple Algorithms. The simple adaptation methods include 1) the base model only,
2) the small-data model, 3) the additive model, and 4) the data combination model. We
briefly describe each of them.

The base model is trained with a large training dataset from the source domain.
In experiments, we find the parameter setting of the S0 GBT model with the five-fold
cross validation on S1 data. For D0 we used an empirical setting that was validated in
production. Testing results show that the D0 model with 300 trees, 12 leaf nodes, 0.05
learning rate, and 0.5 sampling rate works reasonably well for all target Di domains.
We will use the ranking quality of the base model on the target domain as the base
line for comparison.

A small-data model is trained only with the small amount of training data from
the target domain with the GBT method. Since the training data is small, it is highly
possible that the model will be overfitting to the training data, which means it may not
work well for new examples from the target domain in the future although it works
well in cross-validation on the existing data.

An additive model does not change the base model but appends a few new trees to
the base model, which are trained on the residuals of the new data on the base model.
The training method is the default GBT method.

A data combination model [Jiang and Zhai 2007] uses the combination of two sets
of training data: one from the source domain (in the above specific case, the 150K
query-document-grade examples) and the other from the target domain, with possibly
overweighting the target domain data. The same GBT training method is applied to
the combined data to generate the final model.

We also compare our approach with the recently developed adaptation algorithms:
the RiskMin algorithm [Long et al. 2009] and the RA-SVM algorithm [Geng et al.
2009].

RiskMin Algorithm. The RiskMin algorithm, based on the risk minimization
framework [Vapnik 1999], iteratively adjusts the weights of the source domain data
to minimize a risk function until convergence. It represents another way to fine tun-
ing the individual sample weights. Note that this algorithm is originally designed for
general-purpose regression adaptation3, but it can be applied to the ranking problem.
However, there is no reported result on ranking data yet. We will try this algorithm on
the public datasets to compare its performance with ours.

The algorithm can be described in the following iterations. Initially, the sample
weights are set to the same. In one iteration, the model is trained with weighted sam-
ples from both domains. In the next iteration, this model is used to test the source
domain data, and the result is denoted as ytj for record j. The target domain data (n
sample records) has a fixed weight wj = 1/n for all iterations, while the source domain

3Our algorithm is originally designed for the ranking problem, but it can also be applied to general-purpose
regression problems.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:20 K. Chen et al.

sample weight is adjusted with

wj =
αr(ytj , y

s
j)

m
, (6)

where m is the number of source domain samples, ysj is the source domain label for
the record j, α is a predefined tuning parameter, and r() is defined as r(ytj , y

s
j) =

exp(−(ytj , y
s
j)

2). This weight tuning process continues until the model converges (no
significant improvement on the model quality). This algorithm uses a similar idea to
AdaBoost [Freund and Schapire 1999], reweighting the samples after each iteration.
It is also similar to the TraDaBoost algorithm [Dai et al. 2007] that was designed for
the transfer classification problem. We implemented the RiskMin algorithm with the
GBT algorithm as the base learner.

RA-SVM algorithm. The RA-SVM algorithm [Geng et al. 2009] is an extension to
the RankSVM algorithm [Joachims 2002]. It uses the model from the source domain
to help reduce the bias introduced by the small training data from the target domain.
Basically, it changes the SVM’s primal objective function to combine the source do-
main function in training. RA-SVM, similar to RankSVM, works on pairwise data and
generates a linear ranking function, denoted as f . Assume the feature vector for the
query-document examples (q, di) and (q, dj) are xi and xj , respectively; the relevance
labels to the query q are yi and yj , respectively. The original data are transformed to
pairwise data for learning using the following method. If yi > yj , we require only the
ranking output f(xi) greater than f(xj); and if yi < yj , f(xi) less than f(xj). Thus, we
can define the pairwise relevance by the sign of f(xi)− f(xj). Since f is a linear func-
tion, f(xi) − f(xj) = f(xi − xj). Therefore, the labeled training dataset is converted
to pairwise training dataset {xi − xj , sign(yi − yj)}. The task is to find a good SVM
classifier f for the pairwise training data.

For easier understanding, let the source domain model f0 also trained with
RankSVM: f0(x) = wt

0x. Let {x(p)
i , y

(p)
i } denote the m pairwise data records in the

target domain and δ tune the contribution from the source domain function. The RA-
SVM’s objective function is represented as

argmin
w

=
1− δ

2
∥w∥+ δ

2
∥w −w0∥+ C

m∑
i=1

ξi,

subject to y
(p)
i f(x

(p)
i) ≥ 1− ξi, and ξi > 0. (7)

The resultant RA-SVM model is f(x) = δf0(x) + (
∑m

i=1 αiy
(p)
i x

(p)
i)tx, where αi are

the parameters in the dual form of the SVM modeling [Cristianini and Shawe-Taylor
2000]. In practice, the function f0() can be of any form - we use f0(x) = wt

0x for easier
understanding in the SVM framework. Since the RA-SVM model is basically a linear
model - a linear combination of the source domain function and the target domain func-
tion, we expect their performance would be lower than non-linear approaches such as
the tree-based approaches. We implement the RA-SVM algorithm based on the liblin-
ear SVM package [Fan et al. 2008].

6.4. Experimental Results for Basic Trada
The first two groups of data are used for experimenting with the basic Trada algo-
rithm. The first group (S0 and S1) is used to study the parameter settings and the
second group is used to show the effectiveness of different Trada algorithms on differ-
ent datasets. All the following experimental results are based on five-fold cross vali-
dation. For example, for a dataset with 200 queries, the dataset is first equally and

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:21

Table IV. Notations for Trada adaptation settings.

notation description
R tuning responses layer by layer
RA tuning aggregated responses at leaves
S tuning splitting values
T trimming branches that no new example reaches.
G growing branches
C feeding the split change back to the source domain

randomly partitioned into five subsets - each subset has 40 queries. In each fold of
evaluation, four of the five subsets (160 queries) are used for training and the remain-
ing 40 queries for testing. For clear representation, we use only NDCG5 (or DCG5) in
evaluation. Each NDCG5 (DCG5) value in the figures is the average over the testing
results in the five folds.

For clear presentation, we setup the notations for different settings of the Trada
algorithms (Table IV).

6.4.1. Choosing the Base Model. The first problem for using the Trada algorithm is the
selection of the base model. Any of the settings of the base model (e.g., the number of
trees, the number of leaf nodes, and the learning rate) may affect the result of adapta-
tion. It would be overwhelming to test all the possibilities to find the best setting. We
design the following simplified experiment to show the effect of the base model.

First, we train two models with the entire S1 training datasets using the settings
of (500 trees, 8 leaf nodes) and (500 trees, 12 leaf nodes), respectively. The learning
rate is set to 0.05 and the sampling rate is 50% to avoid overfitting, according to the
literature [Friedman 2001]. By default, we will also use these settings of the learning
rate and the sampling rate for other experiments.

Then, the first n (n=100∼500) trees of a trained model is used as the base model for
the adaptation to the domain S1. We increase n by 100 each time to observe the effect
of the size of base model to the result of adaptation. For simplicity, we fix the setting
for the adaptation algorithm (600 sample queries, the algorithm setting “R”, β = 10,
and 50 additional trees).

0.660.670.680.690.70.710.720.730.74
100 200 300 400 500

NDCG5
Number of base trees

Adaptation: 8 nodesSource: 8 nodesAdaptation: 12 nodesSource: 12 nodes
Fig. 8. finding the best base model setting.

0.70.710.720.730.74
200 400 600 800 1000

NDCG5
Number of Target Training QueriesB=1 B=10 B=20

Fig. 9. β setting, training data size and adapta-
tion performance (RS)

Figure 8 shows the effect of the base model setting to Trada adaptation. With the
increasing number of base model trees, the adaptation performance is increased steady
and slow, and finally reach a platform around 400 base trees. The result with 12 leaf

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:22 K. Chen et al.

nodes shows slightly better than that with 8 leaf nodes. We will use 400 base trees and
12 leaf nodes for the default setting of the subsequent experiments.

6.4.2. Training data size, β setting, and model performance. The size of target training data
is an important factor in ranking function adaptation. It is understood that adapta-
tion will not be necessary when the size of target training data increases to certain
amount (although we do not know the exact amount). In this experiment, we experi-
ment with Adaptation Algorithm RS, i.e., tuning both responses and splitting values
to investigate the effect of both the size of the target training data and the β setting.

When performing adaptation, we do not change the structure of the base model trees
learned from S0, i.e., the number of trees and the number of leaf nodes per tree do not
change. Based on previous investigation, we use 400 base model trees and 12 leaf
nodes. Figure 9 shows the result for different settings on Algorithm RS. With the in-
crease of training data size, the overall performance increases as we expected. We
observe significant improvement from β = 1 to β = 10. However, increasing β further
from 10 to 20 will gain. Furthermore, large β overweights the small data too much and
may cause overfitting. In practice, we will use a smaller β setting, if two β settings
give similar performance, to reduce the chance of overfitting. As the experiment result
shows, we will choose β = 10 for the subsequent experiments.

6.4.3. Adaptation with Appending Trees. The next problem is how many additional trees
will be sufficient. We also show the advantages of Trada adaptation over simple “ad-
ditive models”. We define an additive model as a model that does not change the base
model, but appends trees based on the residuals of the target training data to the base
model. In Trada, the additional trees are used to adapt the new features. We use the
setting of 400 base trees, 12 leaf nodes, B=10, 600 S1 queries, and the RS algorithm
for the Trada modeling.

Figure 10 shows the comparison based on different number of additional trees. With
the initial trees appended, the performance increases; but beyond some point, the per-
formance will be going down. Approximately, both Trada and Additive give the best
performance around +60 trees. The additive models with settings of 8 leaf nodes or 12
leaf nodes do not show much difference.

Next, we use the best setting (400 base model trees and 60 additional trees) to study
the effect of training data size. Figure 11 shows that the Trada method performs al-
ways better than the additive model, and the differences at 600,800, and 1,000 queries
are also statistically significant.

0.70.710.720.73
0 20 40 60 80 100 120 140 160 180 200

NDCG
Number of Additional Trees

Additive: 8 nodesAdditive: 12nodesTrada: beta=10
Fig. 10. Effect of increasing number of addi-
tional trees with fixed size of training data.

0.70.710.720.730.74
200 400 600 800 1000

NDCG5
Number of Target Training Queries

Trada (400+60, RS)Additive (400+60)
Fig. 11. Effect of additional trees with increas-
ing training data.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:23

6.4.4. Comparing Trada Algorithms. In this experiment, we compare several Trada algo-
rithms: R, RA, RS and TRS. First, we want to compare the two response tuning algo-
rithms: tuning the layer-by-layer residual fitting (R) or tuning the final leaf response
(RA). Figure 12 shows that layer-by-layer response tuning is better than leaf-node
only response tuning. This matches our expectation that it is better to consider a more
global distribution than a local distribution.

Figure 13 the algorithm RS (tuning both responses and splitting values) has the best
performance. We have not found that trimming branches (TRS) will significantly af-
fect the performance. Trimming branches assumes that the finer partition developed
on the base model will not fit the new data − a more generalized model (with less
deep branches) will work better. Non-trimming trusts the structure learned from the
source domain more and assumes the branches will eventually work for future data
in the target domain. As the small sample set is not so representative, we expect that
non-trimming will work better for future data, assuming the similarity between the
source and target domains is high. Without sufficient data, trimming or not can only
be determined by certain prior beliefs or heuristics, which will be a part of extended
study. Growing branches (GR) also overweights the target domain data and changes
the structure more aggressively. The result shows this dramatic change is not pre-
ferred in adaptation.

Although the algorithm RS shows the best performance among other algorithms for
adapting S0 to S1, this is not certain for other datasets as we will show later.

0.70.710.720.730.74
200 400 600 800 1000

NDCG5
Number of Target Training Queries

Layer-by-layerLeaf only
Fig. 12. Two response adaptation algorithms:
layer-by-layer response tuning and aggregated
response tuning at leaf nodes

0.70.710.720.730.74
200 400 600 800 1000

NDCG5
Number of Target Training Queries

TRSRSRGR
Fig. 13. Comparing different Trada algorithms.

6.4.5. Comparing with Other Simple Algorithms. Finally, we compare the adaptation ap-
proach to other common adaptation methods: 1) using only small data in the target
domain; 2) combining and appropriately weighting the data from both the source and
the target domains; 3) using the source domain model directly. Data combination is a
widely used adaptation method. The first set of experiments is done with the S0 and
S1 datasets, serving as the source and target domains, respectively. The best small
data model (200 trees, 8 leaf nodes) is chosen among the settings of 100-500 trees and
8 or 12 leaf nodes. The best combination model (400 trees, 12 leaf nodes, W=10) is cho-
sen among the settings of 100-500 trees, 8 or 12 leaf nodes, and overweighting factor
(W=1,10). The best source model has 400 trees and 8 nodes.

Figure 14 shows that the Trada method has the best result, but the difference be-
tween the combination method and the Trada method is small and not statistically

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:24 K. Chen et al.

Table V. Significance test.

Target Queries 200 400 600 800 1k
Trada vs. Source x x x x x
Trada vs. Small-data x x x x x
Trada vs. Combination

Significance test: Trada vs. other methods on S0-S1 adapta-
tion, with varying training data size. ‘x’ means the difference
is statistically significant in t-test.

significant. In data combination modeling, we try two settings: simply pooling the
two sets of data with equal weight (W=1) and overweighting the small data (W=10).
Overweighting gives better results. As we have discussed, appropriately weighting
individual samples according to the local distribution is a challenging topic in data
combination, which, however, is automatically done in tree adaptation. Note that data
combination may work better than Trada for some datasets in some cases, as shown
in our second set of experiments with real datasets Figure 16.

The small-data model and the source domain model show much worse performance
than the Trada and data combination models. However, in the previous results [Chen
et al. 2008] (Figure 15, the small-data model performs comparably well in cross-
validation to the adaptation models on 800∼1000 target training queries. This hap-
pens when the small target-domain data is highly biased and easy to model, so that
training with the target domain only gives an overfitted model. Be aware that since
the evaluation is done with the data we have and the assumption is that the target
data is too small to be representative, this result is just a weak indication on the fu-
ture performance. In general, we expect that the adaptation models (e.g., Trada, data
combination, additive modeling) should be more robust on the future data than the
small-data model.

0.70.710.720.730.74
200 400 600 800 1000

NDCG5
Number of Additional Trees

CombinationTrada(RS)Small dataSource
Fig. 14. Comparing tree adaptation to other
methods on S0 to S1 adaptation. Trada and
data combination are close and much better than
small-data and source domain model.

6.8

6.9

7

7.1

7.2

7.3

7.4

200 400 600 800 1000

of Sample Queries

D
C

G
5

BASE
SMALL DATA
ADAPTATION
COMB (W=1)
COMB(W=20)

Fig. 15. Comparing tree adaptation to other
methods on D0 to D1 adaptation. Trada is the
best. Small-data models shows comparative per-
formance at 800 and 1000 queries, which are
subject to overfitting.

Finally, we summarize different settings of the Trada adaption algorithm and com-
pare them to data combination models with the second group of data (D0 - D5) (Figure
16). We use D0 as the source domain and train a model using the setting of 300 trees,
12 leaf nodes, 0.05 learning rate, and 0.5 sampling rate. All adapted models used 330

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:25

trees (i.e., 30 additional trees) and the same learning and sampling rates4. The train-
ing data may vary according to different domains 5. The combination models are se-
lected among the different weight settings W = 1, 10, 20. The evaluation is done in
five-fold cross validation. Among the five target domains, we find that adaptation is
better than data combination for D1, D4, and D5, while data combination is slightly
better for the other two domains. Among the different adaptation settings, the first
four settings “R”, “TR”, “SR”, and “TSR” have about the same performance, while the
more aggressive settings “TSRG” that includes growing branches according to the local
size of the target data, and “TSRC” that feeds the splitting values back to the source
domain to alter the source domain data distribution, do not work satisfactorily. Note
that for D1 and D3 the “TSRC” results are too low to be included in comparison. This
confirms our intuition that the base model should have captured the shared distribu-
tions crossing domains fairly, and dramatic structural changes guided by the small
target domain data may result in worse model quality.

6

6.5

7

7.5

8

D1 D2 D3 D4 D5

D
C

G
5

BASE

COMB

TSR

SR

TR

R

TSRG

TSRC

Fig. 16. Comparison with more tree adap-
tation options and datasets. Results are
based on k-fold cross validation.

0.690.70.710.720.730.74
200 400 600 800 1000

NDCG5
Number of Target Domain Training Queries

RiskMin a=0.2RiskMin a=0.4RiskMin a=0.5RiskMin a=0.6RiskMin a=0.8
Fig. 17. Effect of parameter α to the model
quality in the RiskMin algorithm.

6.4.6. Comparing with RiskMin and RA-SVM. In this section, we compare our method with
these two recently developed algorithms based on the public data S0 and S1.

RiskMin. The key idea of the RiskMin method is to tune the weights of the source
domain data, while keeping the target data weights unchanged, in order to minimize a
joint risk function on both the source domain data and the target domain data. We fix
the setting to the base learner (GBT models with 400 trees, 12 leaf nodes, and sample
rate 0.5), and investigate two factors in the RiskMin framework: the global weighting
factor α for the source domain data, and the number of iterations of the algorithm.

We use the GBT algorithm to train the weighted training data in each iteration. The
model converges quickly around five rounds in terms of the model quality (NDCG),
which is also observed by the authors in [Long et al. 2009]. Figure 17 shows that the
effect of different α settings to model quality is small.

RA-SVM. We use the GBT ranking function (400 trees, 12 leaf nodes, and sample
rate 0.5) trained on the source domain S0 for training the RA-SVM functions. We study
the setting of two major parameters in RA-SVM modeling: the parameter C and the
weight of source domain function δ. The candidate C values are (0.00001, 0.00003,
0.00005, 0.00007, 0.0001, 0.0003, 0.0005, 0.005, 0.05, 0.1, 0.5). We found large C results
in worse quality and the optimal values are around 0.00001 to 0.00005. The candidate

4Note we used DCG in this result, which was published in [Chen et al. 2008]
5The numbers for D1 are based on the models trained with 600 queries

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:26 K. Chen et al.

0.620.640.660.680.70.720.74
200 400 600 800 1000

NDCG5
Number of Target Domain Training Queries

d=0 d=0.3 d=0.5d=0.7 d=1

Fig. 18. The model quality of RA-SVM
with different δ settings (d is the param-
eter δ).

0.690.70.710.720.730.74
200 400 600 800 1000

NDCG5
Number of Target Domain Training Queries

Trada(RS)RiskMinRA-SVM

Fig. 19. Comparing our approach with
RiskMin and RA-SVM.

δ values are (0, 0.1, 0.3, 0.5, 0.7, 1). When δ = 0, only the target data is used for
training; the influence of the source domain model increases with the increase of δ.
For each size of training data and each combination of parameters of C and δ, we use
five-fold cross validation to find the average model quality. Figure 18 shows the effect
of δ to the model quality.

Comparison. For each size of data in the target domain, we choose the best pa-
rameter setting for RiskMin and RA-SVM, and then compare their performance with
our approach. Figure 19 shows that our method is better than the compared methods.
RA-SVM is worse than other two approaches possibly because it is a linear modeling
method. Further studies on non-linear SVM adaptation models are needed to explore
their potentials.

6.5. Experimental Results on Pairwise Trada
In this set of experiments, we examine the performance of Pairwise Trada in utiliz-
ing pairwise training data from the target domain. The base model is trained with
GBRank algorithm on the pairwise data converted from the multi-grade labeled data
of the source domain D0. As it has been shown in previous study [Zheng et al. 2007] the
pairwise learning algorithm can learn better models from the converted multi-grade
labeled data than the original GBT models from the multi-grade labeled data. Simi-
larly, we will study whether the pairwise data converted from the multi-grade labeled
data in the target domain can also help Pairwise Trada.

We compare three methods of applying Pairwise Trada: (1) adapting the base model
with only the pairwise data converted from the labeled target domain data, (2) adapt-
ing with only the pairwise data extracted from the clickthrough log (i.e., the “skip-
above” and “skip-next” pairs), (3) adapting with the combination of these two sets
of pairwise data. In Table VI, “BASE+Labeled”, “BASE+Click” and “BASE + (La-
beled+Click)” represent these three methods6, respectively. “BASE” represents apply-
ing the source domain function directly to the target domain.

We also calculated the statistical significant for the improvements with the t-test.
The bold font numbers represent they are statistically significantly better than the
corresponding BASE model. The experimental results show some interesting patterns.
With only the converted pairwise data from the multi-grade labeled data in the target
domain, the adapted models can improve the ranking quality for most cases (except for

6Note that this result was initially calculated based on DCG. Since the proprietary data and results are not
accessible anymore, we keep using DCG in the table.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:27

Table VI. Pairwise Trada on different sources of pairwise training data.

E1 E2 E3 E4 E5
BASE 6.894 7.9366 9.0159 8.5763 9.7641
BASE + Labeled 7.1455 8.2811 9.3577 8.9205 9.9531
BASE + Click 7.1812 8.2640 9.1149 8.7622 9.8818
BASE + (Labeled+Click) 7.2414 8.4111 9.4898 9.0177 10.1156

E5, which is not statistically significant), while with click data only the adapted model
may have lower quality - although most of the testing cases are improved many are not
statistically significant (i.e., for E3,E4,E5). This implies that the click pairs extracted
with the current method can be used solely as the training resource but it still does
not outperform expert-labeled data. Surprisingly, with the combination of click data
and the labeled data, we can get better adapted models with statistical significance
guarantee, which indicates the labeled data and click data are to some extent comple-
mentary. These results show the unique advantages of using the Pairwise Trada.

7. CONCLUSION
Training with insufficient data has been a major challenge for developing effective
ranking functions crossing domains. Based on the observation that domains must
share a certain level of similarity, we propose the tree adaptation (Trada) approach,
which is based on Gradient Boosting Trees. The tree structure of the base model from
the source domain provides sufficient local and global information that enables tree
adaptation to conveniently incorporate the small training data from the new domain.
We present a few tree adaptation algorithms and perform extensive experimental
study to show the characteristics of these algorithms. The basic Trada algorithm is
also extended to handle pairwise training data (Pairwise Trada), as pairwise training
data can be potentially obtained with low cost from the clickthrough log. The experi-
mental result shows that our tree adaptation approach is robust and it can improve
the ranking quality with both multi-grade labeled data and pairwise preference data
from multiple web search domains. The current study has been built on the intuition of
localized sample weighting and model tuning. We will continue to study the theoretical
underpinnings for the tree adaptation method.

REFERENCES
AGICHTEIN, E., BRILL, E., AND DUMAIS, S. 2006. Improving web search ranking by incorporating user

behavior information. In Proceedings of ACM SIGIR Conference (Seattle, WA, USA).
ANDO, R. K. AND ZHANG, T. 2005. A framework for learning predictive structures from multiple tasks and

unlabeled data. Journal of Machine Learning Research 6, 1817–1853.
ARGYRIOU, A., EVGENIOU, T., AND PONTIL, M. 2007. Multi-task feature learning. In Advances in Neural

Information Processing Systems 19. MIT Press.
BACCHIANI, M. AND ROARK, B. 2003. Unsupervised language model adaptation. In Proceedings of the

International Conference on Acoustics, Speech and Signal Processing (ICASSP).
BAEZA-YATES, R. AND RIBEIRO-NETO, B. 1999. Modern Information Retrieval. Addison Wesley, New York

City, NY.
BEN-DAVID, S., BLITZER, J., CRAMMER, K., AND SOKOLOVA, P. M. 2007. Analysis of representations for

domain adaptation. In Proceedings Of Neural Information Processing Systems (NIPS). MIT Press.
BLITZER, J., CRAMMER, K., KULESZA, A., PEREIRA, O., AND WORTMAN, J. 2008. Learning bounds for

domain adaptation. In Proceedings Of Neural Information Processing Systems (NIPS).
BLITZER, J., MCDONALD, R., AND PEREIRA, F. 2006. Domain adaptation with structural correspondence

learning. In Conference on Empirical Methods in Natural Language Processing. Sydney, Australia.
BURGES, C., LE, Q., AND RAGNO, R. 2006. Learning to rank with nonsmooth cost functions. In Proceedings

Of Neural Information Processing Systems (NIPS).

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:28 K. Chen et al.

BURGES, C., SHAKED, T., RENSHAW, E., LAZIER, A., DEEDS, M., HAMILTON, N., AND HULLENDER, G.
2005. Learning to rank using gradient descent. In Proceedings of International Conference on Machine
Learning (ICML) (Bonn, Germany).

BURGES, C. J. 2010. From ranknet to lambdarank to lambdamart: An overview. In Microsoft Research
Technical Report MSR-TR-2010-82.

CAO, Y., XU, J., LIU, T.-Y., HUANG, Y., AND HON, H.-W. 2006. Adapting ranking svm to document retrieval.
In Proceedings of ACM SIGKDD Conference (Seattle, WA, USA).

CAO, Z., QIN, T., LIU, T.-Y., TSAI, M.-F., AND LI, H. 2007. Learning to rank: from pairwise approach to
listwise approach. In ICML ’07: Proceedings of the 24th international conference on Machine learning.
ACM, New York, NY, USA, 129–136.

CHAPELLE, O. AND ZHANG, Y. 2009. A dynamic bayesian network click model for web search ranking. In
WWW ’09: Proceedings of the 18th international conference on World wide web. ACM, New York, NY,
USA, 1–10.

CHEN, K., LU, R., WONG, C., SUN, G., HECK, L., AND TSENG, B. 2008. Trada: Tree based ranking function
adaptation. In Proceedings of ACM Conference on Information and Knowledge Management (CIKM).

COSSOCK, D. AND ZHANG, T. 2006. Subset ranking using regression. In ACM Conference on Learning The-
ory. 605–619.

CRISTIANINI, N. AND SHAWE-TAYLOR, J. 2000. An Introduction to Support Vector Machines and Other
Kernel-based Learning Methods. Cambridge University Press.

DAI, W., YANG, Q., XUE, G.-R., AND YU, Y. 2007. Boosting for transfer learning. In Proceedings of the 24th
international conference on Machine learning. ICML ’07. ACM, New York, NY, USA, 193–200.

DAI, W., YANG, Q., XUE, G.-R., AND YU, Y. 2008. Self-taught clustering. In Proceedings of the 25th interna-
tional conference on Machine learning. ICML ’08. ACM, New York, NY, USA, 200–207.

DAUMÉ III, H. AND MARCU, D. 2006. Domain adaptation for statistical classifiers. Journal of Machine
Learning Research.

DONG, A., CHANG, Y., JI, S., LIAO, C., LI, X., AND ZHENG, Z. 2009. Empirical exploitation of click data
for task specific ranking. In EMNLP ’09: Proceedings of the 2009 Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, Morristown, NJ, USA, 1086–
1095.

EVGENIOU, T. AND PONTIL, M. 2004. Regularized multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining. KDD ’04. ACM, New York,
NY, USA, 109–117.

FAN, R.-E., CHANG, K.-W., HSIEH, C.-J., WANG, X.-R., AND LIN, C.-J. 2008. Liblinear: A library for large
linear classification. J. Mach. Learn. Res. 9, 1871–1874.

FREUND, Y., IYER, R., SCHAPIRE, R. E., AND SINGER, Y. 2003. An efficient boosting algorithm for combin-
ing preferences. Journal of Machine Learning Research 4, 933–969.

FREUND, Y. AND SCHAPIRE, R. E. 1999. A short introduction to boosting. In In Proceedings of the Sixteenth
International Joint Conference on Artificial Intelligence. Morgan Kaufmann, 1401–1406.

FRIEDMAN, J. H. 2001. Greedy function approximation: A gradient boosting machine. Annals of Statis-
tics 29, 5, 1189–1232.

FRIEDMAN, J. H. AND POPESCU, B. E. 2003. Importance sampled learning ensembles. Journal of Machine
Learning Research 94305.

GAO, J., WU, Q., BURGES, C., SVORE, K., SU, Y., KHAN, N., SHAH, S., AND ZHOU, H. 2009. Model adapta-
tion via model interpolation and boosting for Web search ranking. In Proceedings of the 2009 Conference
on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Sin-
gapore, 505–513.

GENG, B., YANG, L., XU, C., AND HUA, X.-S. 2009. Ranking model adaptation for domain-specific search.
In CIKM ’09: Proceeding of the 18th ACM conference on Information and knowledge management. ACM,
New York, NY, USA, 197–206.

GEURTS, P. 2010. Learning to rank with extremely randomized regression trees. In Yahoo! Learning to Rank
Challenge Workshop in ICML.

GULIN, A. AND KURALENOK, I. 2010. Yetirank: Everybody lies. In Yahoo! Learning to Rank Challenge
Workshop in ICML.

HASTIE, T., TIBSHIRANI, R., AND FRIEDMAN, J. 2001. The Elements of Statistical Learning. Springer-
Verlag.

HERBRICH, R., GRAEPEL, T., AND OBERMAYER, K. 2000. Large margin rank boundaries for ordinal regres-
sion. Advances in Large Margin Classifiers, 115–132.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

Ranking Function Adaptation with Boosting Trees 1:29

HWA, R. 1999. Supervised grammar induction using training data with limited constituent information. In
Proceedings of the Conference of the Association for Computational Linguistics (ACL).

JARVELIN, K. AND KEKALAINEN, J. 2000. IR evaluation methods for retrieving highly relevant documents.
In Proceedings of ACM SIGIR Conference.

JI, S., ZHOU, K., LIAO, C., ZHENG, Z., XUE, G.-R., CHAPELLE, O., SUN, G., AND ZHA, H. 2009. Global
ranking by exploiting user clicks. In SIGIR. 35–42.

JIANG, J. AND ZHAI, C. 2007. Instance weighting for domain adaptation in NLP. In Conference of the Asso-
ciation for Computational Linguistics (ACL).

JOACHIMS, T. 2002. Optimizing search engines using clickthrough data. In Proceedings of ACM SIGKDD
Conference.

JOACHIMS, T., GRANKA, L., PAN, B., AND GAY, G. 2005. Accurately interpreting clickthrough data as im-
plicit feedback. In Proceedings of ACM SIGIR Conference.

LEGGETTER, C. AND WOODLAND, P. 1995. Flexible speaker adaptation using maximum likelihood linear
regression. In Proceedings of Eurospeech.

LEHMANN, E. L. AND CASELLA, G. 1998. Theory of Point Estimation. Springer-Verlag.
LI, P., BURGES, C. J., AND WU, Q. 2007. Mcrank: Learning to rank using multiple classification and gradi-

ent boosting. In Proceedings Of Neural Information Processing Systems (NIPS).
LIAO, X., XUE, Y., AND CARIN, L. 2005. Logistic regression with an auxiliary data source. In Proceedings of

the 22nd international conference on Machine learning. ICML ’05. ACM, New York, NY, USA, 505–512.
LONG, B., LAMKHEDE, S., VADREVU, S., ZHANG, Y., AND TSENG, B. L. 2009. A risk minimization frame-

work for domain adaptation. In CIKM. 1347–1356.
MANSOUR, Y., MOHRI, M., AND ROSTAMIZADEH, A. 2009. Domain adaptation: Learning bounds and algo-

rithms. In Proceedings Of Neural Information Processing Systems (NIPS).
MOHAN, A., CHEN, Z., AND WEINBERGER, K. 2010. Tree ensemble and transfer learning. In Yahoo! Learn-

ing to Rank Challenge Workshop in ICML.
NALLAPATI, R. 2004. Discriminative models for information retrieval. In Proceedings of ACM SIGIR Con-

ference. 64–71.
PAN, S. J. AND YANG, Q. 2010. A survey on transfer learning. IEEE Transactions on Knowledge and Data

Engineering 22, 10, 1345–1359.
PAVLOV, D. AND BRUNK, C. 2010. Bagboo: Bagging the gradient boosting. In Yahoo! Learning to Rank

Challenge Workshop in ICML.
RAINA, R., BATTLE, A., LEE, H., PACKER, B., AND NG, A. Y. 2007. Self-taught learning: transfer learning

from unlabeled data. In ICML ’07: Proceedings of the 24th international conference on Machine learning.
ACM, New York, NY, USA, 759–766.

SCHAPIRE, R. E. 2003. The boosting approach to machine learning: An overview. Nonlinear Estimation and
Classification”.

SOROKINA, D. 2010. Application of additive groves to the learning to rank challenge. In Yahoo! Learning to
Rank Challenge Workshop in ICML.

TSAI, M.-F., LIU, T.-Y., QIN, T., CHEN, H.-H., AND MA, W.-Y. 2007. Frank: a ranking method with fidelity
loss. In Proceedings of ACM SIGIR Conference. ACM, New York, NY, USA, 383–390.

VAPNIK, V. N. 1999. The Nature of Statistical Learning Theory. Springer Science and Bussiness Media,
LLC.

WANG, Z., SONG, Y., AND ZHANG, C. 2008. Transferred dimensionality reduction. In Proceedings of the
European conference on Machine Learning and Knowledge Discovery in Databases - Part II. ECML
PKDD ’08. Springer-Verlag, Berlin, Heidelberg, 550–565.

WU, P. AND DIETTERICH, T. G. 2004. Improving svm accuracy by training on auxiliary data sources. In
Proceedings of International Conference on Machine Learning (ICML). 871–878.

WU, Q., BURGES, C. J., SVORE, K., AND GAO, J. 2008. Ranking, boosting, and model adaptation. Microsoft
Research Technical Report.

WU, Q., BURGES, C. J. C., SVORE, K. M., AND GAO, J. 2010. Adapting boosting for information retrieval
measures. Inf. Retr. 13, 3, 254–270.

XU, J. AND LI, H. 2007. AdaRank: a boosting algorithm for information retrieval. In Proceedings of ACM
SIGIR Conference.

ZHENG, Z., CHEN, K., SUN, G., AND ZHA, H. 2007. A regression framework for learning ranking functions
using relative relevance judgments. In SIGIR. 287–294.

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

1:30 K. Chen et al.

ZHENG, Z., ZHA, H., ZHANG, T., CHAPELLE, O., CHEN, K., AND SUN, G. 2007. A general boosting method
and its application to learning ranking functions for web search. In Proceedings Of Neural Information
Processing Systems (NIPS).

Received June 2010; revised January 2011; accepted July 2011

ACM Transactions on Information Systems, Vol. 10, No. 1, Article 1, Publication date: October 2011.

