
Adapting Ranking Functions to User Preference
Keke Chen, Ya Zhang, Zhaohui Zheng, Hongyuan Zha, Gordon Sun

Yahoo!
{kchen,yazhang,zhaohui,zha,gzsun}@yahoo-inc.edu

Abstract— Learning to rank has become a popular method
for web search ranking. Traditionally, expert-judged examples
are the major training resource for machine learned web
ranking, which is expensive to get for training a satisfactory
ranking function. The demands for generating specific web
search ranking functions tailored for different domains, such
as ranking functions for different regions, have aggravated this
problem. Recently, a few methods have been proposed to extract
training examples from user clickthrough log. Due to the low
cost of getting user preference data, it is attractive to combine
these examples in training ranking functions. However, because
of the different natures of the two types of data, they may
have different influences on ranking function. Therefore, it is
challenging to develop methods for effectively combining them in
training ranking functions. In this paper, we address the problem
of adapting an existing ranking function to user preference
data, and develop a framework for conveniently tuning the
contribution of the user preference data in the tuned ranking
function. Experimental results show that with our framework it
is convenient to generate a batch of adapted ranking functions
and to select functions with different tradeoffs between the base
function and the user preference data.

I. INTRODUCTION

Web search has been an important tool in our life. Today,
there are billions of web pages accessible on the Internet.
These web pages are highly diversified in terms of content,
format and quality. It is the basic challenge for search engines
to rank web pages for a given query to find the most relevant
one from such a huge amount of diversified data. Recently,
machine learning to rank has become a popular approach in
web search ranking [1], [2], [3], where manually labeled web
search results are the major source of training data.

Typically, web relevance judgers follow certain guidelines
to label the relevance of web search results. These guidelines
roughly measure the observed relevance between a query and
the content of a web page and decide a relevance grade for the
query-document pair. Such expert-judged training examples
have certain advantages: the queries for judgment can be
carefully selected for different purposes and the judged results
can be thoroughly verified and tuned. Due to these properties,
the expert-judged examples are often regarded as the “gold
set” for training ranking functions. However, it is very costly
to manually label and verify a large number of web search
examples, which are often required for learning a satisfactory
ranking function. This issue is even aggravated when we need
to train multiple ranking functions for different domains. It is
also arguable that the opinions of a few experts on relevance
may not be representative enough for a highly diversified user
population.

Recently, implicit relevance judgments derived from user
clickthrough logs have become another attractive resource for
machine learned ranking due to the relatively low cost to
obtain them. Joachims et al. [4], [2] and Agichtein et al. [5], [6]
have shown that relevance judgments or features related to user
preference that are mined from user clickthrough log can also
be helpful for training ranking functions. However, relevance
judgments from click log are usually relative judgments, i.e.,
we know only document d1 is better than d2 for certain query
q, which is different from the expert judged examples that are
labeled with absolute grades. Especially, compared to expert-
judged examples, user preference can be more dynamic, which
may better reflect some epidemic topics, such as movies,
fashion, recent events, or user-group biased searches.

Due to the different natures of the two types of data, directly
combining them may not give a satisfactory ranking function.
In this paper, we propose a framework based on empirical
risk minimization (ERM) [7] and tree-based gradient boosting
(GBT) [8] to address the problem of flexibly combining the
two types of data. The GBT technique for ordinal regression
(regressing to the grades) has been shown effective in mod-
eling ranking functions [9]. Therefore, we decide to adapt
GBT-based ranking functions with user preference. Concretely,
this framework consists of two phases: in the first phase, the
expert-judged examples 1 are used to train a nonlinear boosted
tree model with regression on the target relevance grade. In the
second phase (the tuning phase) the model is transformed to
a hyper linear tree model, and the user preference examples
are used to tune the transformed model. We designed three
algorithms for tuning the base model, which are 1) stochastic
gradient descent, 2) closed-form optimization, and 3) hinge-
loss optimization.

Our framework allows us to flexibly tune the contributions
of the two types of data in the final ranking model, by control-
ling the parameter in the tuning phase. This flexibility is im-
portant due to the varying quality and the representativeness of
the two types of training data in practice. In addition, in order
to make the contributions from both types of data measurable,
we also design the B measure.With different parameter setting,
different tuning algorithms, and the B measure, we are able to
identify models with balanced performance to the two types
of data in experiments.

This paper proceeds as follows. In Section II we will
review some related work in learning to rank and extract-
ing user preference data from clickthrough logs. Then, we

1They may also not be particularly prepared for the target domain.

give notations and definitions in Section III and present the
framework including the three tuning algorithms in Section
IV. Experimental results are presented in Section V.

II. RELATED WORK

Recent research on learning to rank web search results has
been focused on two aspects: developing effective learning
algorithms, and mining useful information from clickthrough
data to improve ranking functions. Most new learning algo-
rithms are derived from traditional classification or regression
algorithms. Nallapati [10] formalizes the information retrieval
problem as a binary classification problem, i.e., class “rele-
vant” vs. class “irrelevant” to the given query. This might be
too rough for the ranking problem, however. In fact, multi-
grade expert-judged examples are more widely used in training
ranking functions, which naturally cast the ranking problem as
an ordinal regression problem, where each query-document
pair is mapped to a relevance grade. SVM technique has
been extensively used to address the ordinal-regression based
ranking approach, such as, Ranking SVM by Herbrich et al.
[1]. PRank [11] maximizes the margin with a perceptron like
algorithm. In addition, Gradient Boosting Tree [8] also works
effectively [9] for nonlinear regression, which will be used in
our approach to train the base model.

Moreover, there are several algorithms working on pairwise
training examples. RankNet [3] applies neural network to
minimize the number of reversely ordered pairs, and another
“Ranking SVM” [4] tries to minimize the number of reversely
ordered pairs with SVM technique. RankBoost [12] applies
Ada boosting techniques to pairwise training examples.

The rest interests have been on mining relevance exam-
ples or click-related features from user implicit feedback, or
clickthrough logs. There are discussions on extracting effective
pairwise relevance examples from the clickthrough log [2], [?],
[13], [14] and how to derive effective click-related features [6],
[5]. The user preference examples are usually in the form of
pairs, reflecting relative relevance between a pair of documents
to a query, which are extracted with certain strategy such as
“Skip Above” [2]. A few learning algorithms, as we discussed
earlier, have been developed to train on such pair examples
directly.

III. NOTATIONS AND DEFINITIONS

In this section, we define the basic concepts and notations
used in this paper. In general, training examples in learning
to rank are described by the set of potential user queries
Q, the set of accessible documents D in web, and a small
set of labels/grades L, approximately reflecting the level of
relevance. We define the two types of training data as follows.

Expert Judged Examples. This type of data is labeled
by relevance experts who follow some agreed guidelines. L
usually consists of a small number of integer grades, e.g.,
five grades, representing the degree of relevance level for a
document d to a specific query q. Let l be the grade. These
training examples are usually represented by (q, d, l). For a
given query q, the ideal ranking is given by the list of examples

{(q, di, li)} ordered by their labels li. Often, metrics like DCG
or NDCG [15] are used to evaluate the quality of an arbitrary
ranked list.

User Preference Examples. User preference examples are
derived from clickthrough logs, which are often pairwise
examples [2], [4], representing relative relevance for pairs of
documents (d1, d2). We use (q, d1, d2) to represent a user
preference example, where d1 is more relevant to q than d2.
Sometimes, d1 >r d2 is also used to represent the relative
relevance between the two documents. Precision on test pairs
is the commonly used metric for the ranking performance on
the pairwise data.

Note that expert-judged examples can be easily converted
to pairwise examples, but normally we are unable to convert
the pairwise examples to examples with absolute grades.
Therefore, algorithms working on the directly combined data
are often pairwise learning algorithms.

Ranking Function. With sufficient amount of training
examples, a ranking function H can be trained. Given a query
q and a document d, the ranking function H(q, d) will give a
score s ∈ R, where R is the set of real number.

H : Q×D → R
with H we are able to determine a ranking for all documents
D for any given query q − {(q, di, si)} are simply ordered by
the scores si.

In practice, we will use a set of features xq,d to describe the
query, document, and query-document relationship. Accord-
ingly, xq,d consists of three sets of features: features for query
xQ, features for document xd, features for query-document
relationship xQD.

xq,d = [xQ,xD,xQD]

We will give a more detailed description about features in
experiments. With the definition of feature vector xq,d, the
ranking function H(q, d) is in fact represented as H(xq,d).

As a convention, we will use bold characters to represent
vectors, and regular characters to represent scalars, constants
or function names.

IV. LEARNING RANKING FROM MULTIPLE SOURCES

Assume that we have the two sets of training data ready
generated from different sources. A simple method is to
convert the expert judged examples to pairwise examples and
simply combining them for pairwise training. However, this
simple method may not give satisfactory functions, which we
will show in experiments. More importantly, we will need
certain level of flexibility in combining the data and control
their contributions in the final ranking function. In this section,
we propose a new method based on the framework of empirical
risk minimization [7].

Our method consists of two phases. The first phase will
generate a base model with one type of training data T1,
which is denoted as H(w0,x), where w0 is the tunable model
parameter and x is the feature vector for a given query-
document pair (q, d). In the second phase, the model parameter

w0 are tuned with the other set of training data T2, with the
following ERM framework.

arg min
w
{ 1
n

n∑

i=1

L(H(xi,w), li) + λ ‖ w −w0 ‖2} (1)

L in the first item is a loss function and λ in the second item is
the regularizor constraining the deviation of w from original
model parameter w0.

There are several challenges in implementing this method
in practice. First, we need to determine an appropriate base
model, from which the optimization of Eq. 1 can be effectively
done. Second, the loss function should be selected with respect
to the property of the second set of training data. The two
problems are tightly correlated and seem complicated.

To simplify the problems, we first decide to take the
gradient-boosting-trees based ranking function as the base
model, which can be transformed to a “hyper linear” base
model if we allow only a subset of parameters tunable. It
will be convenient to use pairwise training examples to tune
the hyper linear base model with the above framework. In the
following subsections, we will describe the definition of hyper
linear model, then we will discuss the optimization methods
for different loss functions based on the framework of Eq. 1
and the hyper linear base model.

A. Using Hyper Linear Model as the Base

The basic idea of “hyper linear model” is to transform the
original feature vectors into another set of feature vectors so
that a linear model can be learned on the transformed feature
vectors. Additive models [16] are good examples of hyper
linear models. An additive model consists of a set of sub-
functions, hi, hi ∈ H, i = 1, . . . , k. Linearly combining them
gives us a satisfactory model H(w0,x)

H(w0,x) =
k∑

i=1

w0,ihi(x) (2)

In practice, hi may also generate a vector rather than one
value. Then, w0,i should be a vector too, w0,i. The above
model becomes

H(w0,x) =
k∑

i=1

wT
0,ihi(x) (3)

If hi is regarded as a feature transformation function, the func-
tion H is a linear function in terms of the transformed features.
The transformation of the original feature by his will gen-
erate a transformed vector hT

x = [h1(x), h2(x), . . . , hk(x)].
Together with the linear combination parameters wT

0 =
[w0,1, . . . ,w0,k], we get H(w0,x) = wT

0 · hx. Hyper linear
model will enable us to conveniently implement several op-
timization methods based on the framework Eq.1 − we will
focus on tuning the linear combination parameters w0 .

There are a few excellent techniques for learning an additive
model. For example, gradient boosting tree (GBT) [8], is an
effective way for both regression and classification. It has
been successfully applied to learning ranking functions [9],

recently. In our framework, we will use GBT to learn the base
ranking function and transform it to a hyper linear base model.
GBT progressively generates a set of additive decision trees
hi, i = 1 . . . k, each of which has m leaf nodes. The latter
trees are trained on the residues of the prediction given by the
previously trained trees. It uses gradient boosting technique
to learn the tree structure and the weighting vector w0,i for
each tree hi. Concretely, after training the tree hi, each node
corresponds to a predicate, e.g., “feature 1 ¡ threshold 1”, and
each leaf node eij in the tree hi corresponds to one decision
path as well as one transformation to the feature vector, with
w0,i,j as the weight of this transformation. When the model is
applied to an original feature vector x, the vector goes through
each tree hi and always leads to only one leaf node, assuming
it is eij . Then, the output of hi to x can be represented as
a selective vector [ei1, ei2, . . . , eim] with all entries 0 except
eij = 1. wT

0,i · hi(x) is the output of the hi tree. The sum
of all tree output gives the final ranking score. Therefore, the
GBT model can be transformed to a hyper linear model in the
form Eq. 3.

k
Fig. 1. GBT generates a specified number of trees, and the
weights w0 are associated with the leaf nodes.

Figure 1 illustrated the structure generated by GBT algo-
rithm. GBT training algorithm will determine the structure
of trees and the corresponding leaf-node weights, with the
specified parameters, such as the number of trees, the number
of leaf node per tree, and the learning rate [8]. As a result, GBT
learns an ordinal regression model with the labeled training
examples.

B. Algorithms for Incorporating User Preference

We have generated the hyper linear based model with
gradient boosting tree training algorithm. Now we try to
incorporate the user preference data with the framework Eq. 1.
As we have defined, examples of user preference exist in the
form of pairs (q, d1, d2), where d1 is more relevant than d2 in
terms of the query q. First, we need to transform the pairwise
data so that the training algorithm can take them conveniently.

Delta Transformation. Since hi is fixed in the tuning
phase, for conveniently using the pair examples (q, d1, d2) in
optimization, we transform them to the following delta form.
We define the Delta Feature Vector as

∆xd1,d2 = hxd1
− hxd2

assuming the greater the prediction score, the more relevant the
document to the query. When the ranking function H(w,x) =
wT ·hx is used, in order to keep the right order of d1 and d2,
the following relationship should be preserved.

H(w,xd1)−H(w,xd2) = wT ·∆xd1,d2 > 0

For clear presentation, we define the Delta Function f for
the pair.

f(w, ∆xd1,d2) = H(w,xd1)−H(w,xd2)

Since only the ordering matters in pair examples, we define
the Delta Label as

∆ld1,d2 =

{
1 d1 >r d2

−1 d2 >r d1

(4)

By definition, if f(w0, ∆xd1,d2) > 0, we derive the preference
d1 >r d2, otherwise d2 >r d1. The goal is to learn such a
function f so that the output preference is as consistent with
the user preference as possible.

With the hyper linear base model and the delta definitions,
we are ready to optimize the final ranking function based on
the framework Eq. 1. The selection of loss functions and the
optimization of Eq. 1 become much easier now. We discuss
two types of loss functions and their optimization methods in
the following discussion. One of the loss functions is “Mean
Square Error (MSE) loss function”, which is normally used in
regression modeling. The other is called hinge loss function,
which is used in Support Vector Machine (SVM) modeling
[16].

The above loss functions and the corresponding basic op-
timization methods are well known. But when they are com-
bined with the framework, we need to describe the particular
algorithms in more details.

1) Optimization with MSE Loss: We first try the Mean-
Square-Error (MSE) loss function in the framework Eq. 1 for
incorporating the user preference data. MSE loss function is
defined as follows.

LMSE(f(w, ∆x),∆l) = (f(w, ∆x)−∆l)2

If there are n pairs in training dataset, with the Delta trans-
formation, the framework can be implemented with

arg min
w
{ 1
n

n∑

i=1

(f(w, ∆xi)−∆li)2 + λ ‖ w −w0 ‖2} (5)

where the initial value of the weight vector w is set to w0,
i.e., the base model’s weight vector.

We use two methods to optimize Eq. 5. The first method is
called Stochastic Gradient Descent (SGD) [17]. SGD follows
the idea of Gradient Descent, but in each iteration it randomly
chooses some data sample(s) to calculate the gradient and uses
this gradient to revise the weight vector w. SGD is particularly
good for noisy or large datasets. Because of its randomization
nature, it is possible to escape from local minima caused by
noises, and random sampling in each iteration also dramati-
cally reduces the huge computational cost in the direct gradient
descent.

Closed Form Solution (CF). If the training examples are
small and not so noisy, we can also use a closed form solution
to Eq. 5. Let Q = 1

n

∑n
i=1(f(w, ∆xi)−∆li)2+λ ‖ w−w0 ‖2.

The closed form solution is obtained by letting

∂Q

∂w
= 0

It follows

(
n∑

i=1

∆xi∆xT
i + λI)w =

n∑

i=1

∆li∆xi + λw0 (6)

Solving Eq. 6, we can get w directly.
2) Optimization with Hinge Loss (SVML): Suppose we

have a pair of documents d1 and d2, d1 >r d2 (or d1 <r d2) as
derived from user preference. Because it is difficult to quantify
the difference in user preference between d1 and d2, for the
training data, the Delta label that we assigned to each training
pair can be an arbitrary positive number for d1 >r d2 and an
arbitrary negative number for d1 <r d2. With the MSE loss,
the selection of Delta labels will affect the optimization, which
is not what we desire. In fact, for d1 >r d2, as long as the
predicted Delta label is positive, i.e. ld1− ld2 > 0, the ranking
is correct.

Due to the above problem, we also try hinge loss based
optimization. Considering the Delta label we assigned to each
training pair is either +1 or −1, hinge loss is defined as
follows.

Lsvm(f(w, ∆x), ∆l) = [1−∆lf(w,∆x)]+ (7)

where ‘+’ means only the positive values are accounted as the
penalty. With hinge loss, we are modeling the optimization
problem as a two-class classification problem: for any pair
(d1, d2), if d1 is more “relevant” than d2 for a certain query q,
the pair falls into positive class, otherwise, negative class. This
model, to some extent, bypasses the problem of quantifying the
difference in user preference between the pair of documents.

Plugging Eq. 7 into the framework Eq. 1, we get

arg min
w
{ 1
n

n∑

i=1

[1−∆lif(w, ∆xi)]+ + λ ‖ w −w0 ‖2} (8)

Instead of directly solving Eq. 8, we solve the following
quadratic programming problem.

minw
1
2 ‖ w −w0 ‖2 +C

∑
i ξi

s.t. ∆lif(w, ∆xi) ≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n(9)

It is straight-forward to prove that Eq. 8 and Eq. 9 are
equivalent to each other when C = 1

λ . This formulation
closely resembles that of SVM models.

Applying the optimization procedure similar to the SVM
algorithm, finally, we get the approximation of the function f
based on the hinge loss function.

f̂(∆x) = wT
0 ∆x +

n∑

i=1

αi∆li∆xT
i ∆xi (10)

Eq. 10 consists of two components: the base model and the
additional component controlled by λ. Intuitively, large λ, i.e.,

small C, will constrain the αi values to a small range, which
in turn reduces the deviation of Eq. 10 from the base model.
We refer this algorithm as “SVML” in later discussion.

C. Balancing Contributions of Training Datasets

Our framework provides the possibility tuning the con-
tributions of the two training datasets in the final ranking
function by the regularizor item λ in the framework (Eq.
1). It intuitively controls the deviation of the final model to
the base model. Concretely, the smaller the λ parameter, the
lower the restriction is put on the final weights w. w then
deviates more from w0, preferring the model identified by the
second set of training data. However, we do not have a metric
quantitatively measuring the contributions yet. In this section,
we will propose one metric for this purpose.

If the two sets of data are perfectly consistent, the tuned
model will hopefully perform better on both sets of data.
However, due to different data quality and distributional bias,
we may want to make tradeoff between the two types of
data. 1) If the base model is trained with relatively small
number of labeled examples and we are not confident with
the generalization ability of the base model, we would like the
second dataset to contribute more to the final model. In this
case, we will prefer smaller λ. 2) The base model is trained
with a descent amount of high-quality expert-judged examples,
but we also observed that user preference is slightly different
from the expert judgment. Then, we may want to fine tune the
base model. In this case, we will set a larger λ to constrain the
model deviation. The designed metric will help us estimate the
balance of contributions between the two sets of data and help
us to determine the optimal λ and the appropriate optimization
algorithm.

Ideally, we want the final model to improve the performance
for both types of data. This goal may be achieved if the two
datasets are highly consistent. When they are not consistent,
there is always a tradeoff, making the final model prefer one
set of data to the other. For quantifying this tradeoff in the
training, we define the B measure based on a similar form
to the well-known F measure [18]. B measure defines the
weighted harmonic mean of the ranking quality on the two
types of data. The balanced score should be based on two
metrics that are in the same range, e.g., [0, 1]. Otherwise, the
result will be biased by the one with larger range. Concretely,
we let µ and ν represent the two metrics that evaluate the
fitness of the model to the expert judged examples and the
user preference examples, respectively. We then define the B
measure as follows.

B =
2µ · ν
µ + ν

Now we discuss how to select appropriate metrics as µ and
ν. Since the expert-labeled data have multiple grades, we will
use normalized discounted cumulative gain (NDCG) [15] to
evaluate the test result on the expert judged examples, i.e.,
as the µ metric. NDCG is defined as follows. Let the five-
grade labeling scheme be encoded with integers ‘4’ to ‘0’,
corresponding to the most relevant documents to the most

irrelevant documents to the query q. Suppose there are k
documents used for testing query q and each query-document
pair (q, di) in the test set is labeled with a grade li. The
testing will give a list of the k documents that is sorted by the
scores given by the ranking function H to each pair (q, di).
Let i = 1, . . . , k be the order of the sorted documents. The
NDCGk score is computed for the sorted list as follows.

NDCGk =
1
ψ

k∑

i=1

2l
i − 1

log(i + 1)

where ψ is the normalization constant so that a perfect
ordering of the results for the query q will receive NDCG score
of 1.0. By definition, any non-perfect ordering will result in a
NDCG score less than 1.0 and greater than 0. The closer to
1.0 the better the ranking is.

Pairwise user preference is not multi-graded, however. The
ν metric is thus simply based on the prediction on the
preference over pairs of query-documents. Again this precision
metric will be on the range [0, 1]. Therefore, both µ and ν are
in the same range and they are applicable to the B measure.

The above B measure equally weights the two metrics,
which does not include preference on any one of the datasets.
In case that we think one set is more important than the other,
an unbalanced B measure can be used. Let α be the proportion
of importance between ν and µ, e.g., α = 2 weights ν twice
as much as µ.

Bα =
(1 + α) · µ · ν

α · µ + ν

In experiments, we will use the balanced B measure (α =
1), while it is also convenient to set different α for different
preferences. Together with the λ tuning, we are able to find
a model that will give what we desire in balancing the
contributions of the two types of data.

V. EXPERIMENTAL RESULTS

In this section, we present three sets of experiments. We
will first test the inconsistency between the two types of
experimental data − if they are consistent we will not need
to tune λ to find the balance. The second set of experiments
studies the properties of the three proposed tuning algorithms.
The last set of experiments will compare the balanced ranking
quality of the models generated by our method, to the models
generated by Ranking SVM [4] (RSVM). RSVM is a well-
known open-source ranking model that minimizes the number
of reversely ordered pairs based on the same idea of linear
SVM.

A. Data Collections

In this section, we first describe the features used in our
modeling, the methods for collecting the two types of data in
our experiments, and then the two experimental datasets.

1) Feature Vectors: As we mentioned before, each query-
document pair is represented by a feature vector. For query-
document pair (q, d), a feature vector x = [xQ, xD, xQD] is
generated and the features generally fall into the following
three categories:

• Features modeling user query, xQ. They are dependent
on the query q only and have constant values across all
the documents d ∈ D. Such features may include, the
number of terms in the query, frequency of the terms in
the corpus, query classification (name query, adult query,
or navigational query), and so on and so forth. Totally
over ten query features are used in training.

• Features modeling, xD. They are dependent on the
document d only and have constant values across all
the queries q ∈ Q. Such features may include, the
number of inbound links pointing to the document,
the number of distinct anchor-texts for the document,
the language/region identify of the document, document
classification(such as spam page, good quality page, or
product page), and etc. More than tens of such features
are used in training.

• Features modeling the query-document relationship,
xQD, which comprise features dependent on the relation
of the query q with respect to the document d. Such
features may include, the number of times each query
term appears in the document d, the number of matched
terms in the anchor-texts of the document d, etc. There
are hundreds of such features used in training.

The few mentioned concrete features are among the most
important features in modeling ranking functions with GBT
method.

2) Expert-judged Examples: For each query q, we collect
a set of results from a commercial web search engine. The
example (q, d) is labeled with five-level grades from the
most relevant “Perfect Match” to the totally irrelevant “Bad
Result”, which are mapped to (4, 3, 2, 1, 0). The relevance
experts follow some guidelines to give a grade for each query-
document pair.

3) User Preference Examples: We also examine certain
amount of clickthrough data from the commercial search
engine and extract a set of user preference data as follows. For
a query q, we consider two documents d1 and d2 in the result
set for q. Assume that in the cleaned clickthrough data, d1 has
c1 clicks out of n1 impressions, and d2 has c2 clicks out of n2

impressions for the same query q. In the above aggregation,
we also remove noisy clicks as much as possible. We want
to only consider document pairs d1 and d2 for which either
d1 or d2 is significantly better than the other in terms of click
through rate c/d for a particular query. To this end, we assume
that clicks in user sessions obey binomial distribution, which
is also held by user preference study in paper [2].

A binomial test is performed to distinguish whether the two
ratios c1/d1 and c2/d2 are significantly different. Among the
significantly different pairs, we apply rules similar to “Skip-
Above” [2] to extract user preference.

Dataset Expert Judged User Preference
DS1 4K 12.5K
DS2 25K 20.5K

TABLE I
DESCRIPTION OF DATASETS

4) Datasets: Two sets of real datasets are used in exper-
iments. Each set consists of an expert-judged dataset and a
user preference pair dataset extracted from the clickthrough
log of a major commercial web search engine in two different
regions, respectively. In Table I, the numbers under “Expert
Judged” mean the number of labeled examples (q, d, l) in
the expert-judged dataset, and those under “User Preference”
are the number of preference examples (q, d1, d2), where
d1 >r d2. DS1 has more user preference pairs than expert-
judged examples, while DS2 has similar size on both types of
data.

B. Inconsistency Test
In the first set of experiments, we use RSVM to explore

the difference between the two types of training data. RSVM
takes both types of data as input, but internally the absolute
judgments are converted to pairs. If the two sets of data are
from the same distribution, the RSVM model trained on one
set of data will have a similar precision over the other set of
data.

Experimental result in Figure 2 shows that the difference,
which is statistically significant. “RSVM judge” represents
the model trained on expert-judged data and “RSVM user”
represents the model trained on user preference data. Figure
2 shows the testing result on the two types of data, with
five-fold cross validation. The five-fold random splitting is
on queries, rather than on query-document pairs, because the
ranking quality has to be evaluated by queries if absolute
judgments are used. The tests on the two datasets show similar
pattern. Clearly, the models trained on expert-judged data do
not fit user preference data well, and vice versa. Therefore, it
will be meaningful to see how to tune the training process to
find a balance between the two types of data. We will describe
this in next section.

0

0.2

0.4

0.6

0.8

1

Judge (NDCG) User(Prec)

R
es

ul
t

RSVM-judge RSVM-user

0

0.2

0.4

0.6

0.8

1

Judge (NDCG) User(Prec)

R
es

u
lt

RSVM-judge RSVM-user

Fig. 2. Testing RSVM models (Left figure for DS1 and right for DS2)

C. Tradeoffs between Expert Judged Data and User Prefer-
ence Data

With the B metric (α = 1) as the the balance measure,
we run a set of experiments to see how the three proposed

algorithms perform with varying λ parameter. The following
procedure is followed in practise. 1) For each algorithm, we
train and cross-validate a set of models with a few candidate λ
values; 2)Then, we evaluate the models with the B measure,
and find the algorithm and its λ setting that gives the best
B measure among all candidate models; 3)With the selected
algorithm and λ we train the final model with all available
data from both sources. λ can also be fine-tuned around a
small range to find an even better final model.

Our experiments will focus on the first two steps with five-
fold cross-validation for both the base model and the candidate
tuned models. Again, the five-fold random splitting is on
queries. The base model is generated with the GBT algorithm
[8] on the manually labeled training data. GBT algorithm
has three parameters: the number of trees, the number of
leaf nodes per tree, and the learning rate, the optimal values
of which are chosen through cross-validation in training the
base model. The candidate tuned models are generated with
the three algorithms: SGD, Closed Form (CF), and SVM-
Loss Refinement (SVML), for a list of regularization factor
λ = [0.01, 0.1, 1, 10, 102, 103, 104], respectively.

For clear presentation, we will only show the detailed result
on DS1, while also present the summarized result on DS2.
Two metrics are used to calculate the B measure: NDCG5
that evaluates the quality of ranking the top 5 URLs for each
query for the labeled dataset, and order precision for predicting
user preference pairs.

Figure 3 shows the result with SGD optimization. Both
NDCG5 and pair precision change significantly over λ 0.01
∼ 100, while stay constant for larger λ. Remember that λ
controls the deviation of the tuned model to the base model.
Large λ forces w to be very close to w0. Therefore, the
models optimized with large λ will be almost identical to the
base model with some small variation, which do not show
large change on both NDCG5 and pair precision. In Figure 3,
the optimal balanced model happens around λ = 1, where B
measure is maximized.

Figure 4 and 5 show the results with closed-form and
SVM-Loss optimization, respectively. In contrast to SDG,
both closed-form and SVM-Loss stay stable with small λ.
These Figures imply that with small λ the component of loss
function in the framework for both CF and SVML dominates
the overall risk function. In fact, we need very large λ to
promote the difference between w and w0. The optimal
models appear around λ = 1000 for both closed-form and
SVM-Loss optimization.

Figure 6 summarizes B measure for all three algorithms and
all λ settings. Overall, for DS1, SGD at λ = 1 will generate
the best model and SVM Loss at λ = 1000 is very close
to the best SGD. Thus we can choose SGD with λ = 1 for
training the final model for DS1. Similarly, for DS2, SGD at
λ = 0.01 outperforms other candidates (Figure 7). However,
so far there is no clear clue whether one algorithm performs
absolutely better than others in all cases.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0
1 0.1 1 10 10

0
10

00

10
00

0

10
00

00

Lambda

B
 M

ea
su

re

SGD: DS1
Closed_form: DS1
SVML: DS1

Fig. 6. Summary of B measures for
different algorithms and λ settings
for DS1.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0
1 0.1 1 10 10

0
10

00

10
00

0

10
00

00

Lambda

B
 M

ea
su

re

SGD: DS2
Closed_form: DS2
SVML: DS2

Fig. 7. Summary of B measures for
different algorithms and λ settings
for DS2.

D. Comparison with Ranking SVM

In Section V-B we have shown that RSVM models trained
on different types of data have significantly different perfor-
mance. Namely, RSVM trained on one type of data has much
better performance on the same type of data, while performs
not so well on the other. It is intuitive to understand that such
RSVMs will not have satisfactory balanced performance on
both types of data. Then, why not pool the two types of data
together to train a unified model? If this is possible, will the
unified model outperforms our balanced models? We are going
to answer these questions in this section.

0

0.2

0.4

0.6

0.8

1

Judge (NDCG) User(Prec)

R
es

ul
t

RSVM-judge RSVM-mix RSVM-user

0

0.2

0.4

0.6

0.8

1

Judge (NDCG) User(Prec)

RSVM-judge RSVM-mix RSVM-user

Fig. 8. Performance of RSVM mix compared to other RSVM models

Pooling the two types of data together as one unified training
set is possible for RSVM modeling. In fact, RSVM takes
both types of data as input. The result of RSVM with pooled
training data (RSVM mix) matches what we expect − its
performance is better balanced in terms of both types of data
(Figure 8).

We then compare our balanced models to RSVM models.
Figure 9 show the comparison on DS1 and DS2. “Base Model”
represents the result of the GBT base model. “Our best model”
represents the best result generated by our method, which
is optimized by one of the three algorithms with certain λ
setting. “RSVM judge”, “RSVM user”, “RSVM mix” are the
RSVM models described earlier. The result clearly shows that
our best models have the best performance in terms of B
measure among all methods and models, while “RSVM mix”
is ranked second with significantly lower B measure. Figure
10 also shows that our balanced models are able to sacrifice a
little (DS1) or have almost no loss (DS2) on the performance
of expert judged examples, to achieve a better balanced
performance.

0.4

0.5

0.6

0.7

0.8

0.9

1

0.
01 0.

1 1 10 10
0

10
00

10
00

0

10
00

00

Lambda

SGD: NDCG5

SGD: PairPrecision
B-Measure

Fig. 3. Evaluation of SGD on DS1

0.4

0.5

0.6

0.7

0.8

0.9

1

0.01 0.1 1 10 100 1000 10000 1E+05
Lambda

Closed_form: NDCG5

Closed_form: PairPrecision

B-Measure

Fig. 4. Evaluation of closed-form on DS1

0.4

0.5

0.6

0.7

0.8

0.9

1

0.0
1 0.1 1 10 10

0
10

00

10
00

0

10
00

00

Lambda

SVML: NDCG5

SVML: PairPrecision

B-Measure

Fig. 5. Evaluation of SVM-Loss on DS1.

0.5

0.6

0.7

0.8

DS1 DS2

B
 M

ea
su

re

Our Best Model RSVM-Mix
Base Model RSVM-judged
RSVM-user

Fig. 9. B measure for all models.

0

0.2

0.4

0.6

0.8

1

DS1 DS2

N
D

C
G

5

Base Model Our Best Model
RSVM-Mix RSVM-judged
RSVM-user

Fig. 10. NDCG5 on manually labeled examples for
all models.

VI. CONCLUSION

Manually labeled examples and automatically extracted user
preference are the two major training data sources for web
search ranking. Due to the large cost of getting labeled training
data, we often prefer to use user preference data as the
complementary source. Due to the different natures of the two
types of data, it is challenging to generate a model adapting
well to both datasets. In this paper, we present a framework
for flexibly combining these two types of data. Namely, in
this framework a base model is trained with manually labeled
data and then tuned with user preference examples. The B
measure is proposed to evaluate the balanced performance on
both types of data. By tuning the regularization parameter λ
and the bias in the B measure, we can conveniently identify

the models we want. Experiments show that with the proposed
framework, we are able to find models with satisfactorily
balanced performance, compared to the existing methods.

REFERENCES

[1] R. Herbrich, T. Graepel, and K. Obermayer, “Large margin rank bound-
aries for ordinal regression,” Advances in Large Margin Classifiers, pp.
115–132, 2000.

[2] T. Joachims, L. Granka, B. Pan, and G. Gay, “Accurately interpreting
clickthough data as implicit feedback,” Proc. of ACM SIGIR Conference,
2005.

[3] C. Burges, T. Shaked, E. Renshaw, A. Lazier, M. Deeds, N. Hamilton,
and G. Hullender, “Learning to rank using gradient descent,” Proc. of
Intl. Conf. on Machine Learning (ICML), 2005.

[4] T. Joachims, “Optimizing search engines using clickthrough data,” Proc.
of ACM SIGKDD Conference, 2002.

[5] E. Agichtein, E. Brill, S. Dumais, and R. Ragno, “Learning user
interaction models for predicting web search result preferences,” Proc.
of ACM SIGIR Conference, 2006.

[6] E. Agichtein, E. Brill, and S. Dumais, “Improving web search ranking
by incorporating user behavior information,” Proc. of ACM SIGIR
Conference, 2006.

[7] V. N. Vapnik, The Nature of Statistical Learning Theory. Springer
Science and Bussiness Media, LLC., 1999.

[8] J. H. Friedman, “Greedy function approximation: A gradient boosting
machine,” Annals of Statistics, vol. 29, no. 5, pp. 1189–1232, 2001.

[9] Z. Zheng, K. Chen, G. Sun, and H. Zha, “A regression framework for
learning ranking functions using relative relevance judgments,” in SIGIR,
2007, pp. 287–294.

[10] R. Nallapati, “Discriminative models for information retrieval,” Proc. of
ACM SIGIR Conference, pp. 64–71, 2004.

[11] K. Crammer and Y. Singer, “Pranking with ranking,” the conference on
Neural Information Processing Systems (NIPS), 2001.

[12] Y. Freund, R. Iyer, R. E. Schapire, and Y. Singer, “An efficient boosting
algorithm for combining preferences,” Journal of Machine Learning
Research, vol. 4, pp. 933–969, 2003.

[13] S. Fox, K. Karnawat, M. Mydland, S. Dumias, and T. White, “Evaluating
implicit measures to improve web search,” ACM Trans. on Information
Systems, vol. 23, no. 2, pp. 147–168, 2005.

[14] F. Radlinski and T. Joachims, “Evaluating the robustness of learning
from implicit feedback,” W4: Learing in Web Search, at 22nd Intl. Conf.
on Machine Learning, 2005.

[15] K. Jarvelin and J. Kekalainen, “Ir evaluation methods for retrieving
highly relevant documents,” Proc. of ACM SIGIR Conference, 2000.

[16] T. Hastie, R. Tibshirani, and J. Friedmann, The Elements of Statistical
Learning. Springer-Verlag, 2001.

[17] W. Gardner, “Learning characteristics of stochastic-gradient-descent
algorithms: A general study, analysis, and critique,” Signal Processing,
vol. 6, no. 2, pp. 113–133, 1984.

[18] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Retrieval.
New York City, NY: Addison Wesley, 1999.

