

Background

When it comes to X-Ray imagery, medical professionals can sometimes spend hours interpreting the images, thereby delaying the diagnosis and treatment of the patients.

Objective

Our goal is to automate the interpretation of CT scans by using graph theory alongside image segmentation technology.

Graph Theoretic Approach

- Represent each image as a weighted graph
- Every pixel is a node Source pixel and sink pixel
- Nodes are connected by edges if they represent neighboring pixels
- Edges are cheap if the pixels they connect have high contrast, costly if low contrast
 - Find minimum cut

Samuel Weiner

GraphCut Algorithm

1) Growth		2) A
 Two search trees: background and foreg. Search trees grow untouch Thus, we form a path between foreground abackground 	and	 Push throw throw As a edge sature child on the below mi para see
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	References Boykov, Y. Y., & Jolly, M. (2 N-D images. Institute of Ele Boykov, Y. Y., & Kolmogoro minimization in vision. Tran Shi, J., & Malik, J. (2000). Intelligence, 22(8), 888.	
	Acknowledgeme	

11

I would like to thank Dr. Naveen Bansal for his assistance and guidance throughout this project. This work was sponsored in part by National Science Foundation REU site grant #ACI-1461264, 'Computations Across the Disciplines', at Marquette University.

2001). Interactive graph cuts for optimal boundary and region segmentation of objects in ectrical and Electronic Engineers, , 5/31/2018.

v, V. (2004). An experimental comparison of min-Cut/Max-flow algorithms for energy sactions on Pattern Analysis and Machine Intelligence, 26(9), 1124. Normalized cuts and image segmentation. Transactions on Pattern Analysis and Machine

nts

