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Introduction
Landslides are a devastating natural 
disaster. 

We hope to:
• Pinpoint the effects of landslide 

hazards in susceptible regions
• Forecast landslide hazards more 

efficiently for civil protection
• Who and when to evacuate

Figure 1 (left): Landslide Image [1] 
Figure 2 (right): Susceptibility Map [2]

Our goal is to create a proficient strategy 
to predict landslides. The approach:
• Couple flow and susceptibility
• Utilize Gaussian Stochastic Processes 

(GaSP) and Logistic Regression

Objectives
• Use GaSP on coupled landslide flow

• Implement a model in Python 
(open-source)

Accomplishments
1. A basic GaSP was modeled, using external 

Python packages.

Figure 2: The Design Points

Figure 3: Random Functions

Figure 4: GaSP – Random Functions Fit to Data

2. Developed code for composite 
computational models using trivial functions.

Figure 5 (left): GaSP of f(u)
Figure 6 (right): GaSP of g(z)

Functions f(u) and g(z) are linked together to 
create a GaSP of the composite function.

Figure 5: The Inbuilt Gaussian Process on 
Composite Data

Clearly, inbuilt Gaussian packages are not quite 
ready to handle linked functions.

Figure 6: Linked Gaussian Process

Implemented linked GaSP theory in Python 
accurately created a linked Gaussian process.

3. The inbuilt GaSP packages were modified to 
accept 2D arrays and create 2D gaussians. The 
code is easily adjustable for other degrees of 
input arrays.

Figure 8: 2 Dimensional GaSP

Future Steps
• Try to utilize the inbuilt Gaussian 

Process functions for the current 
linked GaSP code

• Combine the 2D array GaSP with 
the composite GaSP

• Apply that to landslide flow
• Couple the landslide flow model 

with landslide susceptibility 
models
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