
This work was sponsored in part by National Science

Foundation REU Site grant #ACI-1461264, 'Computation

Across the Disciplines', at Marquette University.

Thank you to Dr. Debbie Perouli as well as those who

made Embedded Xinu possible.

• Shared memory is easier to

program and uses less space but

requires that only one processor

access each entry at any given

time.

• Distributed memory takes up

significantly more space and

requires additional operations at

the end of the program but is

often faster.

• We can create an environment on Raspberry Pi 3’s using Embedded Xinu to

simulate running bare metal assembly code on four cores.

• Students are tasked to implement the coupon collector’s problem:

• From an urn of n coupons, draw one at a time with replacement and record

how many attempts it takes to collect all n coupons.

• Each core runs this program and updates the frequency for the corresponding

result in a shared array.

• This creates the possibility for race conditions and cache coherence issues as

multiple cores will have many chances to read/write the same memory.

• Both correct memory attributes and the use of exclusive instructions are

required for successful operation.

• This problem additionally gives the opportunity to compare shared versus

distributed memory models.

• The 2013 ACM/IEEE curriculum guidelines highlight the importance of

teaching parallel computing to undergraduates in higher education. [1]

• Universities have responded to this need, but have not yet integrated parallel

computing concepts with assembly programming.

• While techniques for parallelizing code and using tools such as MPI and

OpenMP seem to be well covered, concepts of shared versus distributed

memory and race conditions are taught at an abstracted level.

• Using the educational operating system Embedded Xinu, students can write

ARM assembly code that makes use of instructions meant specifically for

multi-core interaction.

• By having students implement the coupon collector’s problem, they have a

much deeper understanding of potential issues with sharing memory and

maintaining cache coherence.

Distributed memory model for array accesses

Shared memory model for array accesses

[1] The ACM/IEEE Joint Task Force on

Computing Curricula. 2013. Computer Science

Curricula 2013: Curriculum Guidelines for

Undergraduate Degree Programs in Computer

Science. (December 2013).

• Use this assignment to measure growth in college sophomores taking

Hardware Systems at Marquette University

• Continue to develop curriculum that gives a better understanding of

parallel computing at a low level

• Assess weak points in current model to ensure students focus on parallel

computing aspect instead of struggling too much with ARM assembly

Distribution of count frequencies after running 100 million trials among four cores

preload:

pldw [r0] // Invalidates other cores' cache lines

nop // by pre-loading data with intention to write

ldrexb r2, [r0] // Load lock value with exclusive access

cmp r2, #0 // Is the lock taken?

strexbeq r2, r1, [r0] // Attempt to store lock taken value

cmpeq r2, #0 // Did the store succeed?

bne preload // Try again if lock taken or store failed

dmb // Data memory barrier to synchronize data

Code to acquire a mutex lock—note the use of exclusive access instructions

Cache hierarchy on the Raspberry Pi 3

