

# **Pipeline Alarm Forecasting**

Jaired Collins<sup>1</sup>, Colin Quinn<sup>2</sup>, George Corliss<sup>2</sup>, Richard Povinelli<sup>2</sup> <sup>1</sup>Missouri Southern State University; <sup>2</sup>Marquette University



### **Research Question**

Is it possible to forecast when an alarm goes off in a natural gas pipeline?

## Background

#### Natural Gas Pipeline Alarms

- Sensors
- Pressure, Temperature, H2S, H2O, Flow
- Alarms are triggered when thresholds are exceeded

### Data

#### **Scope Restriction**

- Only pressure was used
- Data was originally nonuniformly sampled
  - Resampled at 1 minute with zeroorder hold
- Anomalous data was removed
- Data was obtained from a gas company in southwest America. To protect their interests, dates were

### Results

### **Regression and Classification**

- Figure 3 shows predicted versus actual values.
- The tables below show metrics of the regression and alarm classification

|      | Ensemble | Naïve  |
|------|----------|--------|
| MAE  | 1.1258   | 1.3306 |
| MAPE | 0.0995   | 0.1171 |
| RMSE | 1.6446   | 1.9877 |

High-High, High, Low, Low-Low alarms

#### Support Vector Machines (SVM)

Used for classification

$$\min_{w,e,b} \frac{1}{2} w^T w + \gamma \frac{1}{2} \sum_{i=1}^M \xi_i$$
  
s.t.  $\begin{cases} y_i [w^T \varphi(x_i) + b] = 1 - e_i, i = 1, ..., M \\ \xi_i \ge 0, & i = 1, ..., M \end{cases}$ 

#### Support Vector Machines for Regression

• Changes an SVM slightly to include points instead of avoiding them [1]

 $\min_{w,\xi} \frac{1}{2} w^T w + \gamma \frac{1}{2} \sum_{i=1}^{m} (\xi_i + \xi_i^*)$ s.t.  $\begin{cases} y_i - \langle w, x_i \rangle - b &\leq \varepsilon + \xi_i \\ \langle w, x_i \rangle + b - y_i &\leq \varepsilon + \xi_i^* \end{cases}$  removed and all figures in this poster are rescaled to 100.

## Model Selection

#### Least-Squares Support Vector Machine

- An implementation of an SVM
- Includes a squared error term
- Can also be turned into regression
- Can be turned into a system of linear equations [2]
- Lagrange multipliers  $\alpha$  replace weights w and removes error e

$$\begin{bmatrix} 0 & 1_M^T \\ 1_M & \Omega + \gamma^{-1}I \end{bmatrix} \begin{bmatrix} b \\ \alpha \end{bmatrix} = \begin{bmatrix} 0 \\ y \end{bmatrix}$$

Nonlinear Autoregressive Model (NAR) • The forecasted value depends

 Table 1: Regression performance metrics.

|    | Accuracy | Sensitivity | Specificity |
|----|----------|-------------|-------------|
| ΗH | 0.9967   | 0.9417      | 0.9994      |
| Н  | 0.9909   | 0.9583      | 0.9945      |
| L  | 0.9781   | 0.9127      | 0.9920      |
| LL | 0.9970   | 0.8333      | 1.0000      |
|    |          |             |             |

Table 2: Ensemble alarm classification metrics.

|    | Accuracy | Sensitivity | Specificity |
|----|----------|-------------|-------------|
| HH | 0.9940   | 0.9353      | 0.9969      |
| Н  | 0.9870   | 0.9347      | 0.9928      |
| L  | 0.9725   | 0.9218      | 0.9833      |
| LL | 0.9970   | 0.9180      | 0.9984      |
|    |          |             |             |

Table 3: Naïve alarm classification metrics.





Figure 1: The line with the highest margin separates the data.



- nonlinearly on its previous values
- Can be produced with an LS-SVM by  $\hat{y}_{t+n} = \alpha^T \varphi(y_t, y_{t-1}, \dots, y_{t-p}) + b$

Methods

#### Rule-Based Ensembling

- Used a least-squares support vector machine for regression (LS-SVR)
- About 10% of data was used for training
- Three different models, one each for trough, normal, and peak data
- When peak values rise above a threshold, the peak values replace the normal model's data
- Trough values replace normal values in a similar fashion but with a low threshold

| <i>∞</i> _ |     | 📍 🛛 —— 30 min Horizon |     |                     |
|------------|-----|-----------------------|-----|---------------------|
| &          | 0.5 | 1                     | 1.5 | 2                   |
|            |     | Step                  |     | imes10 <sup>4</sup> |

Figure 3: Predicted versus actual pressure values over a span of about 14 days.

### Conclusion

#### Regression

- Trough values are difficult to forecast
- Ensemble model generally works better than naïve in non-troughed values

#### Alarm Forecasting

- Sensitivity in ensemble is higher in H/HH but not L/LL
- Need to improve trough regression to improve L/LL alarm prediction

#### References

Flippurce 2: An Etuble is amalogous to am SXWIss margin, bettinisterado for recrabling statat an artube stubes seeks to contain them.

Alarm Forecasting

• Alarms are binarized according to the

defined thresholds

• When a forecasted value exceeds a

threshold, an alarm is predicted

Alex J. Smola and Bernhard Schölkopf. "A Tutorial on Support Vector Regression". Statistics and Computing, 14(3):199-222, 2004. J. A. K. Suykens. "Least Squares Support Vector Machines". World Scientific, 2005.

This work was sponsored in part by National Science Foundation REU Site grant #ACI-1461264, 'Computation Across the Disciplines', at Marquette University