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Objective
Volatile stock prices and over

speculation have led to unstable

investments and economic
recessions. This project
attempts to better understand
and predict price movements
from social media data.

Background

Most previous research is based
on sentiment analysis, or
labeling a post as positive or
negative. Ex:

SAAPL incredibly bullish this week!

(Positive)

SAAPL losing revenue. Sell now!

(Negative)
Sentiment is typically
determined by a words TF-IDF,
or term frequency inverse
document frequency, to score
words and relate them to
sentiment.

Methods
Model 1 uses linear regression
to relate TF-IDF's to price
change.
Model 2 classifies posts by
sentiment.
Model 3 uses model 2 to spot
smart users and follow their
predictions.
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Average accuracy came out to 52.5 percent.
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1. Aggregate TF-IDF CANNOT predict price change
alone, despite previous sources suggesting otherwise.
2. TF-IDF CAN predict an individual stocks sentiment
3. Users who are correct in the past CAN predict the
market with high success in the future
While Model 3 has its limitations, it yields an accuracy
unprecedented by any prior work.
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0.6333
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ADI
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0.6000
0.6000
0.6000
0.5833
0.5333
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0.5167
0.5167
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0.5000
0.4833
0.4833
0.4833
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0.4667
0.4333

0.6333
0.5667
0.5167
0.5667
0.5167
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0.4167
0.4667
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0.5333
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0.587832
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0.598293
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0.578090
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