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Background

• In 2010, Drs. Factor and Merz intro-
duced the (i, j)-step competition graph, a
generalization of the (1, 2)-step competi-
tion graph.

• We define the (i, j)-step competition
graph as follows: if for some z ∈ V (D) −
{x, y}, dD−y(x, z) ≤ i and dD−x(y, z) ≤ j

or dD−x(y, z) ≤ i and dD−y(x, z) ≤ j.
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(1, 2)-step competition graph of a digraph

• They derived a surprising result: if the
digraph D is a tournament, then the (i, j)-
step competition graph is equivalent to
the (1, 2)-step competition graph (for i ≥ 1
and j ≥ 2).

Objectives

Our main objective is extending the (i, j)-
step competition graph of a digraph to an
object that can represent a relationship
between two or more vertices.

Definitions
Hypergraph: a pair
H = (V , E), where
V = {v1, v2, · · · , vn} is
the set of vertices and
E = {E1, E2, · · · , Em},
with Ei ⊆ V for
i = 1, · · · , m, is the
set of hyperedges.
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D,(hyperdigraph), is
the pair (V ,A), where
V = {v1, v2, . . . , vn}
is the vertex set and
A = {A1, A2, . . . , An},
where every Ai con-
sists of the ordered pair
(Ti, Hi), is the set of

directed hyperedges, or hyperarcs. We call Ti and Hi of Ai

the tail of Ai and head of Ai, respectively.

Definition: The (i1, i2, . . . , im)-step competition hypergraph
of a hyperdigraphD, denoted Cim

(D), is the m-hypergraph on
V(D) where a set of m vertices from V(D), {x1, x2, . . . , xm},
is a hyperedge on Cim

(D) if and only if there exists a ver-
tex z 6= x1, x2, . . . , xm, such that dD−xj

(xk, z) ≤ iq and is a
unique combination of the positive integers j, k, q, where
1 ≤ j, k, q ≤ m and j 6= k.

Results

•Lemma: Let T be a strongly-connected
tournament with 1 ≤ i1, . . . , im. The hyperedge
{x1, . . . , xm} �

�
�∈ E(Cim

(D)) if and only if the outset
of some xj is equal to any number of the other
xm−1 vertices in the potential hyperedge.

•Lemma: Let T be an n-tournament with strong
decomposition T1, . . . , Tk. If
{x1, . . . , xm} �

�
�∈ E(Cim

(T )), then
x1, . . . , xm ∈ V(T k) or |V(T k)| = 1 and
Cim

(T ) = Kn−1 ∪ K1.
•Theorem: If T is an n-tournament, i1 ≥ 1 and
i2, . . . , im ≥ 2, then C(i1,...,im)(T ) = C(1,2,...,2)(T ).
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