Finding Relationships Between the Competition and (1,2)-Step Competition Numbers of Acyclic Digraphs

Carissa Babcock [Alverno College: babcoccl@Alverno.edu] MSCS Marquette University REU
 Mentor: Kim Factor, Marquette University

Overview:

- Current research is based off of previous research done by Factor, Merz, \& Sano², to answer the question:
- Are there graphs other than a 4-cycle, C_{4}, where the competition number of an acyclic digraph $D, \gamma(D)$, is greater than its $(1,2)$-step competition number, $\mathrm{Y}_{(1,2)}(D)$?
- Given an acyclic digraph D, the (\mathbf{i}, \mathbf{j})-step competition graph of $D, C_{i, j}(D)$, is the graph with the same vertices as D and an edge $\{u, v\}$ if there exists a third vertex z such that u reaches z in at most i steps and v reaches z in at most j steps
- The (\mathbf{i}, \mathbf{j})-step competition number of \mathbf{G}, $\boldsymbol{\gamma}_{(i, j)}(\boldsymbol{G})=\boldsymbol{k}$, is the minimum k where G along with k isolated vertices is the (i, j) competition graph of some digraph
- When $i=j=1$, we look for the competition number of G, and when $i=1$ and $j=2$, we look for the (1,2)-step competition number
- The graph C_{4} is not the competition graph or the $(1,2)$-step competition graph of any digraph:

Background:

Previous work found that:

- $\gamma\left(C_{4}\right)=2$:

- The competition graph is:

- $\gamma_{(1,2)}\left(C_{4}\right)=1$:

- The (1,2)-step competition graph is:

Methods:

- Use the known graph that is not a competition graph as foundation for making new graphs
- Begin by looking at $C_{4} \cup C_{4}$
- Continue on to observe the union of k number of C_{4} copies

Results:

- Lemma: $\gamma\left(C_{4} \cup C_{4}\right)=2$ and $\gamma_{(1,2)}\left(C_{4} \cup C_{4}\right)=1$
- Digraph with competition graph $\left(C_{4} \cup C_{4}\right) \cup$ $K_{1} \cup K_{1}$:

- Digraph with (1,2)-step competition graph $\left(C_{4} \cup C_{4}\right) \cup K_{1}:$
(6)
- Lemma: For G equal to the union of k copies of $C_{4}, \gamma(G)=2$ and $\gamma_{(1,2)}(G)=1$
- Theorem: For the family of graphs where G is the union of k copies of $C_{4}, \gamma(G)>\gamma_{(1,2)}(G)$

Future Work:

- Let G be the graph that is C_{4} with a various number of pendant vertices
- Let G be two copies pf C_{4} that are connected with one edge, and then two
- See if there is any graph containing C_{4} where the two numbers are equal

Acknowledgements:

National Science Foundation
Marquette University
Dr. Kim Factor

Work Cited:

1. Factor, K., Merz, S. The (1,2)-step competition graph of a tournament. Discrete Applies Mathematics. Volume 159, Issues 2-3
2. Factor, K., Merz, S., Sano, Y. The (1,2)-step competition number of a graph.
