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Fig 1: A Landslide at  the No. 3 Freeway between Taipei and 
Keelung,Taiwan1.
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Hazard mapping is an essential tool used to estimate the risk faced by residents 
living in areas susceptible to natural disasters. Computer models are often used in 
situations where experimental data is costly or impossible to obtain. However, 
accurate computer models can take hours or even days to compute, which is 
problematic when attempting to validate the model, which requires running the 
model hundreds or thousands of times. 

We analyzed statistical surrogates using Gaussian stochastic process (GaSP) 
models that can be computed more efficiently than a computer model, and aim 
to apply this technique to validate landslide models using data gathered from 
previously conducted simulations.

• Use Gaussian stochastic processing (GaSP) to approximate models
• Incorporate experimental data to account for bias in approximation
• Utilize Markov chain Monte Carlo (MCMC) techniques to select parameters for 

the computer model that best match field data
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Markov Chain Monte Carlo (MCMC) Process

Objectives

Fig 4: The target distribution (left), coordinates from MCMC samples as a histogram 
(center) and as a plot over time (right).

Fig 2: 3D Approximation using 10 design points.

After obtaining an approximation for the computer model, the model can be 
compared to data obtained through experiments or simulations. This field data is 
used to determine the bias in the model, which reflects the difference between 
the model and “reality” (as indicated by the field data). The bias function can be 
calculated using another GaSP, adjusting the covariance matrix to include 
measurement error. Below is a example of a bias-corrected prediction compared 
with a prediction solely using the model approximation.

Finding Parameters for Computer Model

Approximating Computer Models
A Gaussian process approximation can be used as a statistical surrogate for a 
computer model. The surrogate takes the form of a multivariate normal 
distribution with conditional mean m(x*) described below2,3:

where:
     X – inputs (design points);  Y – output
     Ψ(x*) – linear regression of x*

     R(β)  – covariance matrix with elements defined by

     R(x*) – vector with elements

In order to compute m(x*), we must select values for the correlation parameters 
β. One selection method is to choose the parameters that optimize the following 
maximum likelihood equation:

        with 

Further, the selection process can be improved by incorporating a reference prior 
into the optimization equation. Below is an example where a GaSP is used to 
approximate an arbitrary function.

Fig 3: Model approximation adjusted for bias.

Fig 5: Experimental data from landslide simulation2.

Markov chain Monte Carlo (MCMC) processes can be used in situations 
where computing a density function is otherwise computationally difficult. 
We aim to model the stationary distribution π(x) using the following 
process:

1. Select the first element in the Markov chain x0

2. To find xn, sample a new value z from the sampling distribution q(x0,z)
3. Set xn+1 = z with probability π(x) *q(x0,z) /q(z,x0) * π(x). Otherwise, set xn+1 = xn 

A demonstration of this process is shown below.

The model that we have created allows the user to approximate and map hazard 
functions in a way that was previously not possible. We intend to move forward 
by creating an approximation using real world landslide data to validate our 
model.

With this approximation, we can adjust for the bias in our model by utilizing data 
obtained through simulations, as shown in Figure 5. Using MCMC techniques, we 
can also calculate a range of values for the parameters in our computer model 
that best fit the field data.
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