Graph Theory: Software Design for Modeling Competition and (i,j)-Step Competition Graphs with Predator-Prey Applications in an Ecosystem

By: Zornica Hadjiyski
Advisor: Dr. Kim Factor

BACKGROUND

Graphs are a useful applications for studying predator-prey relations between species in an ecosystem.

Food webs are one example of a graph which maps the flow of energy in an ecossytem by illustrating the feeding relationships
between species. They are used to display the dependency from one organism to the other in an environment.

To further model the predator-prey relationship, Cohen introduced the competition graph of a food web in 1968. The between various species.

Factor and Merz extended this theory, through the introduction of the (i, j)-step competition graph in 2010. The (i, j)-step competition graph displays both direct and indirect competition between species, giving a broader view of specie relations.

Each of these graphs are tools to understand how the ecosystem may respond to change or what controlled changes can be made in order to obtain desired properties in an ecosystem.

DEFINITIONS

Definition: A digraph is a set of vertices $V(D)$ and a set of $\operatorname{arcs} A(D)$. An arc (u, v) is represented by an arrow from vertex u to vertex v .

Definition: A biological digraph representation of a food web shows the energy flow, from prey to predator. The direction of the arrows p
upward. This is the transposition of the mpward. matical model.

Definition: A mathematical digraph representation of a food web shows the arrows pointed downwards from predator to prey. Th

Defin Definition: Given a digraph D, the competition graph of D, denoted $C(D)$, is the graph with the same vertex set as D and an
edge between vertices u and v if and only if $O^{+}(x) \cap O^{+}(y) \neq 0$.

Digraph D:

Definition: Given a digraph D, the (i, j)-step competition graph of D, denoted $C_{i, j}(D)$, is the graph with the same vertex set as D and an edge between vertices u and v if and only if there exist some $z \in V(G)$ for either $d D /\{u\}(v, z)=i$ and $d D_{\{ }\{v\}(u, z)<=j$ or $d D /\{v\}(u, z)=j$ and $d D\{u\}(v, z)<=i$

Digraph D:

Competition Graph $C_{1,2}(D)$:

The program uses the edges to build an adjacency matrix, also known as the Digraph Matrix, which is used to generate the possible competition and step competition pathways.

Below are three examples of food webs representing the acyclic digraphs used as inputs for the program to create competition graphs along with step-competition graph.
Example A.

Example C.

RESULTS

Below are the outputs produced by the Competition GUI for the three digraph examples. The competitions chosen to display below include:
(1,2)-1,2-Step Competition
C(1,3) - 1,3 -Step Competition C(2,2) - 2,2-Step Competition

Example A.

Example B.

Example C

RESULTS CONTINUED
Example C.

CONCLUSION

The competition Graphical User Interface allows the user to quickly create their desired competition matrix

The program can keep track of whether an edge exists or not rather then the user. This makes it easier to work with more complex graphs, such as Example 3 which deals with twelv different species.

By applying the user-friendly GUl to the predator-prey research his allows finding relationships between predator-prey a much faster process.

REFERENCES

11) K. A. S. Factor and S. K. Merz. The (1,2)-step competition graph. Discrete
[2] Midge Cozzens, Nancy Crister, Randi Rotian, and Tom Fleetwood. Biomath: The
[3] R. D. Dutton and R. C. Brigham. A characterization of competition graphs.

ACKNOWLEDGEMENTS

I would like to thank my research advisor, Dr. Kim Factor for her help and support with my research. I would also like to thank Dr. Dennis Brylow for organizing the MSCS summer REU at Marquette University. This work was supported in part by a
Marquette Center for Teaching \&t Learning Undergraduate Research Grant.

