

Data Assimilation for Fluid Dynamic Models: Finding Flow Paths of an Object Through Water

Motivation

Given observational data taken from the trajectory of an instrument flowing in an unknown velocity field, can we recreate the velocity field inducing this motion?

Methods

Data Assimilation is a process that merges observational data with a mathematical model.

Strategy

Posterior distribution- the probability of unobserved observations conditional on the observed data- on a function space (velocity field) is proportional to the prior distribution multiplied by the likelihood of the data. Given a velocity field v and data θ ,

Bayes Theorem: $p(v|\theta) \propto p(v)p(\theta|v)$

p(velocity field |data) ∝ p(Fourier Series)p(data |Fourier Series) Likelihood Posterior \propto Prior

Fourier Series (FS): Most functions can be described as a series of sines and cosines.

$$f(x) = \sum_{n=1}^{\infty} a_n \cos(2\pi xn) + b_n \sin(2\pi xn)$$

Student: Amy Thompson **Mentor**: Dr. Elaine Spiller Department of Mathematics, Statistics and Computer Science, Marquette University

Strategy Continued

1D Sampling Example: Using Eulerian data assimilation where the observations are fixed. Assume a steady flow; velocity does not change with time.

Low degree polynomial fit of data for 1st proposal

• Prior draws from frequency space, random coefficients $(a_n \text{ and } b_n)$ of Fourier Series

Accept proposal v(x) from prior draw if it better fits the observations, else repeat initial proposal. This process is known as Metropolis-Hastings sampling within the Markov Chain Monte Carlo (MCMC) simulation.

Results: Posterior Sampling

The proposals accepted from the sampling of random coefficients of FS construct a posterior distribution.

(xn)

Acknowledgements: This work was supported by National Science Foundation grant CCF-1063041.

Results: Posterior Sampling Continued

A graph of the area between the 5th and the 95th percentile of the posterior distribution and the mean of the distribution.

available.

Summary & Future Work

The Eulerian 1D sampling performs according to strategy expectations. To achieve the goal of recreating a velocity field from given observational data, there remains the following current & future work:

[1] Damon McDougalll. Assimilating Eulerian & Lagrangian Data to Quantify Flow Uncertainty in Testbed Oceanography *Models*. PhD thesis. University of Warwick. 2012. [2] Elke Thönnes. Lecture Notes on Monte Carlo Methods University of Warwick.

A graph showing the posterior distribution conforms to the truth only in the section where observations are

Adapt to Lagrangian data-update likelihood Adapt the strategy to 2D sampling Apply the strategy to data from Dr. Ani Hsieh's lab

Selected References