

Problem Statement

GasDay has multiple time horizons of forecasting: Hours, Days, Months, Years

- GasHour forecasts gas demand for each of the next 106 hours GasDay forecasts gas demand for each of the next 8 days

$$
\sum_{h=1}^{24} \text { GasHour }_{h} \neq \text { GasDay }
$$

Date Range: 2/1/12 - 4/30/12

Acknowledgements

This work was supported by National Science Foundation grant CCF-1063041 I would like to thank Dr. Corliss, Dr. Brylow, and Dr. Factor for their support during my research

Why is this Important?

- Customer has asked about this inequality
- Potential to improve the GasDay and GasHour forecasts

GasHour as an Input to GasDay

What if the $\sum_{\boldsymbol{h}=\mathbf{1}}^{\mathbf{2 4}} \boldsymbol{G} \boldsymbol{H}_{\boldsymbol{h}}$ is a good forecast? - How to adjust the GD forecast

Model 1

- GD forecast created by Ensemble of 2 forecasts
- If GH forecast is good, and GD forecast is bad, we do not want to adjust toward a bad forecast
- Use $\sum_{\boldsymbol{h}=\boldsymbol{1}}^{\mathbf{2 4}} \boldsymbol{G} \boldsymbol{H}_{\boldsymbol{h}}$ as an input to GD forecast
- Uses GH when its accurate
- Ignores GH when its inaccurate

Future Work

- Implement piecewise linear solution into GasDay software Observe how adjustments affect accuracy of both forecasts over extended periods

Results

- Take the difference of the GD and $\sum G H$ forecast, and disperse that error to the hourly forecasts.
- What is the best way to disperse the error?

Date Range: 1/1/2004-1/4/2004

- Naïve solution equally disperses the error, but is not continuous
- Cubic Splines are continuous, but the adjustments are oscillatory Piecewise Linear solution is continuous and offers similar adjustments to each hour
$\underset{\text { Adjustments: }}{\begin{array}{c}\text { Result of }\end{array}} \sum_{\boldsymbol{h = 1}}^{\mathbf{2 4}}$ GasHour $_{\boldsymbol{h}}=\boldsymbol{G D}$

References - J. Scott Armstrong, editor. Principles of Forecasting: A Handbook for Researchers and Practitioners. Kluwer

- William L. Brogan. Modern Control Theory. Prentice Hall, Englewood Cliffs, NewJersey 07632, 3rd edition, 1991

Steven R. Vitullo, Ronald H. Brown, George F. Corliss, and Brain M. Marx. Mathematical Models for Natural Gas Forecasting

