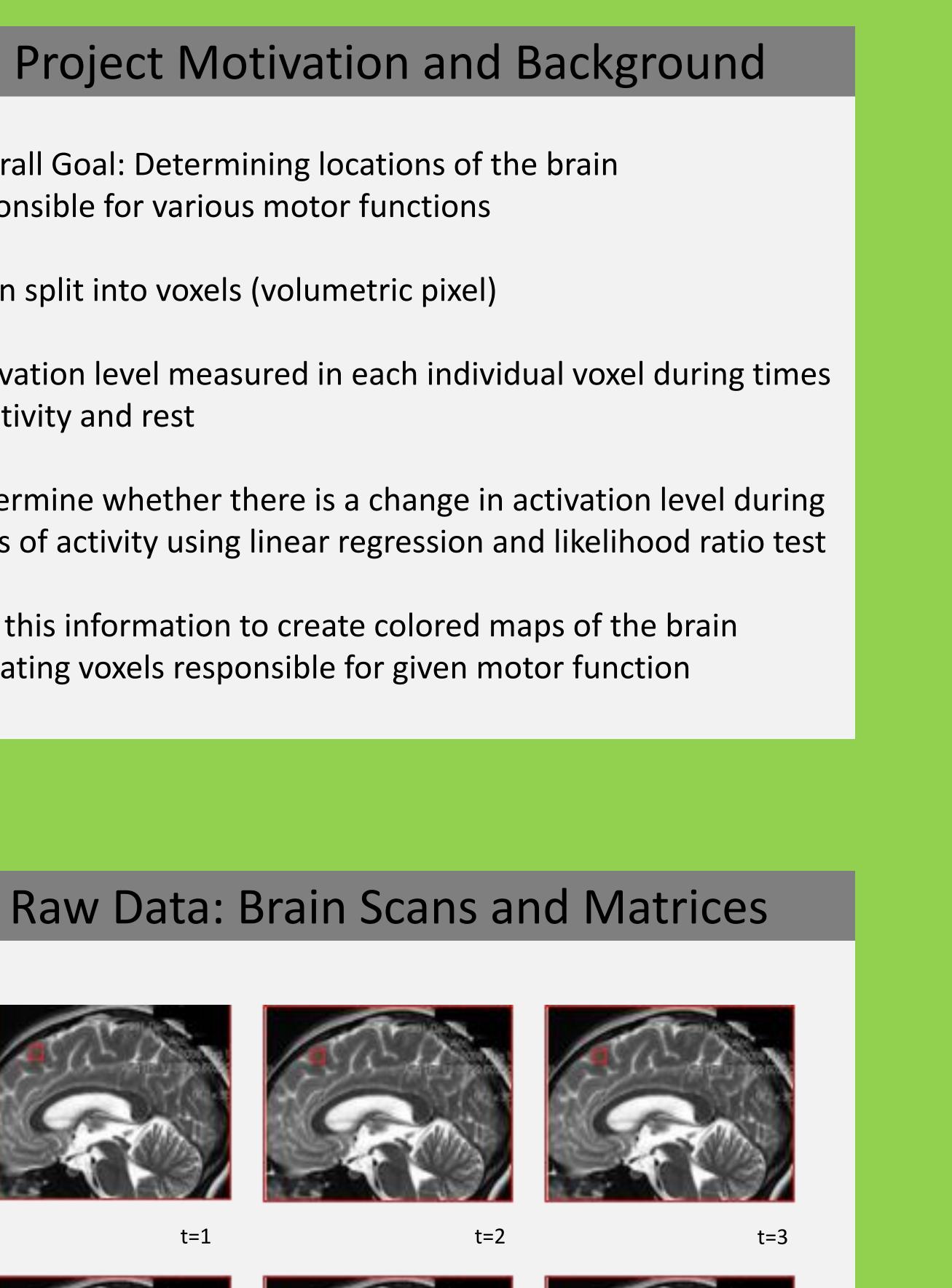
Statistical Analysis Of MRI Data Shelby Cummings Mentor: Dr. Daniel Rowe Department of Mathematics, Statistics, and Computer Science, Marquette University

Project Motivation and Background

-Overall Goal: Determining locations of the brain responsible for various motor functions


-Brain split into voxels (volumetric pixel)


-Activation level measured in each individual voxel during times of activity and rest

-Determine whether there is a change in activation level during times of activity using linear regression and likelihood ratio test

-Use this information to create colored maps of the brain indicating voxels responsible for given motor function

<image/> <image/> <text></text>	<image/> <image/> <caption></caption>	<image/> <image/> <caption></caption>
<image/> <image/> <image/>	<image/> <image/>	<image/> <image/>
$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0.3 & 0.2 & 0.6 & \cdots & 0 \\ 0 & 0.4 & 0.5 & 0.8 & \cdots & 0 \\ 0 & 0.7 & 0.6 & 0.8 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$ t=1	$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0.3 & 0.3 & 0.6 & \cdots & 0 \\ 0 & 0.5 & 0.5 & 0.7 & \cdots & 0 \\ 0 & 0.6 & 0.6 & 0.9 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$ t=2	$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0.2 & 0.7 & 0.6 & \cdots & 0 \\ 0 & 0.4 & 0.5 & 0.7 & \cdots & 0 \\ 0 & 0.6 & 0.5 & 0.8 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$ t=3
$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0.3 & 0.9 & 0.7 & \cdots & 0 \\ 0 & 0.3 & 0.5 & 0.7 & \cdots & 0 \\ 0 & 0.6 & 0.5 & 0.8 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0.4 & 0.4 & 0.5 & \cdots & 0 \\ 0 & 0.4 & 0.5 & 0.6 & \cdots & 0 \\ 0 & 0.5 & 0.6 & 0.7 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 0.3 & 0.3 & 0.6 & \cdots & 0 \\ 0 & 0.4 & 0.5 & 0.7 & \cdots & 0 \\ 0 & 0.6 & 0.6 & 0.8 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$
t=4	t=5	t=6

motor function

samples taken

represents activation levels

-estimate β using the following formula:

$$\beta = (X'X)^{-1}X'Y$$

2000. Print Print.

Likelihood Ratio Test

-method used to generate test statistics—in this case, a

-tests H_0 : $\beta = 0$, $\sigma^2 > 0$ vs. H_1 : $\beta \neq 0$, $\sigma^2 > 0$

-find the log likelihood function by taking the log of L(β , σ^2)

-take the partial derivatives of this function with respect to both β and σ^2 under the conditions in both the null and the

-take the ratio of the likelihood functions assuming the null and

-using algebra, transform this variable into one which follows

Future Work

-consolidate MATLAB functions and revise coding to make these

-look into the conditions surrounding linear regression and determine whether or not this is the best way to look for changes in activation levels

-explore different methods of testing the data to deal with correlations between voxels

References

Rencher, Alvin C. Linear Models in Statistics. New York: Wiley,

Rowe, Daniel B., and Brent R. Logan. "A Complex Way to Compute FMRI Activation." *NeuroImage 23 (2004): 1078-092.*