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Introduction

» Nearly 100MM smartphones sold worldwide in 1Q11 (Gartner 2011)

» New smartphones have robust sensor arrays (e.g., accelerometer,
gyroscope, magnetometer, ambient light sensor, microphone)

» Smartphones tend to be on or around their users throughout the day

» Question: Can smartphones be used to recognize the activities of
their owners?

Definitions

» ACTIVITY RECOGNITION - identifying what a user is doing physically

» BASIC ACTIVITIES - activities that can be identified with reasonable
accuracy from sensor data streams (e.g., running, walking, sitting)

» COMPLEX ACTIVITIES - activities that require contextual information
to be identified: often built from basic activities and contextual
inferences (e.g., washing the dishes, reading a specific book,
working out at the gym)

» LOCALIZATION - determining the position of a user with respect to a
known landmark or waypoint

» MAP GENERATION - using the movement of a user to produce a
basic floorplan with walkable paths

Challenges

While basic activity recognition has been successful, complex activity
recognition remains a significant challenge due to the nature of
human behavior.

» Variety of human activities (Kim 2010)

» Concurrent activities - talking with friends while watching TV

» Interleaved activities - washing dishes when phone rings

» Interpretational issues - standing next to open refrigerator door
» Technological challenges (Wang 2010)

» Real-time analysis

» Communication costs

» Computational costs

Components of Complex Activity Recognition

Drawing on multiple subsystems, complex activity recognition can be
decomposed into five major components.
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We focus on the problem of simultaneous localization and map
generation (SLAM).

Hardware

Our implementation focuses on the Apple iPhone 4, with the following
sensors used for inertial navigation:

» Tri-Axis MEMS Accelerometer

» Tri-Axis MEMS Gyroscope
» MEMS Magnetometer

Figure: Gyroscope Axes

Figure: Acceleration Axes

Positioning Algorithm

Drawing on techniques from the field of inertial navigation, our
positioning algorithm has the following structure.
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Figure: Strapdown inertial navigation positioning algorithm. Adapted from Woodman.

Below are sample graphs for each of the major integration steps for a
displacement of approximately four feet.
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Simultaneous Localization and Mapping (SLAM)

Borrowing from the field of robotics, our software considers a situation
involving:

» One agent (the user)

» An unknown level of prior knowledge of a given environment

Goal: Localize the user and generate (or modify) a map of the
environment.

Currently, our application for iPhone provides basic inertial positioning
services through a SLAMManager singleton object. After subscribing
to it, developers receive acceleration, velocity, and position updates at
a desired frequency interval.

Challenges

» Bound errors in inertial navigation
» Possible use of “zero velocity updates,” which have been shown effective in
shoe-mounted pedestrian systems
» Position user with sufficient accuracy
» System will need to have a sense of its own accuracy
» Minimize computational costs in algorithm
» Currently using BLAS (Basic Linear Algebra Subprograms) optimized for iOS

Current Progress

» Implemented basic inertial positioning algorithm, accurate over short
distances

» Developed skeleton structure of a SLAM framework for iOS

» Started estimating error coefficients for Kalman filtering, which will
help with system state estimation

Conclusion

We have described the problem of complex activity recognition,
whereby a smartphone is able to determine the activities of its owner.
Choosing an important subproblem of complex activity recognition,
we presented initial findings toward simultaneous localization and
mapping (SLAM).

Future Work

» Implement full Kalman filter in the SLAM Manager
» Bring inertial navigation techniques to problem of map generation
» Incorporate other forms of localization (like WiFi signals)
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