
Algorithms for Large Matrix Multiplication on Graphics Processing Units

Introduction to GPU Computing
Graphics Processing Units (GPUs) achieve high performance through parallel 
computing, and are equipped with many more processing cores than a 
traditional CPU. Lower-end GPUs, such as the Ge-Force 8400 which we used, 
have 16 cores, while newer, higher-end models can have well over 100 cores. 
However, all of this computing power comes with a significant drawback. GPUs 
have only small amounts of memory available to them (256 MB on the model 
we used), and data transfers between the CPU and GPU are rather slow. 
Therefore, in order to utilize the computing power of a GPU for general purpose 
computing, large problems must be efficiently partitioned.

CUSUMMA
The Scalable Universal Matrix Multiplication Algorithm (SUMMA)  is 
a parallel algorithm based on the outer product approach for 
partitioning input matrices. This approach partitions the matrices 
along the shared dimension, uses the partitions to calculate partial 
output values, and then sums the partial values to obtain the final 
results. CUSUMMA is a GPU implementation of SUMMA, built using 
NVIDIA's CUDA library. We have implemented a few variants of 
CUSUMMA, and have numbered them in the order in which we 
tested them.

CUSUMMA 1 we implemented from scratch. It is a fairly concise 
implementation of the algorithm. The CUBLAS library assumes 
matrices are stored in column-major format, so we used column-
major indexing throughout this implementation.

The second version which we tested (referred to as CUSUMMA 2) 
was a previously programmed implementation provided for free by 
Byron Galbraith. His implementation uses row-major indexing. By 
changing the order of the parameters when calling cublasSgemm(), 
the correct results can still be achieved. Another key difference is 
that he used data packing when transferring the input to the GPU. 
CUSUMMA 2 outperformed CUSUMMA 1, typically by about one or 
two percentage points.

CUSUMMA 3 is a modified version of CUSUMMA 2, this time 
without data packing. For most input sizes, this had no effect on 
performance, but for the largest size we tested (n = 15000), we saw 
an improvement of 2.8%.

In CUSUMMA 4, we revisited our original implementation. We 
modified our original code to use row-major indexing, as we had 
noticed that it made data transfers more efficient. In theory, the 
performance of CUSUMMA 4 should be comparable to CUSUMMA 
3. In practice, there was no difference between the two for most 
input sizes, but for the largest size, CUSUMMA 3 performed better 
by about 2.5%.

CUPUMMA
The Parallel Universal Matrix Multiplication Algorithms 
(PUMMA) is a parallel algorithm based on the inner 
product approach. The CUDA version of this algorithm, 
CUPUMMA, partitions input matrices by rows for matrix A 
and by columns for matrix B, allowing the final products to 
be computed right away for each piece of output matrix C. 
Again we have implemented a few variants of the 
algorithm.

CUPUMMA 1 is a simple implementation of the algorithm. 
Pieces of A are copied to the GPU one by one, and for 
each piece, we iterate through the pieces of B.

CUPUMMA 2 is a minor improvement on CUPUMMA 1. 
When starting on the next piece of A, the last piece of B 
that had been used is reused right away, slightly reducing 
the number of data transfers. The gain in performance was 
about .5%

In CUPUMMA 3, we added data packing. This had no 
significant effect on performance.

In CUPUMMA 4, we cycled through pieces of B in the 
outer loop and pieces of A in the inner loop, since pieces 
of A should transfer more efficiently. This improved 
performance by about .5% (over CUPUMMA 2) for some 
input sizes, but for the largest size (n = 15000), 
CUPUMMA 4 took about 14% longer to execute.

CUSUMMA vs. CUPUMMA
CUSUMMA, which aims to minimize data transfers, generally outperformed 
CUPUMMA. To compare the two algorithms, we used the data for CUSUMMA 3 
(as it performed as good or better than the other versions, depending on input 
size), and CUPUMMA 2 (as there was essentially no difference between 2 and 
3). The difference in execution time varied greatly for different input sizes. It was 
greatest for n = 6000, at which CUSUMMA ran in 31.5% less time. At n = 8000, 
CUPUMMA actually outperformed CUSUMMA, running in 17.7% less time.

Overlapping 
Communication and 
Computation
A final idea which we tested was 
to have data transfers and 
computations occur at the same 
time. To do this, we simply cut 
partition sizes in half, so that 
while the GPU was performing 
matrix multiplication on one set of 
pieces, the next parts can be 
transferred. On CUSUMMA, this 
greatly enhanced performance 
(by as much as 32% for n = 
7000). On CUPUMMA, initial 
results showed no gain in 
performance. Future work will 
involve ensuring optimization, to 
see if performance can be 
increased any more.

Conclusions
We have tested two algorithms for large matrix 
multiplication on GPUs. Of the two, CUSUMMA 
performed better. This is due to the fact that it uses the 
outer product approach, which minimizes data transfers 
in this setting. We also found that overlapping 
communication and computation can yield even bigger 
performance gains. Future work involves ensuring that 
the best implementations are fully optimized, and trying 
to integrate the best approach into MAGMA (Matrix 
Algebra on GPU and Multi-core Architectures), a linear 
algebra package for heterogeneous architectures.
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