
Algorithms for Large Matrix Multiplication on Graphics Processing Units

Introduction to GPU Computing
Graphics Processing Units (GPUs) achieve high performance through parallel
computing, and are equipped with many more processing cores than a
traditional CPU. Lower-end GPUs, such as the Ge-Force 8400 which we used,
have 16 cores, while newer, higher-end models can have well over 100 cores.
However, all of this computing power comes with a significant drawback. GPUs
have only small amounts of memory available to them (256 MB on the model
we used), and data transfers between the CPU and GPU are rather slow.
Therefore, in order to utilize the computing power of a GPU for general purpose
computing, large problems must be efficiently partitioned.

CUSUMMA
The Scalable Universal Matrix Multiplication Algorithm (SUMMA) is
a parallel algorithm based on the outer product approach for
partitioning input matrices. This approach partitions the matrices
along the shared dimension, uses the partitions to calculate partial
output values, and then sums the partial values to obtain the final
results. CUSUMMA is a GPU implementation of SUMMA, built using
NVIDIA's CUDA library. We have implemented a few variants of
CUSUMMA, and have numbered them in the order in which we
tested them.

CUSUMMA 1 we implemented from scratch. It is a fairly concise
implementation of the algorithm. The CUBLAS library assumes
matrices are stored in column-major format, so we used column-
major indexing throughout this implementation.

The second version which we tested (referred to as CUSUMMA 2)
was a previously programmed implementation provided for free by
Byron Galbraith. His implementation uses row-major indexing. By
changing the order of the parameters when calling cublasSgemm(),
the correct results can still be achieved. Another key difference is
that he used data packing when transferring the input to the GPU.
CUSUMMA 2 outperformed CUSUMMA 1, typically by about one or
two percentage points.

CUSUMMA 3 is a modified version of CUSUMMA 2, this time
without data packing. For most input sizes, this had no effect on
performance, but for the largest size we tested (n = 15000), we saw
an improvement of 2.8%.

In CUSUMMA 4, we revisited our original implementation. We
modified our original code to use row-major indexing, as we had
noticed that it made data transfers more efficient. In theory, the
performance of CUSUMMA 4 should be comparable to CUSUMMA
3. In practice, there was no difference between the two for most
input sizes, but for the largest size, CUSUMMA 3 performed better
by about 2.5%.

CUPUMMA
The Parallel Universal Matrix Multiplication Algorithms
(PUMMA) is a parallel algorithm based on the inner
product approach. The CUDA version of this algorithm,
CUPUMMA, partitions input matrices by rows for matrix A
and by columns for matrix B, allowing the final products to
be computed right away for each piece of output matrix C.
Again we have implemented a few variants of the
algorithm.

CUPUMMA 1 is a simple implementation of the algorithm.
Pieces of A are copied to the GPU one by one, and for
each piece, we iterate through the pieces of B.

CUPUMMA 2 is a minor improvement on CUPUMMA 1.
When starting on the next piece of A, the last piece of B
that had been used is reused right away, slightly reducing
the number of data transfers. The gain in performance was
about .5%

In CUPUMMA 3, we added data packing. This had no
significant effect on performance.

In CUPUMMA 4, we cycled through pieces of B in the
outer loop and pieces of A in the inner loop, since pieces
of A should transfer more efficiently. This improved
performance by about .5% (over CUPUMMA 2) for some
input sizes, but for the largest size (n = 15000),
CUPUMMA 4 took about 14% longer to execute.

CUSUMMA vs. CUPUMMA
CUSUMMA, which aims to minimize data transfers, generally outperformed
CUPUMMA. To compare the two algorithms, we used the data for CUSUMMA 3
(as it performed as good or better than the other versions, depending on input
size), and CUPUMMA 2 (as there was essentially no difference between 2 and
3). The difference in execution time varied greatly for different input sizes. It was
greatest for n = 6000, at which CUSUMMA ran in 31.5% less time. At n = 8000,
CUPUMMA actually outperformed CUSUMMA, running in 17.7% less time.

Overlapping
Communication and
Computation
A final idea which we tested was
to have data transfers and
computations occur at the same
time. To do this, we simply cut
partition sizes in half, so that
while the GPU was performing
matrix multiplication on one set of
pieces, the next parts can be
transferred. On CUSUMMA, this
greatly enhanced performance
(by as much as 32% for n =
7000). On CUPUMMA, initial
results showed no gain in
performance. Future work will
involve ensuring optimization, to
see if performance can be
increased any more.

Conclusions
We have tested two algorithms for large matrix
multiplication on GPUs. Of the two, CUSUMMA
performed better. This is due to the fact that it uses the
outer product approach, which minimizes data transfers
in this setting. We also found that overlapping
communication and computation can yield even bigger
performance gains. Future work involves ensuring that
the best implementations are fully optimized, and trying
to integrate the best approach into MAGMA (Matrix
Algebra on GPU and Multi-core Architectures), a linear
algebra package for heterogeneous architectures.

5000 6000 7000 8000 9000 10000 11000 15000
0

200000

400000

600000

800000

1000000

1200000

1400000

CUSUMMA Average Run Times
Effects of Overlapping Communication and Computation

CUSUMMA 3
CUSUMMA 5

Input Size (N x N)

T
im

e
(M

ill
is

ec
on

d
s)

5000 6000 7000 8000 9000 10000 15000
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

CUPUMMA Average Run Times

CUPUMMA 1
CUPUMMA 2
CUPUMMA 3
CUPUMMA 4

Input Size (N x N)

T
im

e
(m

ill
is

ec
on

d
s)

5000 6000 7000 8000 9000 10000 11000 15000
0

200000

400000

600000

800000

1000000

1200000

1400000

CUSUMMA Average Run Times

CUSUMMA 1
CUSUMMA 2
CUSUMMA 3
CUSUMMA 4

Input Size (N x N)

T
im

e
(M

ill
is

ec
on

d
s)

References
J. Choi, J. J. Dongarra, and D. W. Walker, “Pumma: Parallel

Universal Matrix Multiplication Algorithms on Distributed
Memory Concurrent Computers,” Concurrency: Practice
and Experience, Vol 6(7): 543-570, 1993.

R. A. V. D. Geijn, and J. Watts, “Summa: Scalable Universal
Matrix Multiplication Algorithm,” Concurrency: Practice and
Experience, 1995.

CUSUMMA code from Byron Galbraith available at:
http://code.google.com/p/cusumma/

5000 6000 7000 8000 9000 10000 15000
0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

CUPUMMA vs. CUSUMMA

CUPUMMA 2
CUPUMMA 3
CUPUMMA 4
CUSUMMA 3

Input Size (N x N)

T
im

e
(m

ill
is

ec
on

d
s)

By Matthew Beine
Mentor: Prof. Rong Ge

	Slide 1

